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Abstract—With the massive adoption of cloud-based services,
high energy consumption and carbon footprint of cloud infrastruc-
tures have become a major concern in the IT industry. Conse-
quently, many governments and IT advisory organizations have
urged IT stakeholders (i.e., cloud provider and cloud customers) to
embrace green IT and regularly monitor and report their carbon
emissions and put in place efficient strategies and techniques to
control the environmental impact of their infrastructures and/or
applications. Motivated by this growing trend, we investigate, in
this paper, how cloud providers can meet Service Level Agree-
ments (SLAs) with green requirements. In such SLAs, a cloud
customer requires from cloud providers that carbon emissions
generated by the leased resources should not exceed a fixed bound.
We hence propose a resource management framework allowing
cloud providers to provision resources in the form of Virtual Data
Centers (VDCs) (i.e., a set of virtual machines and virtual links
with guaranteed bandwidth) across a geo-distributed infrastruc-
ture with the aim of reducing operational costs and green SLA
violation penalties. Extensive simulations show that the proposed
solution maximizes the cloud provider’s profit and minimizes the
violation of green SLAs.

Index Terms—Green SLA, virtual data center, distributed
cloud, energy efficiency.

I. INTRODUCTION

W ITH the rapid development of cloud computing tech-
nologies, data centers have become a popular platform

for delivering large-scale online services such as content de-
livery, social networking and e-commerce. However, the rapid
expansion of cloud infrastructures in recent years have also
raised serious concerns regarding their energy consumption
and environmental impact. Recent reports [1] have revealed
that the Information and Communication Technologies (ICT)
account for 3% of the world’s carbon emissions. Data centers
by themselves accounts for about 10% of the ICT emissions
worldwide.
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Motivated by these observations, the ICT sector is witnessing
an upward move towards greening cloud infrastructures and ser-
vices driven by several governmental regulations and marketing
considerations. For instance, a recent study [2] showed that the
firms’ value would decrease significantly if it has high carbon
footprint or even if it withholds information about its carbon
emission rates. As a result, many IT companies are voluntarily
disclosing their carbon emissions and regularly reporting their
efforts towards deploying environmental-friendly solutions and
services [3]. At the same time, governments are imposing
taxes on carbon emissions in the hopes of pushing further this
shift towards the adoption of green sources of energy and the
reduction of carbon footprint [4].

In current cloud environments, there are mainly two stake-
holders: (1) cloud providers (CPs) that typically own distributed
infrastructures and lease their resources in an on-demand man-
ner to different Service Providers (SPs); (2) SPs use these
resources to deploy their services and offer them to Internet
end-users. Recent research proposals and cloud offerings [5]
are advocating to offer these resources in the form of Virtual
Data Centers (VDCs), i.e., a set of VMs and virtual links with
guaranteed bandwidth.

Typically, CPs are responsible for allocating resources for
VDCs across their distributed clouds with the goal of min-
imizing operational costs and maximizing the infrastructure
environmental friendliness by increasing the usage of green
energy [6]. However, recently, SPs were also required to take
into account environmental objectives and ensure that their
services are produced with the smallest carbon footprint. Many
advisory boards and commissions (e.g., Open Data Center
Alliance [7] and SLA Expert Subgroup of the Cloud Selected
Industry Group of the European Commission [8]) are pushing
towards defining green SLAs in which SPs require their CPs to
limit the carbon emissions generated on their behalf. Recently,
some research works advocated providing Green SLAs in the
context of HPC clouds [9]–[13].

Typically, the green SLA terms require either to limit the
carbon emissions generated by SPs services [9]–[12] or to set
a minimum amount of renewable power to be consumed by the
resources allocated to SPs [13], [14]. However, these proposals
do not consider the allocation of network resources (virtual
links) and aim only to allocate VMs within a single data center.

In this paper, we investigate how a CP can meet an SLA
with green requirements. In particular, we consider SLAs that
specify a limit on the carbon emission generated by each
service provider’s VDC. We, hence, propose Greenslater, a
holistic framework that orchestrates the provisioning and the
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resource optimization for the multiple VDCs deployed across
a distributed infrastructure. From the CP’s point of view, the
objective is to maximize revenue while minimizing operational
costs and the potential green SLA violation penalties. Greens-
later takes advantage of the variability in space and time of the
available renewables and electricity prices in different data cen-
ters to reduce the carbon footprint and costs. It provisions VDCs
and dynamically optimize resource allocation over time while
fulfilling the green SLA terms. Through extensive simulations,
we show that the proposed framework maximizes the CP’s
profit and also the usage of renewable power while minimizing
SLA violation cost.

The remainder of this paper is organized as follows.
Section II surveys the related works. Section III defines green
SLAs and presents the proposed management framework. The
mathematical formulation of the VDC embedding problem
across distributed infrastructures that considers green SLAs is
then presented in Section IV. Section V gives a detailed de-
scription of the proposed algorithms for VDC admission control
and dynamic resource allocation and optimization. Section VI
discusses simulation setup and results. Finally, we conclude the
paper in Section VII.

II. RELATED WORK

In the last few years, a large body of work has addressed the
problem of reducing energy consumption and carbon footprint
in cloud environments. In the following, we first survey the
literature on green management in the cloud and then we focus
on the proposals that advocated implementing green SLAs
between cloud and service providers.

A. Green Management in the Cloud

Recently, several systems have been proposed to map VDCs
onto a single data center with the goal of reducing energy con-
sumption. For instance, Zhani et al. [15] proposed VDC Plan-
ner, a resource management framework that leverages dynamic
VM migration to increase CP’s revenue while minimizing en-
ergy consumption. Unfortunately, these solutions are designed
to manage a single data center and hence do not consider the
variability over time and between different locations of the
electricity prices and the availability of green sources of energy.

A plethora of techniques have been also proposed to allocate
resources across geographically distributed data centers in order
to reduce energy costs [16]–[18], minimize the infrastructure’s
carbon footprint [19], [20] or achieve both objectives [6], [21],
[22]. For instance, Xin et al. [23] proposed an algorithm that
uses minimum k-cut to split a VDC request into partitions before
assigning them to different locations so as to balance the load
among different data centers. In [6], we proposed Greenhead,
a framework for VDC embedding across distributed infras-
tructures that aims at maximizing cloud providers’ revenue
while cutting down the carbon footprint of the infrastructure.
Unfortunately, the solutions above use static mapping and do
not perform any dynamic resource optimization over time. They
also do not consider green SLAs and hence do not guarantee

any limit on carbon emissions of the resources leased by
each SP.

