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Abstract—MapReduce has become a popular model for data-intensive computation in recent years. By breaking down each job into

smallmap and reduce tasks and executing them in parallel across a large number of machines, MapReduce can significantly reduce

the running time of data-intensive jobs. However, despite recent efforts toward designing resource-efficient MapReduce schedulers,

existing solutions that focus on scheduling at the task-level still offer sub-optimal job performance. This is because tasks can have

highly varying resource requirements during their lifetime, which makes it difficult for task-level schedulers to effectively utilize available

resources to reduce job execution time. To address this limitation, we introduce PRISM, a fine-grained resource-aware MapReduce

scheduler that divides tasks into phases, where each phase has a constant resource usage profile, and performs scheduling at the

phase level. We first demonstrate the importance of phase-level scheduling by showing the resource usage variability within the lifetime

of a task using a wide-range of MapReduce jobs. We then present a phase-level scheduling algorithm that improves execution

parallelism and resource utilization without introducing stragglers. In a 10-node Hadoop cluster running standard benchmarks, PRISM

offers high resource utilization and provides 1:3� improvement in job running time compared to the current Hadoop schedulers.

Index Terms—Cloud computing, MapReduce, Hadoop, scheduling, resource allocation

Ç

1 INTRODUCTION

BUSINESSES today are increasingly reliant on large-scale
data analytics to make critical day-to-day business deci-

sions. This shift towards data-driven decision making has
fueled the development of MapReduce [10], a parallel pro-
gramming model that has become synonymous with large-
scale, data-intensive computation. In MapReduce, a job is a
collection of Map and Reduce tasks that can be scheduled
concurrently on multiple machines, resulting in significant
reduction in job running time. Many large companies, such
as Google, Facebook, and Yahoo!, routinely use MapReduce
to process large volumes of data on a daily basis. Conse-
quently, the performance and efficiency of MapReduce
frameworks have become critical to the success of today’s
Internet companies.

A central component to a MapReduce system is its job
scheduler. Its role is to create a schedule of Map and Reduce
tasks, spanning one or more jobs, that minimizes job com-
pletion time and maximizes resource utilization. A schedule
with too many concurrently running tasks on a single
machine will result in heavy resource contention and long
job completion time. Conversely, a schedule with too few
concurrently running tasks on a single machine will cause
the machine to have poor resource utilization.

The job scheduling problem becomes significantly easier
to solve if we can assume that all map tasks (and similarly,

all reduce tasks) have homogenous resource requirements
in terms of CPU, memory, disk and network bandwidth.
Indeed, current MapReduce systems, such as Hadoop Map-
Reduce Version 1:x, make this assumption to simplify the
scheduling problem. These systems use a simple slot-based
resource allocation scheme, where physical resources on
each machine are captured by the number of identical slots
that can be assigned to tasks. Unfortunately, in practice,
run-time resource consumption varies from task to task and
from job to job. Several recent studies have reported that
production workloads often have diverse utilization profiles
and performance requirements [8], [20]. Failing to consider
these job usage characteristics can potentially lead to ineffi-
cient job schedules with low resource utilization and long
job execution time.

Motivated by this observation, several recent proposals,
such as resource-aware adaptive scheduling (RAS) [15] and
Hadoop MapReduce Version 2 (also known as Hadoop
NextGen and Hadoop Yarn) [7], have introduced resource-
aware job schedulers to the MapReduce framework. How-
ever, these schedulers specify a fixed size for each task in
terms of required resources (e.g. CPU and memory), thus
assuming the run-time resource consumption of the task is
stable over its life time. However, this is not true for many
MapReduce jobs. In particular, it has been reported that the
execution of each MapReduce task can be divided into mul-
tiple phases of data transfer, processing and storage [12]. A
phase is a sub-procedure in the task that has a distinct pur-
pose and can be characterized by the uniform resource con-
sumption over its duration. As we shall demonstrate in
Section 2.2, the phases involved in the same task can have
different resource demand in terms of CPU, memory, disk
and network usage. Therefore, scheduling tasks based on
fixed resource requirements over their durations will often
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cause either excessive resource contention by scheduling
too many simultaneous tasks on a machine, or low utiliza-
tion by scheduling too few.

In this paper, we present PRISM, a Phase and Resource
Information-aware Scheduler for MapReduce clusters that
performs resource-aware scheduling at the level of task
phases. Specifically, we show that for most MapReduce
applications, the run-time task resource consumption can
vary significantly from phase to phase. Therefore, by
considering the resource demand at the phase level, it is
possible for the scheduler to achieve higher degrees of par-
allelism while avoiding resource contention. To this end, we
have developed a phase-level scheduling algorithm with
the aim of achieving high job performance and resource uti-
lization. Through experiments using a real MapReduce
cluster running a wide-range of workloads, we show PRISM
delivers up to 18 percent improvement in resource utiliza-
tion while allowing jobs to complete up to 1:3� faster than
current Hadoop schedulers. Finally, even though PRISM is
currently designed for Hadoop MapReduce, we believe our
solution can be applied to Dryad [19] and other parallel
computing frameworks as well.

The rest of this paper is organized as follows. Section 2
provides a basic overview of MapReduce scheduling and
job execution. We describe the phase-level task usage char-
acteristics and our motivation in Section 3. Section 4 intro-
duces PRISM and describes its architecture. The phase-level
scheduling algorithm is presented in details in Section 5.
Our experimental evaluation of PRISM is provided in
Section 6. Finally, we summarize existing work related to
PRISM in Section 7, and draw our conclusion in Section 8.

2 BACKGROUND

This section provides an overview of Hadoop MapReduce
and various phases in a MapReduce job.

2.1 Hadoop MapReduce

MapReduce [10] is a parallel computing model for large-
scale data-intensive computations. A MapReduce job con-
sists of two types of tasks, namely map and reduce tasks. A
map task takes as input a key-value block stored in the
underlying distributed file system and runs a user-specified
map function to generate intermediary key-value output.
Subsequently, a reduce task is responsible for collecting and
applying a user-specified reduce function on the collected
key-value pairs to produce the final output.