B. Green SLA in the Cloud

Green SLAs stipulate that SPs are able to require their cloud
providers to guarantee that the leased resources are environ-
mental friendly. In other words, SPs can explicitly specify
green constraints like, for instance, an upper limit on carbon
emissions produced by the resources they lease.

Providing green SLAs has been originally proposed back in
2010 by Laszewski et al. [9] and then quickly adopted and
supported in several research works [10]–[14], [24]–[26]. For
instance, Haque et al. [13] considered an SLA that specifies
the proportion of green power that the HPC provider should
use to run the job (e.g., x% of the job should run on green
power). Hence, the HPC provider has to pay a penalty to
SPs if the green terms of the SLA are not satisfied. Similarly,
Wang et al. [24] proposed an approach where SPs can define
SLA constraints for their submitted tasks to limit the carbon
emissions and the consumed power. In this case, the goal, from
the CP’s perspective, is to schedule parallel tasks such that the
green SLAs are satisfied. Klingert et al. [25] proposed that
data center providers consider CO2 per task or resource (in
kgCO2) and the yearly average PUE as metrics to specify SPs’
requirements. In a case study, the authors compared three types
of SLA: (i) a standard SLA (Full Power) that does not address
energy consumption at all but prioritizes performance and time;
(ii) a relaxed SLA that requires key indicators to be within
relaxed boundaries, and (iii) an energy-aware SLA that uses
tight energy ranges for each job. The results at a small scale
show significant energy saving and reduced QoS violations.

Hasan et al. [14] proposed a framework for defining Green
SLA between the SPs (SaaS providers) and the CPs (IaaS
providers). The Green SLAs define terms related to the total
amount of renewable energy in percentage that should be
consumed by the data center. The goal of the CP in this case is to
satisfy these terms by purchasing renewable power and finding
a good tradeoff between profit and SLA violation penalty.
Hence, the CP negotiates with electricity providers short term
contracts that would satisfy the renewable power demand based
on SPs’ requirements, while capping expenditures to a limited
budget. To do so, the authors proposed an optimization module
that uses linear programming techniques along with forecasting
models that predict renewable power availability and cost.

It is worth noting that existing works such as [10], [27]
proposed renegotiation of the SLA terms between the CP and
the SP. The idea is that CPs incentivize SPs to relax some of the
QoS constraints so as to reduce the energy consumption and/or
carbon footprint. For instance, SPs can relax theconstraint on the
execution time of an HPC job or task to allow the CP to run it
during periods of time where the renewable power is available.

The main limitation of the solutions described above is that
they do not consider bandwidth requirements between VMs
and they are designed to manage resources within a single
data center. Our work considers a more general scenario with
multiple data centers and where the network requirements are
explicitly specified in the VDC request.
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Fig. 1. Proposed framework.

III. SYSTEM ARCHITECTURE

In this section, we present the design architecture of the pro-
posed solution and we discuss the definition of the Green SLA
terms and how to enforce them in a distributed environments.

A. Architecture Overview

As shown in Fig. 1, we consider a distributed infrastructure
consisting of multiple data centers located in different regions
and interconnected through a backbone network. The entire
infrastructure (including the backbone network) is assumed to
be owned and managed by the same CP.

SPs send VDC request specifications to the CP, which has the
responsibility of allocating the required resources. Naturally,
the CP will make use of its distributed infrastructure with the
objective of maximizing its revenue and minimizing energy
costs and carbon footprint; this is where our proposed man-
agement framework, Greenslater, comes into play. Greenslater
is composed of two types of management entities: i) a Central
Controller that manages the entire infrastructure and ii) a Local
Controller deployed in each data center to manage the data
center’s internal resources (i.e., resource allocation for VMs
and virtual links inside the data center).

The central controller consists of a number of components.
The Partitioning Module is in charge of dividing a VDC request
into partitions such that inter-partition bandwidth is minimized.
The Partition Allocation Module is then responsible for running
an admission control algorithm for every received VDC request,

and assigns the partitions, in case of accepted requests, to data
centers based on run-time statistics collected by the monitoring
module and the estimation of available renewable power. The
Inter-data center Allocation Module allocates resources for the
virtual links spanning the backbone network. Finally, the Mi-
gration Module dynamically relocates VDC partitions in such a
way to follow renewables and reduce the carbon footprint. The
Monitoring Module monitors and collects information about the
status of physical and virtual infrastructures and stores them
into VDC Information Base.

B. Green SLA Definition

As stated earlier, SPs have not only to specify resource
requirements but also constraints on the carbon emissions gen-
erated by the CPs while hosting their VDC. Specifically, green
terms in the SLA specify the limit on carbon emissions that
the CP is allowed to generate to accommodate the VDC request
during a period of time called hereafter the reporting period. The
reporting period can be for instance the a billing period [7].

To enforce green SLAs, the CP should compute the carbon
footprint of each VDC request. To do so, we use two metrics:
(1) carbon emission per unit of bandwidth (tonCO2/Mbps) and
(2) carbon emission per core (tonCO2/Core). These metrics are
chosen because the bandwidth and the CPU are the major fac-
tors that determine the power consumption in data centers and
they are already considered in industry. For instance, Akamai
reports annually its carbon emission in CO2 per gigabyte of data
delivered (tonCO2/Gbps), Verizon reports its carbon emissions
per terabyte of transported data across its network.

As the carbon footprint is computed for each VDC, the SLA
is enforced at the end of each reporting period. In case of viola-
tion of the green terms (i.e., the carbon footprint for the VDC is
higher than the limit specified in the SLA), the CP is required
to pay a penalty (a.k.a. credit). The penalty can a percentage of
the SP’s bill that can go up to 100% for some providers such
as Rackspace [28]. It becomes then critical to design effective
VDC embedding algorithms that minimize this penalty.