Currently, the most popular implementation of MapRe-
duce is Apache Hadoop MapReduce [1]. A Hadoop cluster
consists of a large number of commodity machines with one
node serving as the master and the others acting as slaves.
The master node runs a resource manager (also known as a
job tracker) that is responsible for scheduling tasks on slave
nodes. Each slave node runs a local node manager (also
known as a task tracker) that is responsible for launching
and allocating resources for each task. To do so, the task
tracker launches a Java Virtual Machine (JVM) that executes
the corresponding map or reduce task. The original Hadoop
MapReduce (i.e. version 1:x and earlier) adopts a slot-based
resource allocation scheme. The scheduler assigns tasks to
each machine based on the number of available slots on that

machine. The number of map slots and reduce slots deter-
mines respectively the maximum number of map tasks and
reduce tasks that can be scheduled on the machine at a
given time.

As a Hadoop cluster is usually a multi-user system,
many users can simultaneously submit jobs to the cluster.
The job scheduling is performed by the resource manager in
the master node, which maintains a list of jobs in the system.
Each slave node monitors the progress of each running task
and available resources on the node, and periodically (usu-
ally between 1-3 seconds) transmit a heartbeat message to
convey this information to the master node. The resource
scheduler will use the provided information to make sched-
uling decisions. Currently, Hadoop MapReduce supports
several job schedulers such as the Capacity scheduler [2]
and Fair scheduler [3]. These schedulers make job schedul-
ing decisions at task level. They determine which task
should be scheduled on which machine at any given time,
based on the number of unoccupied slots on each machine.

While this simple slot-based allocation scheme is simple
and easy to implement, it does not take run-time task
resource consumption into consideration. As different tasks
may have different resource requirements, this simple slot-
based resource allocation scheme can lead to resource con-
tention if the scheduler assigns multiple tasks that have
high demand for a single resource.

Motivated by this observation, Hadoop Yarn (also
known as the Hadoop Version 2 and Hadoop NextGen) [7]
enables resource-aware task scheduling in Hadoop MapRe-
duce clusters. While still in alpha version, it offers the ability
to specify the size of the task container (i.e. a resource reser-
vation for a task process) in terms of CPU and memory
usage.1

2.2 MapReduce Job Phases

Current Hadoop job schedulers perform task-level schedul-
ing, where tasks are considered as the finest granularity for
scheduling. However, if we examine the execution of each
task, we can find that a task consists of multiple phases, as
illustrated in Fig. 1. In particular, a map task can be divided
into two main phases: map and merge.2 The input of a Map-
Reduce job is stored as data blocks (usually of size 64 or
128 MB) in the Hadoop Distributed File System (HDFS) [4],
where data blocks are stored across multiple slave nodes. In
the map phase, a mapper fetches a input data block from
the Hadoop Distributed File System [4] and applies the
user-defined map function on each record. The map func-
tion generates records that are serialized and collected into
a buffer. When the buffer becomes full (i.e., content size
exceeds a pre-specified threshold), the content of the buffer
will be written to the local disk. Lastly, the mapper executes
a merge phase to group the output records based on the
intermediary keys, and store the records in multiple files so
that each file can be fetched a corresponding reducer.

Similarly, the execution of a reduce task can be divided
into three phases: shuffle, sort, and reduce. In the shuffle
phase, the reducer fetches the output file from the local

1. Other resources such as disk and network I/O are yet to be sup-
ported by Hadoop Yarn.

2. We use the same phase names as in the Hadoop implementation.
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storage of each map task and then places it in a storage
buffer that can be either in memory or on disk depending
on the size of the content. At the same time, the reducer also
launches one or more threads to perform local merge sort in
order to reduce the running time of the subsequent sort
phase. Once all the map output records have been collected,
the sort phase will perform one final sorting procedure to
ensure all collected records are in order. Finally, in the
reduce phase, records are processed according the user-
defined reduce function in the sorted order, and the output
is written to the HDFS.

Different phases can have different resource consump-
tion characteristics. For instance, the shuffle phase often
consumes significant network I/O resources as it requires
collecting outputs from all completed map tasks. In con-
trast, the map and reduce phases mainly process the records
on local machines, thus they typically demand greater CPU
resources than network bandwidth. In the next section, we
provide empirical evidence to show that the run-time task
resource consumption can change significantly across phase
boundaries.

3 PHASE-LEVEL RESOURCE REQUIREMENTS

In this section we experimentally analyze the run-time task
resource requirements in each phase for various Hadoop
jobs. We deployed Apache Hadoop 0.20.2 on a 16 node clus-
ter, with one node acting as the master managing the other
15 slave nodes. Each machine has a Quad-core Xeon CPU
with 12 GB of memory and 1 TB local disk storage. We mod-
ified the default task tracker in Hadoop 0.20.2 to monitor the
execution of phases inside each task.

In our experiments, we evaluate the phase-level resource
requirements across various jobs, including the standard

examples provided by the Hadoop MapReduce distribution
Gridmix2 [5] and the PUMA Benchmarks [6]. The CPU and
memory usage are collected using the linux top command,
whereas I/O usage are obtained by reading MapReduce I/
O Counters at run-time. Fig. 2 shows the resource consump-
tion over time of a single map and reduce task for the sort

job. Despite the fact that CPU usage usually show high var-
iances, the average CPU usage of the map tasks remain rela-
tively stable over time as shown in Fig. 2a. However, at the
same time, the I/O usage increases significantly as each the
task progresses from the map phase to the merge phase.
The low I/O usage is the result of the map phase incremen-
tally reading the input key-value pairs from the HDFS sys-
tem. In contrast, the merge phase has high I/O usage
because it is responsible for grouping all intermediary key-
values pairs within a short period of time. Similarly, Figs. 2c
and 2d show that the run-time resource consumption of the
reduce task changes from the shuffle phase to the reduce
phase. The reason is that the shuffle phase fetches the inter-
mediary key-values pairs from the map tasks, and performs
partial merge on the fetched key-value pairs. As a result, it
consumes both CPU and network I/O resources. However,
once the reduce phase begins, the reducer only needs to
focus on applying the reduce function to each key-value
pair to produce the final output. Because the reduce func-
tion of the sort job is just a simple pass-through function,
the CPU usage of the reduce phase is lower than that of the
shuffle phase.