IV. PROBLEM FORMULATION

In this section, we formally define the VDC embedding
problem across multiple data centers as an Integer Linear
Program (ILP). For ease of explanation, Table I describes the
notations used in our ILP model. We assume that time is divided
into slots. The metrics characterizing each data center (e.g.,
Power Usage Effectiveness (PUE), electricity price, availability
of renewable power) are measured at the beginning of each
time slot and are considered constant during the corresponding
time slot. Moreover, we assume that the CP reports its carbon
emissions periodically every T time slots. We denote by Tk =
[tkb, tke] the kth reporting period, where tkb and tke are its beginning
and end time slots, respectively.

The physical infrastructure is represented by a graph G(V ∪
W, E), where V denotes the set of data centers and W the
set of nodes of the backbone network. The set of edges E
represents the physical links in the backbone network. Each
link is characterized by its bandwidth capacity bw(e) and
propagation delay d(e).
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TABLE I
TABLE OF NOTATIONS

A VDC request j is represented by a graph Gj(Vj, Ej). The
arrival time and lifetime of the request j are denoted by tj

and T j, respectively. Each vertex v ∈ Vj corresponds to a VM,
characterized by its CPU, memory and disk requirements. Each
edge e ∈ Ej is a virtual link that connects a pair of VMs,
which is characterized by its bandwidth demand bw(e) and
propagation delay d(e). Furthermore, each VDC j may have a
constraint on carbon emissions per reporting period T, which
is defined by the variable cj. We assume the revenue generated
by VDC j, denoted by Rj, to be proportional to the amount of
resources (CPU, memory and disk) and bandwidth required by
its VMs and links, and inversely proportional to the carbon limit
cj. Let R denote the different types of resources offered by each
node (i.e., CPU, memory and disk). The revenue generated by
VDC j per time slot can be written as follows:

Rj =
⎛
⎝∑

v∈Vj

∑
r∈R

(
Cr(v) × σ r)+ ∑

e′∈Ej

bw(e′) × σ b

⎞
⎠× γ

cj
(1)

where Cr(v) is the demand of VM v belonging to VDC j
in terms of resource r ∈ R, and σ r and σ b are unit price of
resource r and bandwidth, respectively, and γ is a weighting
factor that determines the importance of the green constraints
in the pricing.

Furthermore, a VM v ∈ Vj may have a location constraint.
That is, it can only be embedded in a particular set of data

centers. To model this constraint, we define a binary variable
zj

ik, indicating whether or not a VM k of VDC j can be
embedded in a data center i.

The problem of embedding VDC requests in a distributed
infrastructure of data centers should be solved dynamically over
time. In fact, the decision of embedding VMs in different data
centers is modified at the beginning of every time slot in such
a way to follow the renewables. Thus, for each VDC request j,
and during each time slot t ∈ [tj, tj + T j], the central controller
should:

• Assign each VM k ∈ Vj to a data center. Hence, we define
the decision variable xj,t

ik as:

xj,t
ik =

⎧⎪⎨
⎪⎩

1 If the VM k of the VDC j is assigned

to data center i during slot t

0 Otherwise.

• Embed every virtual link either in the backbone network
if it connects two VMs assigned to different data centers
or within the same data center, otherwise. To do so, we
define the virtual link allocation variable f t

e,e′ as:

f t
e,e′ =

⎧⎪⎨
⎪⎩

1 If the link e ∈ E is used to embed

the virtual link e′ ∈ Ej during slot t

0 Otherwise.

As a CP can reject a request due to shortage in resources
or too tight constraints (delay, location), we define a binary
variable Xj, which indicates whether the VDC request j is
accepted for embedding or not defined as follows:

Xj =
{

1 If
∑

t∈Tk
∑

i∈V
∑

k∈Vj xj,t
ik ≥ 1

0 Otherwise.

Finally, the ultimate objective of the CP when embedding VDC
requests during any reporting period Tk is to maximize its
profit defined as the difference between the revenue (denoted
by Rk) and the total embedding cost plus penalty cost, which
consists of the embedding cost in the data centers (denoted by
Dk), the migration cost (denoted by Mk) the embedding cost
in the backbone network Bk and the penalty cost Pk. Hence,
our problem can be formulated as an ILP with the following
objective function:

Maximize Rk − (Dk + Bk + Mk + Pk) (2)

Subject to:

xj,t
ik ≤ zj

ik, ∀k ∈ Vj,∀i ∈ V,∀t, (3)∑
i∈V

xj,t
ik = Xj, ∀k ∈ Vj,∀j ∈ Qt,∀t (4)

∑
e′∈Ej

f t
e,e′ × bw(e′) ≤ bw(e), ∀e ∈ E,∀t (5)

∑
e∈E

f t
e,e′ × d(e) ≤ d(e′), ∀e′ ∈ Ej,∀t (6)

f t
e1,e′ − f t

e2,e′ = xt
dst(e1)dst(e′) − xt

src(e2)src(e′),

∀e1, e2 ∈ E, dst(e1) = src(e2), ∀ e′ ∈ Vj ,∀t (7)
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where Qt is the set of VDC requests being embedded during
time slot t, src(e) and dst(e) denote the source and destination
of link e, respectively. Equation (3) guarantees location con-
straint satisfaction. Equation (4) depicts that a VM is assigned
to at most one data center. Equation (5) guarantees that link
capacities are not exceeded in the backbone network, whereas
(6) guarantees that delay requirements of virtual links are
satisfied. Equation (7) denotes the flow continuity constraint.

The revenue for a reporting period Tk is given by:

Rk =
∑
t∈Tk

∑
j∈Qt

Rj × Xj (8)

Let us now focus on the expression of the embedding costs
Dk, Bk, Mk and Pk in the data centers, the backbone network
and penalty, respectively. Recall that these costs are part of the
objective function.

- The cost of embedding in the data centers
In this work, we evaluate the request embedding cost in the

data centers in terms of energy costs.
The total amount of consumed power in data center i is

given by:

Pt
i = (

Pt
i,Net + Pt

i,Serv

) × PUEt
i (9)

where Pt
i,Serv and Pt

i,Net are the power consumed by servers and
network elements, respectively, and PUEt

i is the power usage
effectiveness of data center i during time slot t, which is used
to compute the power consumed by supporting systems such as
the cooling system. Note that this power consumption depends
mainly on the local allocation scheme in each data center.