We also analyze the InvertedIndex job in the PUMA
benchmark. Fig. 3 shows that the map tasks and reduce
tasks of the InvertedIndex job have different running
times compared to the sort job. Furthermore, unlike in the
sort job, the map tasks of the InvertedIndex job con-
sume almost 8� less I/O resources during map phase than

Fig. 2. Job Profile for sort.

Fig. 1. Phases involved in the Execution of a Typical MapReduce Job (both version 1 and 2).
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the merge phase. These observations suggest that the run-
time task resource consumption is dependent on the phase
in which the task is currently executing. Therefore, ignoring
the phase-level resource characteristics will lead to poor
resource allocations decisions, which in turn will cause the
job scheduler to make inefficient job scheduling decisions.

We would like to mention that while it is tempting to
divide certain phases into more fine-grained phases to
achieve even more uniform resource usage in each phase,
we found that doing so is cost prohibitive because (1)certain
fine-grained phases (e.g. partition and spill [12]) are tightly
coupled with each other thus scheduling them individually
will require major change to the MapReduce implementa-
tion, and (2) a more fine-grained splitting as this will signifi-
cantly increase the complexity of the system and the
scheduling overhead may outweigh the gain attained by
phase-level scheduling.

4 PRISM

The task run-time resource usage analysis described in the
previous section suggests that simply allocating a fixed-
sized container for each task can lead to inefficient schedul-
ing decisions. At run-time, if the resource allocated to a task
is higher than the current resource usage, then idle resour-
ces are wasted. On the contrary, if the resource allocated to
the task is much less than the actual task resource demand,
the resource can become a performance bottleneck and slow
down task execution. This motivates us to design a fine-
grained, phase-level scheduling scheme that allocates
resources according to the phase that each task is currently
executing. By exploiting fine-grained phase-level resource
characteristics, it is possible to better “bin-pack” tasks on
machines to achieve higher resource utilization compared
to task-level schedulers.

A key issue that must be addressed in phase-level
scheduling is that once a task has completed a phase, the
subsequent phase of the task may not be scheduled imme-
diately if the machine does not have sufficient resources
to run the subsequent phase. Thus, the execution of a
phase may be “paused” in order to avoid resource conten-
tion, at the cost of delaying the completion of the task.
However, we believe this trade-off is beneficial, as the
improvement of the overall cluster utilization often
implies the cluster is more productive in terms of execut-
ing tasks (i.e. by allowing more tasks to be executed
simultaneously without causing resource contention).
Thus the average job running time will be improved com-
pared to task-level resource-aware schedulers.

Based on this motivation, we present PRISM, a fine-
grained resource-aware scheduler that performs scheduling
at phase-level. Unlike existing MapReduce schedulers that
only allow job owners to specify resource requirements at
task-level, PRISM allows the job owners to specify phase-
level resource requirements. An overview of the PRISM
architecture is shown in Fig. 4. PRISM consists of three
main components: a phase-based scheduler at the master
node, local node managers that coordinate phase transitions
with the scheduler, and a job progress monitor to capture
phase-level progress information. The phase-level schedul-
ing mechanism used by PRISM is illustrated by Fig. 5. Simi-
lar to the current Hadoop implementation, each node
manager periodically sends a heartbeat message to the
scheduler. when a task needs to be scheduled, the scheduler
replies to the heartbeat message with a task scheduling
request (Step 1). The node manager then launches the task
(Step 2). Each time a task finishes executing a particular
phase (e.g. shuffle phase of the reduce task), the task asks
the node manager for a permission to start the next phase
(e.g. reduce phase of the task) (Step 3). The local node man-
ager then forwards the permission request to the scheduler
through the regular heartbeat message (Step 4). Given a
job’s phase-level resource requirements and its current
progress information, the scheduler decides whether to start
a new task, or allow a paused task to begin its next phase
(e.g., the reduce phase), and then informs the node manager
about the scheduling decision (Step 5). Finally, once the task

Fig. 3. Job Profile for InvertedIndex.

Fig. 4. System architecture.
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is allowed to execute the next phase, the node manager
grants the permission to the task process (Step 6). Once the
task is finished, the task status is received by the node man-
ager (Step 7) and then forwarded to the scheduler (Step 8).

To perform phase-level scheduling, PRISM requires
phase-level resource information for each job. In this work,
we do not study the problem of job profiling as existing
state-of-the-art job profilers, such as Starfish [12], can
already provide accurate resource information that can be
used by PRISM. While the accuracy of the profiles can affect
the performance of PRISM, we believe PRISM is ideal for
environment where jobs that are executed repeatedly with
the same input size, which is common in many production
clusters [17], [18]. In these environments, the accuracy of the
job profiles can be improved over time. In the absence of
phase-level resource information (i.e. a new job that has no
profile), PRISM can fall back to use task-level resource infor-
mation specified for Hadoop Yarn. In this case, each phase
has the same resource requirement as the task itself.

Finally, even though the flexibility of phase-based
scheduling should allow the scheduler to improve both
resource utilization and job performance over existing
MapReduce schedulers, realizing such a potential is still a
challenging problem. This is because pausing the task
execution at run-time may delay the completion of the
current and subsequent tasks, which may increase the job
completion time (these delayed tasks are commonly
referred to as stragglers [10]). Thus, the scheduler must
avoid introducing stragglers when switching between
phases. In the following sections, we will describe how
PRISM overcomes this challenge.

5 SCHEDULER DESIGN

In this section, we describe in detail the design of PRISM’s
phase-based scheduling algorithm. We first describe the
design rationale of the scheduling algorithm in Section 5.1,
and then provide the details of our algorithm in Section 5.2.