The mix of power used in data center i is given by:

Pt
i = Pt

i,L + Pt
i,D (10)

where Pt
i,L and Pt

i,D denote, respectively, the consumed on-site
renewable power and the amount of purchased power from the
grid during time slot t. Note that Pt

i,L should not exceed the
amount of produced power, which is captured by Pt

i,L ≤ RNt
i ,

where RNt
i is the amount of onsite renewable power generated

in data center i, during time slot t, expressed in kW.
Hence, the total embedding cost in all data centers (expressed

in $) can be written as:

Dk =
∑
t∈Tk

∑
i∈V

Pt
i,L × ηi + Pt

i,D × ζ t
i (11)

where ηi is the onsite renewable power cost in data center i
($/kWh), ζ t

i is the electricity price in data center i ($/kWh).
- The cost of embedding in the backbone network
Virtual links between the VMs that have been assigned to

different data centers should be embedded in the backbone
network. We assume that it is proportional to their bandwidth
requirements and the length of physical paths to which they are
mapped. It is given by:

Bk =
∑
t∈Tk

∑
e′∈Ej

∑
e∈E

f t
e,e′ × bw(e′) × σp (12)

where σp is the cost incurred by the CP per unit of bandwidth
allocated in the backbone network. Note that σp defines both the
energy cost and any additional cost related to inter-data center
bandwidth as defined in [29]. σp is the average cost per unit of
bandwidth given the total measured cost.

- The migration cost
Let t − 1 denote the time slot previous to time slot t. The

migration cost is given by:

Mk =
∑
t∈Tk

∑
j∈(Qt−1∩Qt)

∑
a∈Vj

∑
i1,i2∈V

migj,t
a,i1,i2

× (ma,j + wa,j,i1,i2)

(13)

where ma,j is the cost of migrating VM a of VDC j, which
corresponds to the disruption in service that might occur when
migrating the VM, wa,j,i1,i2 is the energy cost for migrating VM
a of VDC j from data center i1 to data center i2. In this paper,
we use the following formula of wa,j,i1,i2 provided in [30]:

wa,j,i1,i2 = (0.512 × �mig + 20.165) ∗ δt
i1

+ δt
I2

2

where �mig is the amount of data transferred between data cen-
ters during the migration of VMs. Note also that δt

i represents
the power cost in data center i at time slot t, which is equal to
ζ t

i if the power is consumed from the grid and equal to ηt
i if

the power is from on-site renewable source of energy. Finally,
migj,t

a,i1,i2
is a binary variable that determines whether VM a of

VDC j have been migrated to data center i2 from data center i1
at the beginning of time slot t. It is defined as follows:

migj,t
a,i1,i2

=

⎧⎪⎨
⎪⎩

1 If xj,t
i2a = 1 and xj,t−1

i2a = 0

and xj,t
i1a = 0 and xj,t−1

i1a = 1

0 Otherwise.

Note that we assume that there is no cost for link migration as
no data transfer is needed.

- The penalty cost
The penalty is paid by the CP to the SP whenever the speci-

fied green SLA is not met. At the end of every reporting period
Tk, the CP reports the carbon emission related to each VDC
request j that has been embedded for the whole time period Tk

or during a part of it. Since the carbon emissions are due to the
power consumption, we can derive the carbon emission of every
data center i during a time slot t, denoted by C t

i , as follows:

C t
i = Pt

i,D × Ci (14)

where Pt
i,D denotes the amount of purchased power from the

grid by data center i during time slot t and Ci is the carbon
footprint per unit of power used from the grid in data center i
expressed in tons of carbon per kWh (tonsCO2/kWh).

We derive the carbon emissions, in the entire infrastructure,
due to the servers (denoted by C t

i,Serv) and the network (denoted
by C t

Net), as follows:

C t
Serv = 1

|V|
∑
i∈V

C t
i × Pt

i,Serv

Pt
i,Net + Pt

i,Serv
(15)

C t
Net = 1

|V| + 1
×

(∑
i∈V

C t
i × Pt

i,Serv

Pt
i,Net + Pt

i,Serv

+ C t
Bckb

)
(16)
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where C t
Bckb is the carbon emission due to embedding virtual

links in the backbone network. In a similar way to the data
centers, C t

Bckb is computed for every time slot based on the
power consumption and the carbon footprint per unit of power.

In this case, the average carbon emission rate of the CP per
unit of VM during a reporting period Tk is given by:

Ck
CPU = 1

tke − tkb
×

∑
t∈[

tkb,t
k
e
]

C t
Serv∑

j∈Qt

∑
v∈Vj Ccpu(v)

(17)

where Qt is the set of VDC requests being embedded during
time slot t and Ccpu(v) is the capacity of VM v in terms of CPU
units.

Similarly, the carbon emission rate per unit of bandwidth
during a period Tk can be given as:

Ck
BW = 1

tke − tkb
×

∑
t∈[

tkb,t
k
e
]

C t
Net∑

j∈Qt

∑
e∈Ej bw(e)

(18)

As such, the carbon emission related to a VDC request j
during the period Tk, denoted by C j

k, can be given by:

C j
k =T j

k ×
⎛
⎝

⎛
⎝∑

v∈Vj

Ccpu(v) × Ck
CPU

⎞
⎠+

⎛
⎝∑

e∈Ej

bw(e) × Ck
BW

⎞
⎠

⎞
⎠

where T j
k is the number of time slots of the period Tk during

which VDC j was embedded.
Finally, a penalty is paid by the CP for an SP j at the end of

the period Tk if the carbon emission for VDC j is above the limit
specified in the SLA, i.e., C j

k > cj, where cj is the amount of
carbon emission allowed by the SP for every reporting period.
In this case, the total penalty cost for a period Tk is given by:

Pk =
∑

j∈(∪t∈Tk Qt)

(
Rj × T j

k

)
× p, if C j

k > cj (19)

where p ∈ [0, 1] is the proportion of the SP’s bill to be refunded
by the CP in case of SLA violation. Note that p can be constant
as it is common nowadays [28], or variable depending on the
extent of the violation. For instance, in this paper, we use a
simple penalty model as follows:

p = max

(
C j

k

cj
, 1

)
(20)

which makes the penalty proportional to the extent of the
violation, with a maximum refund of 100% of the total amount
of the bill. In this paper, we investigate both cases (i.e., constant
penalty and variable penalty) and discuss them in the simulation
results.

The problem described above can be seen as a combination
of the bin-packing problem and the multi-commodity flow

problem, which are known to be NP-hard. Therefore, we
propose a simple yet efficient and scalable solution.

V. GREEN SLA OPTIMIZER (GREENSLATER)

Since the problem presented in the previous section is
NP-hard, we propose a greedy three-step approach. At the
arrival a VDC request, the Central Controller first splits it into
partitions such that the intra-partition bandwidth is maximized
and the inter-partition bandwidth is minimized. It then uses an
admission control algorithm that rejects VDCs with negative
profit (i.e., the VDC cost is higher than the generated revenue).
If the VDC is accepted, its partitions are embedded in different
data centers. As the availability of renewables and electricity
prices are variable over time, and the requests dynamically
arrive and leave the system, we propose a reconfiguration
algorithm, which migrates partitions from the data centers with
no available renewables to those with available renewables. In
the following, we present in details the proposed algorithms.
Note that the partitioning aims at minimizing the backbone
networks cost, while the reconfiguration minimizes the energy
cost and limits the SLA violation by following the renewables,
while taking into account the migration costs before migrating.

A. VDC Partitioning

Once received, the Central Controller divides the VDC re-
quest into partitions where the intra-partition bandwidth is max-
imized and the inter-partition bandwidth is minimized. Hence,
each entire partition is then embedded in the same data center,
which minimizes the inter-data center bandwidth. As the parti-
tioning problem is NP-hard [31], we use the Location Aware
Louvain Algorithm (LALA), the partitioning algorithm used in
[6]. LALA is a modified version of the Louvain Algorithm [32]
that considers location constraints. The objective of the Louvain
algorithm is to maximize the modularity, defined as an index
between −1 and 1 that measures intra-partition density (i.e.,
the sum of the links’ weights inside partitions) compared to
inter-partition density (i.e., sum of the weights of links between
partitions). In fact, graphs with high modularity have dense
connections (i.e., high sum of weights) between the nodes
within partitions, but sparse connections across partitions. Sim-
ilar to the Louvain algorithm, the complexity of LALA is
O(n log n) [32].

B. Admission Control

When a VDC request is received, the Central Controller
checks if the request will generate profit, in which case it is
accepted, otherwise it is rejected. In some cases, a request with
tight carbon constraints might result in high SLA violation
penalties, which reduces the CP’s profit. To address this issue,
we propose an admission control algorithm (Algorithm 1).
The idea is to estimate the available renewable power in the
next prediction window and estimate carbon emission of the
requested VDC. In this paper, we consider solar panels to
generate the renewable power and we use a prediction model
presented in [13]. Moreover, we consider short term predictions
(up to 4 hours).
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Algorithm 1 Admission Control Algorithm

1: IN: predictionWdW // the prediction window
2: IN: reconfigInterval // the reconfiguration interval
3: IN: vdc // the VDC to embed
4: wdw ← min(predictionWdw, reconfigInterval)
5: possible ← possibleToEmbed(vdc)
6: if possible then
7: carbonRate ← getEstimationCarbonRate(wdw)

8: carbonLimitRate ← vdc.carbonLimit/wdw
9: if carbonRate ≤ carbonLimitRate then

10: Accept vdc
11: else
12: //Verify if profit can be made
13: estimatedCost ← estimatePowerCost(vdc)
14: if revenue(vdc)×(1−refundFactor)−estimatedCost>

0 then
15: Accept vdc
16: else
17: Reject vdc
18: end if
19: end if
20: else
21: Reject vdc
22: end if

First, the central controller checks whether it is possible to
embed the VDC given the available resources and constraints of
the VMs in the VDC. If the request is embeddable, the central
controller computes an estimation for carbon emission for the
request given the current power consumption and the predicted
availability of renewables for the next prediction window. To
do so, we propose to use a simple estimation algorithm, which
computes the estimation of carbon emission per unit of VM
and per unit of bandwidth in the next prediction window, and
by the same derives the estimation of carbon emission of the
given VDC request. The estimated carbon of the VDC request
is then compared to the limit provided in the SLA of the VDC
request. In case of SLA violation, the Central Controller checks
whether profit can still be made even if there is a penalty to pay.
If the profit is positive, the VDC request is accepted, otherwise
it is rejected. It is worth noting that as the prediction window
is limited compared to the lifetime of some of the VDCs (up to
weeks for long lived VDCs), the decision of accepting might be
biased as the short term forecasts can show high availability of
renewables.

C. Partitions Embedding

Once a request Gj(Vj, Ej) is partitioned, the resulting parti-
tions that are connected through virtual links can be seen as a
multigraph Gj

M(Vj
M, Ej

M) where Vj
M is the set of nodes (parti-

tions) and Ej
M is the set of virtual links connecting them. This

multigraph is then embedded into the infrastructure, partition
by partition, using Algorithm 2. As reported in Algorithm 2,
for each partition v ∈ Vj

M , we first build the list of data centers

that satisfy the location constraints of its VMs. The Central
Controller queries the Local Controller of each data center s
from the list to get the embedding cost of v. The cost is returned
by the remote call getCost(s, v).

Algorithm 2 Greedy VDC Partitions Embedding Across Data
Centers

1: IN: G(V ∪ W, E), Gj
M(Vj

M, Ej
M)

2: for all i ∈ V do
3: ToDC[i] ← {}
4: end for
5: for all v ∈ Vj

M do
6: Sv ← {i ∈ V/i satisfies the location constraint}
7: end for
8: for all v ∈ Vj

M do
9: i ← s ∈ Sv with the smallest cost getCost(s, v), and

LinksEmbedPossible(s, v) = true
10: if no data center is found then
11: return FAIL
12: end if
13: ToDC[i] ← ToDC[i] ∪ {v}
14: for all k ∈ N(v) do
15: if k ∈ ToDC[i] then
16: ToDC[i] ← ToDC[i] ∪ {evk}
17: else
18: if ∃l �= i ∈ V/k ∈ ToDC[l] then
19: Embed evk in G using the shortest path
20: end if
21: end if
22: end for
23: end for
24: return ToDC

The data center offering the lowest cost (provided by the
procedure getCost(s, v)) and able to embed virtual links be-
tween v and all previously embedded partitions-denoted by
N(v)-(verified by the function LinksEmbedPossible(s, v)) is
then selected to host the partition. These virtual links are
embedded in the backbone network using the shortest path
algorithm.