5.1 Design Rationale

The responsibility of a MapReduce job scheduler is to assign
tasks to machines with consideration for both efficiency and
fairness [8], [14]. To achieve efficiency, job schedulers must
maintain high resource utilization in the cluster. Job run-
ning time is another possible measure for efficiency, as a
lower job running time implies that resources are more
efficiently utilized for job execution. In contrast, fairness
ensures that resources are fairly divided among jobs such
that no job will experience starvation due to unfair resour-
ces allocation. However, simultaneously achieving both
fairness and efficiency in the context of multi-resource
scheduling has been shown to be challenging, as there is
usually a trade-off between these objectives [14].

Fair scheduling algorithms such as Hadoop Fair
Scheduler [3], Quincy [13] and dominant resource fairness
(DRF) [11] generally run an iterative procedure by identi-
fying users that experience the highest degree of unfair-
ness (i.e. deficit) in each iteration, and schedule tasks that
belong to those users to improve the overall fairness of
the system. However, directly applying a fair scheduling
algorithm for phase-level scheduling is insufficient. In
particular, given a set of phases that can be scheduled on
a machine, the scheduling algorithm must consider their
inter-dependencies in addition to their resource require-
ments. For example, due to the sequential ordering of
phases in a task, the scheduler needs to consider possible
cascading delays when postponing the start of a phase. In
many cases, such delays can also propagate to phases in
other tasks, causing them to be delayed as well. For
example, even though the execution of a shuffle phase of
a reduce task can overlap with the execution of a merge
phase of a map task, the shuffle phase cannot finish
unless all merge phases of the map tasks have finished.
Thus, when choosing between scheduling merge phases
and shuffle phases, it is preferable to give sufficient
resources to merge phases to allow them to finish faster,
instead of allocating most of the resources to the shuffle
phase and delay the completion of merge phases.

The above examples demonstrate the importance of
achieving a fairness-performance trade-off for phase sched-
uling. In other words, it is necessary to provide fairness
without significantly delaying the execution of each phase.
While there are many possible alternatives to address this
problem, in PRISM we have adopted a heuristic solution as
follows: Given a set of phases that can be scheduled on a
machine, the scheduler assigns a utility value to each phase
which indicates the benefit of scheduling the phase. The
scheduler will then schedule the phases in decreasing
value of their utility. The utility value is phase-dependent,
because phases have different dependencies. If a phase is
map or shuffle, scheduling the phase implies scheduling a
new map or reduce task. In this case, the utility of the phase
is determined by the increase in parallelism from running
an additional task. For other phases, the utility is deter-
mined by the urgency to complete the phase. A simple met-
ric for measuring urgency is the number of seconds that a
task has been paused due to phase-level scheduling. If the
task has been paused for a long time, it becomes urgent
to schedule its remaining phases in order to avoid creating
a staggler.

Fig. 5. Phase-level scheduling mechanism.
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5.2 Algorithm Description

We formally introduce our scheduling algorithm in this sec-
tion. Upon receiving a heartbeat message from a node man-
ager reporting resource availability on the node, the
scheduler must select which phase should be scheduled on
the node. Suppose there are J jobs in the system. Specifi-
cally, each job j 2 J consists of two types of tasks: map tasks
M and reduce task R. Let tðtÞ 2 fM;Rg denote the type of a
task t. Given a phase i of a task t that can be scheduled on a
machine n, we define the utility function of assigning a
phase i to machine n as:

Uði; nÞ ¼ Ufairnessði; nÞ þ a � Uperfði; nÞ; (1)

where Ufairness and Uperf represent the utilities for improv-
ing fairness and job performance, respectively, and a is an
adjustable weight factor. If we set a close to zero, then the
algorithm would greedily schedule phases according to
the improvement in fairness. Notice that considering job
performance objectives will not severely hurt fairness.
When a job is severely below its fair share, scheduling
any phase with non-zero resource requirement will only
improve its fairness.

Now we describe each term in Eq. (1). We define

Ufairnessði; nÞ ¼ Ubefore
fairnessði; nÞ � Uafter

fairnessði; nÞ; (2)

where Ubefore
fairnessði; nÞ and Uafter

fairnessði; nÞ are the fairness meas-
ures of the job before and after scheduling i on n. The actual
form of Ufairnessði; nÞ is dependent on the fairness metric
used. For example, if DRF is used in a homogenous MapRe-

duce cluster, then the fairness utility Ubefore
fairness can be com-

puted as [11]:

Ubefore
fairnessði; nÞ ¼ max

fj;j0g2J
min
r2R

cjr
Cr

� �
�min

r2R
cj0r
Cr

� �����
����; (3)

where cjr denotes the task usage of resource r of job j 2 J
before phase i is scheduled, and Cr denotes the capacity of

resource r on a single machine. Uafter
fairnessði; nÞ can be com-

puted in a similar way, except in this case cjr represents the
task usage after phase i is scheduled. Essentially, Ufairness

ði; nÞ measures the improvement in fairness due to the
scheduling decision. Uperfði; nÞ is, on the other hand, more
difficult to compute. As mentioned previously, if i is the
leading phase (i.e. the first phase) of a task t, then Uperfði; nÞ
measures the gain in parallelism in terms of the number of
running map tasks (or reduce tasks). Otherwise, if i is a sub-
sequent phase of task t, then Uperfði; nÞmeasures the gain in
shortening the running time of task t. Formally, we define

Uperfði; nÞ ¼ Uleading phaseði; nÞ i is a leading phase;
Usubsequent phaseði; nÞ Otherwise:

�

(4)

Even though PRISM does not dictate a particular function
for computing the utility of a phase, in our implementation,
we have chosen Uperfði; nÞ to be

Uleading phaseði; nÞ ¼ Nremaining

maxfNcurrent; �g �
Nremaining

Ncurrent þ 1
; (5)

where Nremaining denotes the number of remaining tasks of
type tðtÞ (i.e. the number of remaining tasks of the same
type as t), and Ncurrent denotes the number of tasks of type
tðtÞ that are running. The variable � is used to prevent divid-
ing by 0. Intuitively, Uleadingphaseði; nÞ measures the gain in

parallelism if the number of running tasks is increased from
Ncurrent toNcurrent þ 1.