This procedure is repeated until all partitions and virtual links
that connect them are embedded into the distributed infrastruc-
ture. It is worth noting that the complexity of embedding the
whole multigraph is O(|Vj

M| × |V|), where |Vj
M| is the number

of partitions and |V| is the number of data centers.

D. Dynamic Partition Relocation

As the electricity price and the availability of renewables
are variable over time, we propose a dynamic reconfiguration
algorithm that optimizes VDC embedding over-time. Our aim
is to migrate partitions that have already been embedded in
data centers which may run out of renewables towards data
centers with available renewable power. The second criterion
to perform a migration is to move partitions to locations where
the electricity price is lower.
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Algorithm 3 Greedy Partition Migration Across Data Centers

1: IN: predictionWdW // the prediction window
2: IN: reconfigInterval // the reconfiguration interval
3: wdw ← min(predictionWdW, reconfigInterval)
4: for all i ∈ V do
5: Diff [i] ← EstimateRenewables(wdw, i) −

FutureConsumption(wdw, i)
6: if Diff [i] < 0 then
7: part[i] ← list of partitions in i sorted by migration

cost
8: end if
9: end for

10: for all i ∈ V, Diff [i] < 0 do
11: while  k ∈ V, Diff [k] > 0 do
12: p ← part[i].first
13: D ← {k ∈ V, Diff [k] > 0}
14: done ← false
15: while !done && D �= φ do
16: //Take the data center with the minimum cost in the

backbone network after migration
17: dest ← minBackboneCost(D)

18: Migrate(p, dest)
19: if successful migration then
20: done ← true
21: Update Diff [dest] and Diff [i]
22: else
23: D ← D\{dest}
24: end if
25: end while
26: end while
27: end for

We, hence, propose a migration algorithm (Algorithm 3)
executed every τ hours (i.e., reconfiguration interval) by the
Central Controller.

Data centers are first classified into two categories: sources
and destinations. A data center is considered as a source if it has
not enough renewable power to support its workload and hence
we will have to resort to power from the grid. In this case, in a
source data center, the difference between the estimated avail-
able renewable power and the estimated power consumption
is negative (cf. Line 5 of Algorithm 3). Conversely, if a data
center has renewable power that exceeds its estimated power
consumption, it is considered as destination data center since
there is no need to reduce its workload and migrate VMs. In
this case, it might be able to host more partitions if it has enough
renewable power.

The idea is that partitions from source data centers should
be migrated to destination data centers. To do so, the list of
partitions in each source data center are sorted in increasing
order of their migration cost (cf. Line 7 of Algorithm 3). For
each partition, one destination data center that have a positive
difference is chosen. The destination is chosen in a way that
minimizes the inter-data center virtual link embedding cost
after migration.

VI. PERFORMANCE EVALUATION

To evaluate the performance of Greenslater, we conducted
several simulations using a realistic topology and real traces
for electricity prices and renewable power availability. In the
following, we first describe the simulation setting. Then, we
present the results under two different penally cost models: a
fixed penalty and a variable penalty that depends on the extent
of the Green SLA violation.

A. Simulation Settings

For our simulations, we consider a physical infrastructure
of 4 data centers located at four different states: New York,
Illinois, California and Texas. The data centers are connected
through the NSFNet topology as a backbone network, which
includes 14 nodes. Each data center is connected to the back-
bone network through the closest node to its location. We
assume all NSFNet links have a capacity of 100 Gbps. The
traces of electricity prices and availability of renewable energy
are provided by the US Energy Information Administration
(EIA) [33]. The weather forecast is taken from the National
Renewable Energy Laboratory [34] and the amount of power
generated per square meter of solar panel from [35]. The carbon
footprint per unit of power is provided by [36].

Similar to previous works [6], [15], VDCs are generated
randomly according to a Poisson process with arrival rate λ

and a lifetime following an exponential distribution with mean
1/μ. The number of VMs per VDC is uniformly distributed
between 10 and 50 for regular VDCs, and between 5 and 10
for small VDCs. Note that the small VDCs are used only
to run the exhaustive search algorithm in order to study the
convergence to the optimal solution. A pair of VMs belonging
to the same VDC are directly connected with a probability 0.5
with a bandwidth demand uniformly distributed between 10
and 50 Mbps and a delay uniformly distributed between 10 and
100 milliseconds. Each VM has a number of cores uniformly
distributed between 1 and 4. Moreover, in each VDC, a fraction
of VMs, denoted by Ploc ∈ [0, 1], is assumed to have location
constraints and thus cannot be migrated, i.e., it can only be
embedded in a specific set of data centers. Each VDC comes
with a carbon limit constraint specified in the Green SLA.
This limit is assumed to be uniformly distributed between 5
and 20 kgCO2 per day independently of the size of the VDCs
to show the independence of our approach from the carbon
constraints. When the Green SLA is not satisfied, the CP
refunds a proportion p of the SP’s bill for that specific period of
time. In the first set of experiments, we consider p to be fixed to
50% of the bill. In the second set of experiments, we consider p
to be proportional to the violation, i.e., the refund in percentage
is equal to the proportion of violation divided by the limit of
carbon of the VDC with a cap of 100%.

To assess the effectiveness of our proposal, we com-
pare Greenslater to three other solutions: (i) Greenhead [6],
(ii) Greenhead with No Partitioning (NP) (i.e., each VM is
considered as a single partition), and (iii) the load balancing
approach for VDC embedding [23]. Moreover, we developed an
implementation of the brute force exhaustive search algorithm,
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TABLE II
COMPARISON OF THE COMPUTATION TIME AND PERFORMANCE GAINS FOR THE OPTIMAL SOLUTION,

GREENSLATER, GREENHEAD, GREENHEAD NP AND LOAD BALANCING

that computes the optimal solution given by the ILP formulated
in Section IV, to assess the convergence of our solution as
well as the time complexity. The simulations are run using
our own developed discrete event simulator, which extends the
previous version developed in [6]. The interface between the
central controller and the local controllers in each data center
are implemented using remote procedure calls. Note that for
each of the given results, the average values and confidence
intervals of 80 consecutive runs are used.