On the other hand, let Tt
wait denote the number of seconds

that task t has been paused due to phase-based scheduling.
The utility for scheduling a non-leading phase i of task t is a
function pð�Þ of Tt

wait:

Usubsequent phaseði; nÞ ¼ p
�
Tt
wait

�
: (6)

There are many possible choices for pð�Þ. For example, we
can define pð�Þ as a linear function (i.e. pðTt

waitÞ ¼ a � Tt
wait þ b

for constants a and b), which would increase the utility of
scheduling i to increase linearly with the number of seconds
that the task has been paused. However, in our implementa-
tion, we have chosen pð�Þ to be a quadratic function of the

form pðTt
waitÞ ¼ a � pðTt

waitÞ2, where a ¼ 0:1. The intuition to
using a quadratic function is to increase the urgency for
scheduling i if i has been paused for a long time. However,
PRISM can adopt any type of utility function pð�Þ as long as
it is a monotonically increasing function.

Similar to Hadoop Fair Scheduler, PRISM supports
locality-aware scheduling. As each job profile captures
HDFS I/O usage, local disk (for writing intermediary out-
put) and network usage for shuffle phase, at run-time the
scheduler can use the data locality information to deter-
mine the disk and network usage of each task and
allocate right amount of resources. To given higher pref-
erence to data-local tasks, in the scheduling algorithm the
tasks of each job is sorted so that data local tasks appear
before non-data local tasks. In each iteration each job pro-
vides one candidate phase to the scheduler, and phase of
a new non-data local task is provided only if the there is
no data local task that can be scheduled on the machine.
This scheme is easy to implement and can work with
locality-aware schemes such as delay scheduling [20].

Algorithm 1 summarizes the scheduling algorithm used
by our phase-based scheduler. Specifically, upon receiving
the status message from a node manager running on
machine n, the algorithm computes the utilization u of the
machine using job’s phase-level resource requirement
(Line 2). it then computes a set of candidate phases (i.e. the
phases are schedulable on the machine) (Lines 4-9), and
selects phases in an iterative manner. In each iteration, for
each schedulable phase i 2 P ðjÞ of each job j, it computes
the utility function Uði; nÞ according to equation (1) (Line
16). Then we select the phase with the highest utility for
scheduling (Lines 22-23), and update the resource utiliza-
tion of the machine (Line 25). Afterwards, the algorithm
repeats by recomputing the utility of all the phases in the
candidate set, and select the next best phase to schedule.
The algorithm ends when the candidate set is empty,
which means there is no suitable phase to be scheduled.
The scalability of our algorithm can be achieved by only
examining (1) the jobs that have tasks running on the
machine, and (2) top k jobs with the lowest fairness
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measure. Assuming each machine can run at most N tasks,
to further improve the scalability, the scheduler only needs
to consider the top N schedulable phases of each job. The
ranking of the phases is determined by data locality as
mentioned previously. Thus, the overall running time of

the algorithm is OðN2kÞ. In our experiment, we set k ¼ 20
and found the running time of the algorithm is usually
less than 10 ms, which reasonable in most of the
deployment scenarios.

Algorithm 1. Phase-Level Scheduling Algorithm

1: Upon receiving a status message from machine n:
2: Obtain the resource utilization of machine n
3: PhaseSelected f;g
4: CandidatePhases f;g
5: repeat
6: for each job j 2 jobsthathastasksonn do
7: for each scheduable phase i 2 j do
8: CandidatePhases CandidatePhases [ fig
9: end for
10: end for
11: for each job j 2 top k jobs with highest deficit n do
12: if exist schedulable data local task then
13: CandidatePhases CandidatePhases [ ffirst phase

of the local task ig
14: else
15: CandidatePhases CandidatePhases [ ffirst phase

of the non-local task ig
16: end if
17: end for
18: if CandidatePhases 6¼ ; then
19: for i 2 CandidatePhases do
20: if i is not schedulable on n given current utilization

then
21: CandidatePhases CandidatePhasesnfig
22: continue;
23: end if
24: Compute the utility Uði; nÞ as in equation (1)
25: if Uði; nÞ � 0 then
26: CandidatePhases CandidatePhasesnfig
27: end if
28: end for
29: if CandidatePhases 6¼ ; then
30: i task with highest Uði; nÞ in the CandidatePhases
31: PhaseSelected PhaseSelected [ fig
32: CandidatePhases CandidatePhasesnfig
33: Update the resource utilization of machine n
34: end if
35: end if
36: until CandidatePhases ¼¼ ;
37: return PhaseSelected

Lastly, it should be mentioned that PRISM can naturally
tolerate task failures. As phase utilities are recomputed
when the scheduler tries to assign new phases to a machine,
the PRISM will still make consistent decisions in spite of
task failures. PRISM also supports speculative re-execution.
Speculative re-execution refers to launching multiple
copies of a task, if the task is progressing slowly (i.e. below
25 percentile of all tasks) and is likely to delay the overall
job completion [21]. In our implementation, even though
the scheduling of a speculative task will not improve task-
level parallelism, additional resources consumed will be
used to improve fairness if other tasks have finished and
the job is below its fair share.

6 EXPERIMENTS

We have implemented PRISM in Hadoop 0.20.2. Imple-
menting this architecture requires minimal change to the
existing Hadoop architecture (around 1,000 lines of code).
We deployed PRISM in a compute cluster which consists
of 10 compute nodes. Each compute node has four-core
2.13 GHz Intel Xeon E5606 processors, 8 GB RAM, 100 GB
of local high speed hard drive, and runs 64-bit Ubuntu OS.
The network interface card (NIC) installed on each node is
capable of handling up to 1Gb/s of network traffic. Each
node is connected to a top-of-rack switch and can communi-
cate with others via a 1Gb=s link.