For performance evaluation, we consider five metrics: (i) the
profit of the CP, which is the difference between revenue and the
sum of operational costs (i.e., power cost, backbone network
cost) and the Green SLA violation cost, (ii) the acceptance
ratio (defined as the ratio of embedded requests out of the total
received requests by the CP), (iii) the carbon footprint generated
by the whole infrastructure, (iv) the green power utilization
and (v) the SLA violation penalty cost. We also measured the
computation time for all the algorithms composing the solution,
i.e., partitioning a VDC request, embedding the partitions, and
the reconfiguration time, which is the computation time to find
new embedding scheme for all partitions and virtual links.

B. Simulation Results Under Fixed Penalty Refund Factor

In this first set of simulations, we assume a fixed refund
factor p. Specifically, p is set to 50%. That is, the CP refunds
50% of the SP’s bill for the period of violation. Greenslater
We first study the impact of the different input parameters: the
arrival rate λ, the fraction of location constrained VMs Ploc

and the reporting period T on the system performance, using
different values of the reconfiguration interval τ .

1) Computation Time and Convergence: First, we inves-
tigate the computation time of our proposed approach com-
pared to the optimal solution given by the ILP formulation in
Section IV, as well as the gain in terms of profit and SLA
violation costs. To this end, we run simulations at a small
arrival rate (λ = 2 Requests/hour) for small VDC requests
(5–10 VMs). We implemented a brute force exhaustive search
algorithm to find the optimal solution of the ILP formulated in
Section IV. The brute force search algorithm iterates over all
the possibilities for VM placement and virtual link allocation.
Moreover, it uses the full knowledge of the available renewable
power in the different data centers instead of the prediction
algorithm used by Greenslater. We measured the computation

time to partition, embed a VDC request and the time needed
to reconfigure the infrastructure by migrating partitions. We
also measured the profit gain compared to the Load Balancing
approach. The results are summarized in Table II.

As reported in Table II, for small sized VDCs, we can notice
that Greenslater achieves comparable gain in profit with the op-
timal solution, while incurring shorter embedding+partitioning
time (i.e., 0.0043 ms in total) and reconfiguration time (i.e.,
0.18 ms), compared to 11 seconds for embedding a request and
49 seconds to find the optimal configuration when using the
optimal solution. Note that in this case, the other approaches
achieve lower profit gain and higher computation time com-
pared to Greenslater.

For large sized VDC requests, Greenslater again achieves the
best profit gain with a short computation time. Specifically, the
partitioning+embedding process of a VDC request takes less
than 53 ms in average, which is similar to Greenhead as they
use the same partitioning algorithm, while it takes less time for
the other approaches as they do not partition the VDC requests.
Note that the reconfiguration time in this case is less than 28 ms,
which makes the algorithm usable in practice.

2) Impact of the Arrival Rate λ: Fig. 2 shows the impact of
the arrival rate λ on both the achieved profit and SLA violation
cost, when Ploc = 0.05 (i.e., low constrained locations), T =
24 hours, and τ = 4 hours. From this figure, we can notice
that Greenslater outperforms other solutions, especially at high
arrival rates (i.e., λ ≥ 3). For small arrival rates (i.e., λ ≤ 2), no
considerable gain is observed as the number of requests being
embedded is small. We can also observe that both the profit
and SLA violation increase as the number of accepted requests
increases. This is due to the fact that renewables are not enough
to accommodate large numbers of VDCs, which leads to more
power drawn from the electricity grid.

3) Impact of Location Probability Constraint Ploc: Let us
now study how location-constrained VMs may impact the re-
sults. To do so, we have varied Ploc between 0 and 0.2, and fixed
the values of λ=4 requests/hour, T =24 hours and τ = 4 hours.
We can see in Fig. 3 that Greenslater outperforms the other
solutions for all the values of Ploc. However, as Ploc increases,
the profit drops for all approaches since more VMs must be
located in specific data centers. This limits the possibility of
migrating the partitions, which may run using power from the
grid. It is clear that the gain achieved by Greenslater is higher
when less location constraints are considered (i.e., low Ploc).
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Fig. 2. Impact of variable arrival rate λ (Ploc = 0.05, T = 24 hours, τ = 4 hours). (a) Cumulative profit. (b) SLA violation cost.

Fig. 3. Impact of variable location probability Ploc (λ = 4 requests/hour, T = 24 hours, τ = 4 hours). (a) Cumulative profit. (b) SLA violation cost.

Fig. 4. Impact of variable reporting period T (λ = 4 requests/hour, Ploc = 0.05, τ = 4 hours). (a) Cumulative profit. (b) SLA violation cost.

4) Impact of Reporting Period T: Fig. 4 shows the impact of
reporting period T on both the achieved profit and the SLA vi-
olation cost. In this scenario, we vary T in {1, 6, 12, 24} hours,
for fixed values of λ = 4 requests/hour, Ploc = 0.05 and τ = 4
hours. Note that, in this case, the carbon constraint limit speci-
fied in the Green SLA is assumed to be uniformly distributed
between 5 and 20 kgCO2 per day, and is scaled down to
match the reporting period T. Again, Greenslater outperforms

the baselines as it achieves higher profit and reduces the SLA
violations costs. However, one can note that the profit is higher
for long reporting periods (i.e., 24 hours) compared to short
ones (i.e., 1, 6 and 12 hours). The rational behind this is
that for long reporting periods T, the CP has more time and
more flexibility. In fact, the carbon footprint is computed as an
average value over the whole period T. For small values of T,
the CP does not have enough leverage since, in some data
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Fig. 5. Impact of variable reconfiguration interval τ (λ = 4 requests/hour, Ploc = 0.05, T = 24 hours). (a) Cumulative profit. (b) SLA violation cost.

Fig. 6. Comparison of the cumulative values of the different metrics
(λ = 4 requests/hour, Ploc = 0.05, T = 24 hours, τ = 4 hours).

centers, VMs cannot be migrated even though renewables are
available. This results in more frequent violation of the Green
SLAs, which results in higher violations costs, as shown in
Fig. 4(b), and thus lower profit (see Fig. 4(a)).