We have chosen two benchmarks to evaluate the perfor-
mance of PRISM: Gridmix 2 and PUMA.Gridmix 2 [5] a stan-
dard benchmark included in the Hadoop distribution. For
Gridmix 2we have chosen three jobs for performance evalua-
tion: MonsterQuery (MQ), WebDataScan (WDS) and
Combiner (CM). Similarly, PUMA [6] is a MapReduce
benchmark developed at Purdue University. We have
selected four jobs for performance evaluation: sort (SRT),
self-join (SJ), inverted-index (II) and classifi-

cation (CL). We chose these jobs because they contain a
variety of resource usage characteristics. For example, sort
and MonsterQuery are I/O intensive jobs, whereas Com-

biner and self-join aremore CPU intensive. Table 1 and
2 summarize the characteristics of each job used in our evalu-
ation. Amixture of jobs with different resource requirements
allows us to better evaluate the performance of PRISM.

To evaluate the benefit brought by phase-level schedul-
ing, it is necessary to compare PRISM to existing task-level
resource-aware schedulers. In our experiments, we have
chosen Hadoop Yarn 2.0.4 as a competitive task-level
resource-aware scheduler. Hadoop Yarn 2.0.4 is a recent
version of Hadoop NextGen that allows the users to specify
both CPU (i.e. number of virtual cores (vCores)) and mem-
ory (i.e. GB of RAM) requirements of each task. Ideally, we

TABLE 2
Job Characteristics of the PUMAWorkload

Job Type Num. of tasks Running Time (s)

Map Reduce Map Reduce Job

Sort 16 8 10.87 24.67 97
Self-join 16 4 7.76 22.86 74
inverted-index 24 10 50.5 15.72 132
classification 24 10 4.73 10.15 70

TABLE 1
Job Characteristics of the Gridmix Workload

Job Type Num. of tasks Running Time (s)

Map Reduce Map Reduce Job

MonsterQuery 16 30 12.38 17.7 156
WebDataScan 16 20 18.96 14.66 96
Combiner 8 5 99.54 16.68 162
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would like to compare PRISM with Hadoop Yarn running a
fair scheduler. However, Hadoop Yarn is yet to support fair
scheduling with consideration to resource requirements.
Therefore, in our experiments we compare PRISM with
Hadoop Yarn Capacity scheduler, as the Capacity scheduler
takes resource requirements into consideration when mak-
ing scheduling decisions. Lastly, to evaluate the fairness of
our scheduler, in our implementation, we adopt the same
fairness metric as in the Hadoop fair scheduler 0.20.2, and
use Hadoop 0.20.2 as a baseline for comparing both fairness
and scheduler performance.

6.1 Capturing Job Performance Requirements

Even though job profiling is not the main focus of this work,
for analysis purposes, we have implemented a simple job
profiler that captures the CPU, memory and I/O usage of
both tasks and compute nodes. Writing our own profiler
allows us to better analyze the fine-grained resource charac-
teristics of individual phases. In our implementation, we
monitor the execution of each task and record the start and
end time of every phase in the task log file. As for monitor-
ing run-time resource usage, we rely on linux top com-
mand to record CPU and memory usage once per second.
Network I/O is more difficult to profile. In our current
implementation, we modified the Hadoop source code to
print the values of I/O counters. The actual disk and net-
work I/O usage over-time can be obtained from Linux utili-
ties such as iotop and nethogs.

We rely on Hadoop Yarn’s capability of providing
resource isolation between tasks to obtain accurate phase-
level resource usage information. Specifically, we run each
job used in the experiment in Hadoop Yarn and collect the
run-time resource usage of each phase. However, in order
to run Hadoop Yarn, we must first specify the task-level
resource requirement, which is not available (and not
reported in the literature) for the jobs we consider. Instead
of using arbitrary values for task container size, we
determine the task-level resource requirements using an
approach similar to the one in [15]: We run each job in
Hadoop 0.20.2 with different number of slots allocated to
map and reduce tasks. Specifically, we first vary the number
of map slots to find an optimal number that minimizes the
map completion time. Using this number, we then vary the
number of reduce slots to find an optimal number of reduce
slots that minimizes the overall job completion time. Then
we compute the task size using the optimal number of map
and reduce slots per machine. For instance, Figs. 6 and 7
shows the result for adjusting the number of maps slots and
reduces for the sort job, respectively. Both figures show
that the job running time has a non-linear relationship with

the number of slots used. When the number of slots is small
(e.g. two slots) the job running time becomes long due to
the low degree of task-level parallelism imposed by the slot
allocation. On the other hand, when the number of slots is
large (e.g. 12 slots) the running time again becomes high
due to multiple tasks competing for bottleneck resources.
For the sort job, we found setting the number of map slots
and reduce slots to 8 and 6 respectively achieves the optimal
running time. The profile for the sort job is shown in Fig. 8.
The same process is repeated to create the profiles for all
other jobs. Notice we adopt this approach mainly because
we do not want to set task size used by Yarn to arbitrary
values. In practice, the task size is specified by the user, and
we can simply just collect the phase-level information with
low overhead.

In our experiments, to compare the performance of all
three schedulers (i.e., PRISM, Fair Scheduler and Yarn), we
set the task container size used by Yarn according to the
optimal number of slots found by Hadoop 0.20.2. The
default configuration of Yarn specifies 16 virtual cores per
machine. Yarn also requires that the number of vCores per
task must take integer values in the job request. In our
experiments, we have found the default configuration of
Yarn produces lower performance compared to both the
Fair Scheduler and PRISM. This is due to the large rounding
errors for converting the number of vCores to integer
values. Therefore, we modified the default configuration so
that each machine provides 128 vCores. This significantly
reduces rounding errors, allowing Yarn to produce
comparable performance against both the fair scheduler
and PRISM.

6.2 Evaluation Using Individual Jobs

In our first experiment, our goal is to demonstrate the bene-
fit of phase-level scheduling. For this purpose, we run a sin-
gle sort job in a small cluster consisting of only three
nodes using Fair Scheduler, Yarn and PRISM.3 The input
size is set to 5 GB. The number of map and reduce slots
used by Fair Scheduler is set to 8 and 6 as discussed in pre-
vious section.

The experiment results for Hadoop fair scheduler, Yarn
and PRISM are shown in Figs. 10, 11, and 12, respectively.
In particular, the fair scheduler is able to complete the job
execution in 149 seconds, whereas Yarn finishes the job in
152 seconds. In contrast, PRISM achieves the same in just
125 seconds (as shown in Fig. 12a), resulting in a 19 percent
reduction in job running time. To understand the reason

Fig. 6. # of Slots versus Map running time. Fig. 7. # of Slots versus Job running time.

3. We choose three nodes in this experiment mainly to allow us to
visualize the execution of the job, as well as to demonstrate the scenar-
ios where PRISM outperforms the fair scheduler
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behind the performance gain, we first plotted the CPU/
Memory usage as well as disk/network I/O usage in
Figs. 10b and 10c for Fair Scheduler, in Figs. 11b and 11c for
Yarn, and in Figs. 12b and 12c for PRISM. We found Yarn
achieves highest utilization while performing slightly worse
than the fair scheduler. The main reason is that Yarn has an
additional scheduling overhead. Specifically, in order to
run a new MapReduce job, scheduler need to run a job con-
troller called Application Master [7], which will be responsi-
ble for monitoring and managing the job execution. This
Application Master also consumes cluster resources at run-
time, which reduce the resource capacity available for task
scheduling. In contrast, PRISM delivers higher utilization
for all resources. The CPU utilization of PRISM is always
better than that of Fair scheduler except near the end of the
execution.

We also plotted Figs. 10d, 11d and 12d to show the num-
ber of phases scheduled over time by each scheduler. For
clarity of presentation, we only show the plot for the three
major phases: map, shuffle and reduce. Both PRISM and
Yarn are able to achieve higher degree of parallelism during
the map stage (seven and six map tasks running concur-
rently on average) than the Fair Scheduler. During the
reduce stage, as shuffle phases consumes more resources
than reduce phases, PRISM recognizes the potential
resource bottleneck, and thus delays the start of the reduce
phases, allowing more shuffle phases to be scheduled. This
makes the shuffle phases to run faster than the Fair sched-
uler and Yarn (81 seconds for PRISM, 86 seconds for Yarn
and 89 seconds for the Fair Scheduler). As reduce phases
consume less resources, they can be scheduled in large
quantity without causing resource contention. Given the
flexibility to separate shuffle phases from reduce phases,
PRISM is able to find better schedule for both shuffle and
reduce phases without cause resource contention, resulting
in better in job running time. This confirms our intuition in
Section 4, which states that PRISM relies on improving
resource utilization to improve job completion times, at the
cost of slightly delaying the completion of individual tasks.
As resources are better utilized for task execution without
causing resource contention, making trade-off can lead to
higher job performance than existing Hadoop resource-
aware schedulers.

After demonstrating the behavior of PRISM using
Figs. 10, 11 and 12, we also evaluated the performance using
data set ranging from 25 to 100GB. The results are shown in
Fig. 13. Even though PRISM achieves slightly worse data
locality compared to Fair scheduler and Yarn, it still outper-
formed both Fair scheduler and Yarn. The explanation is

that PRISM tries to find best opportunities for bin-packing,
and as a result, it may schedule tasks on machines that have
low locality. However, as mentioned in Section 5.2, because
our algorithm prioritize data-local tasks when making
scheduling decisions, the decrease in data locality is small.
We also varied the number of nodes in the cluster and run
sort with 100GB input. the results are shown in Fig. 14.
Despite having slightly worse data locality, PRISM delivers
better performance than Fair scheduler and Yarn.

We also performed the same experiment for the remain-
ing jobs in the Gridmix 2 and the PUMA benchmark. The
results are shown in Fig. 9. PRISM outperforms both the fair
scheduler and Yarn for all the jobs. The reduction in job run-
ning time ranges between 5-38 percent. Furthermore, we
have found that PRISM generally achieves higher reduction
in job running time for reduce intensive jobs (e.g. sort and
self-join, where reducers consume more resources than
mappers). The reason is that for reduce-intensive jobs, both
shuffle and reduce phases take longer time to run and often
have drastically different resource consumption characteris-
tics. As a result, PRISM is able to find better schedules com-
pared to both Yarn and fair scheduler, and therefore the
gain becomes higher. While one may think that the perfor-
mance improvement is due not only to the scheduling but
also due to how data is distributed across tasks, we argue
this is not case, as we make no effort in optimizing data
placement and the assignment of data to tasks. Further-
more, We tested our algorithm with different input sets and
the performance gain remain the same. This confirms the
performance gain achieved by PRISM is independent of
data distribution.

6.3 Evaluation Using Benchmarks

We now present our evaluation result using both PUMA
and Gridmix 2 benchmarks. In the PUMA benchmark, we
vary the number of jobs between 50 to 200 to create batch

Fig. 8. An example Job Profile: Sort Job.

Fig. 9. Running time of each job.
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workload of different size, and run each of the batch work-
load three times using Fair scheduler, Yarn and PRISM. To
provide an accurate evaluate the performance gain, in our
experiments, all the jobs in the batch are simultaneously
submitted to the job tracker and executed concurrently in
the cluster. The results for job completion time is shown in
Fig. 15a. It can be seen that PRISM outperforms both Fair
scheduler and Yarn in all scenarios. Furthermore, Yarn gen-
erally outperforms the Fair scheduler for large workloads,
because it is more resource-aware. The locality of tasks are
shown in Fig. 16a. Once again, PRISM achieves lower task
locality, while deliver better performance than Fair sched-
uler and Yarn. Figs. 17a, 18a and 19a shows the resource uti-
lization of the cluster during the execution of each batch
for each scheduler respectively. It can be seen from the
diagrams that PRISM generally provider higher resource
utilization than the Fair Scheduler, and One interesting
observation is that PRISM achieves higher I/O throughput
than Hadoop Yarn, but slightly lower CPUutilization. The
reason is that CPU is the performance bottleneck of the
workload. As PRISM tries to mitigate CPU contention
while improving utilization of idle resources, it achieves
higher I/O throughput than Yarn. On average, PRISM is
able to reduce job running time by up to 24 percent. The
benefit of PRISM mainly comes from the fact that PRISM
achieves higher degree of parallelism through better sched-
uling of phases, resulting in shorter job running time.