5) Impact of Reconfiguration Interval τ : We also study
the impact of the reconfiguration interval τ on the profit and
SLA violation cost. We varied τ between 1 and 12 hours and
fixed other variables (λ = 4 requests/hour, Ploc = 0.05 and T =
24 hours). The results are shown in Fig. 5. From this figure, we
can see that the profit for Greenslater is a concave function of τ ,
where the maximum profit is obtained for τopt = 6 hours in our
case. In addition, the SLA violation cost increases with τ , but
remains low compared to the other solutions. In particular, for
high values of τ , Greenslater gains decrease, since in this range
of τ , the system configuration is not reoptimized to follow the
renewables. Note that the variation of τ does not affect the
performance of the other schemes, since they do not perform
any migrations.

6) Summary of the Results: To highlight the benefits of
Greenslater over existing solutions, we plotted all the studied
performance metrics (acceptance ratio, cumulative profit, uti-
lization of renewable energy, carbon footprint and SLA viola-
tion cost) in Fig. 6. It is clear that Greenslater always achieves
higher profit, ensures higher utilization of renewables and lower

carbon footprint with minimum SLA violation. For instance,
the gain in terms of profit provided by Greenslater is respec-
tively around 33%, 53% and 129% compared to Greenhead,
Greenhead NP and the Load Balancing approach.

C. Simulation Results for Variable Penalty Cost

Now, we present the simulation results when the penalty cost
is proportional to the Green SLA violation. More specifically,
we assume the violation penalty is a percentage of the SP’s bill
to refund. This percentage is proportional to the violation of the
carbon limit constraint defined in the Green SLA. Hence, we
consider the penalty formula defined in equation (20).

We studied the impact of arrival rate λ, the reporting period
T and the reconfiguration interval τ . Fig. 7 shows the profit and
SLA violation costs under variable arrival rate λ, when Ploc =
0.05 (i.e., low constrained locations), T = 24 hours, and τ =
4 hours. Similar to the case of fixed penalty cost, Greenslater
achieves higher profit while reducing the SLA violation cost
under different arrival rates. The achieved gain is negligeable
under low arrival rates λ ≤ 2, but considerable under higher
arrival rates. For instance, the gain in profit culminates at 20%,
30% and 33% compared to Greeanhead, Greeanhead NP and
the Load Balancing approaches, respectively.

In another set of simulations, we varied the reporting pe-
riod T ∈ {1, 6, 12, 24} hours, while we fixed the values of
λ = 4 requests/hour, Ploc = 0.05 and τ = 4 hours. Fig. 8 shows
the achieved profit and the SLA violation cost. From this figure,
we can see that Greenslater always achieves higher profit and
reduced SLA violation costs. In particular, the highest profit is
achieved when the reporting period is equal to 6 and 12 hours,
while reducing the reporting period (i.e., 1 hour) gives the worst
results in profit. Note that this is different from the case of fixed
penalty cost. This is explained by the fact that, on the one hand,
the violations observed in the reporting periods 6–12 hours are
very low in magnitude (small violations only) compared to the
violations observed in small reporting periods (i.e., 1 hour). On
the other hand, the magnitude of the violation is not taken into
account in the case of fixed penalty cost.

We also studied the impact of the reconfiguration interval τ

(varied between 1 and 12) on the profit and SLA violation cost,
when λ = 4 requests/hour, Ploc = 0.05 and T = 24 hours. The
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Fig. 7. Impact of variable arrival rate λ under variable penalty cost (Ploc = 0.05, T = 24 hours, τ = 4 hours). (a) Cumulative profit. (b) SLA violation cost.

Fig. 8. Impact of variable reporting period T under variable penalty cost (λ = 4 requests/hour, Ploc = 0.05, τ = 4 hours). (a) Cumulative profit. (b) SLA
violation cost.

Fig. 9. Impact of variable reconfiguration interval τ under variable penalty cost (λ = 4 requests/hour, Ploc = 0.05, T = 24 hours). (a) Cumulative profit. (b) SLA
violation cost.

results are shown in Fig. 9. Similar to the case of fixed penalty
cost, the maximum profit is obtained for τopt = 6 hours, and the
same behavior is observed for the SLA violation cost, which
increases with τ .

Finally, Fig. 10 illustrates a summary of additional met-
rics (acceptance ratio, cumulative profit, utilization of renew-
able energy, carbon footprint and SLA violation cost), when

λ = 4 requests/hour, Ploc = 0.05, T = 24 hours, τ = 4 hours.
From this figure, we can note that Greenslater achieves higher
profit and ensures higher utilization of renewables and lower
carbon footprint with minimum SLA violation compared to
the baseline approaches. For instance, the gain in profit for
Greenslater are 19%, 25% and 67% compared to Greenhead,
Greenhead NP and the Load Balancing approach.



AMOKRANE et al.: GREENSLATER: ON SATISFYING GREEN SLAs IN DISTRIBUTED CLOUDS 375

Fig. 10. Comparison of the cumulative values of the different metrics un-
der variable penalty cost (λ = 4 requests/hour, Ploc = 0.05, T = 24 hours,
τ = 4 hours).

VII. CONCLUSION

As the environmental impact of cloud infrastructures and
services has become increasingly significant, governments and
environmental organizations are in a ramping effort to urge
SPs to require guarantees from their CPs that the carbon
emission generated by the leased resources is limited. Hence,
in this paper, we addressed the problem of including green
constraints in the SLAs in order to cap the carbon emission of
the resources allocated to each SP. We proposed Greenslater, a
holistic framework that allows CPs to provision VDCs across a
geographically distributed infrastructure with the goal of mini-
mizing the operational costs and green SLA violation penalties.
More specifically, Greenslater incorporates admission control
to wisely select which VDC requests to accept, and a dynamic
reconfiguration algorithm to allow the CP to relocate parts of
the VDCs in data centers with available renewable energy. The
simulation results showed that, compared to existing solutions,
Greenslater achieves high profit by minimizing operational
costs and SLA violation penalties, while maximizing the uti-
lization of the available renewable power, under both fixed
and variable SLA violation penalty models. More specifically,
Greenslater achieves profit gains of up to 33%, 53% and 129%
compared to Greenhead, Greenhead NP and the Load Balanc-
ing approach, respectively.
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