Similarly, we vary the number of jobs in the Gridmix 2
benchmark from 25 to 100 to create multiple batches of
Gridmix 2 workload. Each batch is then executed three
times using all three schedulers. The results for average job
running time, data locality and resource utilizations are
shown in Figs. 15b, 16b, 17b, 18b and 19b, respectively. The
results are similar to that of the PUMA workload. These
results suggest that PRISM is able to achieve shorter job run-
ning time while maintaining high resource utilization for
large workloads containing a mixture of jobs, which are
common in production clusters.

So far we have only analyzed the aggregate workload
running time and resource utilization. However, these
objectives should not be achieved at the cost of introducing
poor job fairness. Therefore, we have also measured the
application normalized performance (ANP) and the unfairness

Fig. 10. Sorting 5 GB data with fair-scheduler.

Fig. 11. Sorting 5 GB data with Yarn.

Fig. 12. Sorting 5 GB data with PRISM.

Fig. 13. Running sort with different input size.
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as introduced by Isard et al. in Quincy [13]. The ANP of
a job is the ratio between the ideal job running time (when
the job is given sufficient capacity to run at full speed) to
actual job running time. Thus, the higher the ANP value is,
the better the scheduler performs in terms of improving job
running time. The unfairness, on the other hand, is the coef-
ficient of variation (CV) of the ANP values across all jobs in
the batch. The intuition is that a fair scheduler should
ensure all jobs experience similar speed up rate regardless
of the current utilization of the cluster. Therefore, a small
CV of ANP values indicates a high level of fairness achieved
by the scheduler. The results of ANP and unfairness for
both PUMA and Gridmix workload are shown in Figs. 20a,
20b, 20c and 20d respectively. Specifically, Figs. 20a and 20b
show that PRISM is able to achieve high ANP values com-
pared to both Fair Scheduler and Yarn. However, it delivers
slightly higher unfairness than the Fair Scheduler, as shown
in Figs. 20c and 20d. We believe this is due to the fact that
PRISM tries to find a balance between performance and
resource-awareness. Thus due to resource constraints, it is
not possible to achieve ideal fairness values. However, as
the difference is relatively small between these two schedu-
lers, we believe sacrificing a small amount of fairness for the
sake of improving resource utilization and job running time
is beneficial to the overall performance of the cluster.
Finally, we found that Yarn achieves the worst unfairness
values. This is because it uses the capacity scheduler, which

does not take fairness into consideration when making
scheduling decisions.

7 RELATED WORK

The original Hadoop MapReduce implements a slot-based
resource allocation scheme, which does not take run-time
task resource consumption into consideration. As a result,
several recent works reported the inefficiency introduced
due to such simple design, and proposed solutions. For
instance, Polo et al. proposed RAS [15], an adaptive
resource-aware scheduler that uses job specific slots for
scheduling. However, RAS still performs scheduling at
task-level, and does not consider the task resource usage
variations at run time. Subsequently, Hadoop Yarn [7] rep-
resents a major endeavor towards resource-aware schedul-
ing in MapReduce clusters. It offers the ability to specify the
size of each task container in terms of requirements for each
type of resources. In this context, A key challenge is to
define the notion of fairness when multiple resource types
are considered. Ghodsi et al. proposed dominant resource
fairness as a measure of fairness in the presence of multiple
resource types, and provided a simple scheduling algorithm
for achieving near-optimal DRF. However, the DRF
scheduling algorithm still focuses on task-level scheduling,
and does not consider change in resource consumption
within individual tasks. Their subsequent model, namely

Fig. 14. Running sort with different clusters.

Fig. 15. Benchmark running time.

Fig. 16. Benchmark locality.

Fig. 17. Utilization using fair scheduler.

Fig. 18. Utilization using yarn.

Fig. 19. Utilization Using PRISM.
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dominant resource fair queueing (DRFQ), aims at achieving
DRF for packet scheduling over time. However, DRFQ algo-
rithm is mainly designed for packet scheduling, which is
different from the task-level “bin-packing” type of schedul-
ing model we consider in this paper. Thus it cannot be
directly applied to MapReduce scheduling.

Using profiles to improve MapReduce job performance
has received considerable attention in recent years [12]. For
instance, Verma et al. [17] developed a framework that pro-
files task running times and use the job profiles to achieve
deadline-ware scheduling in MapReduce clusters.
Herodotou et al. recently developed Starfish [12], a job pro-
filer that collects fine-grained task usage characteristics that
can be used for fine-tuning job configuration parameters.
However, the goal of profiling in these studies is to optimize
job parameters, rather than optimizing job schedules.

Another related research direction is MapReduce pipe-
lining. In particular, MapReduce Online [9] is a framework
for stream-based processing of MapReduce jobs. it allows
partial outputs of each phase to be sent directly to the subse-
quent phase, thus enables overlaps execution of phases.
ThemsisMR [16] is another scheme that modifies MapRe-
duce phases to improve I/O efficiency. However, both of
these solutions does not deal with scheduling. Furthermore,
they are not resource-aware. While introducing resource-
awareness in MapReduce Online is another interesting
alternative, the scheduling model for MapReduce online is
much different from the current MapReduce. It will require
further investigation to identify scheduling issues for Map-
Reduce online.

8 CONCLUSION

MapReduce is a popular programming model for data
intensive computing. However, despite recent efforts
toward designing resource-efficient MapReduce schedulers,
existing work mainly focuses on designing task-level sched-
ulers, and is oblivious to the fact that the execution of each
task can be divided into phases with drastically different
resource consumption characteristics. To address this limi-
tation, we introduce PRISM, a fine-grained resource-aware
scheduler that coordinates task execution at the level of
phases. We first demonstrate how task run-time usage
can vary significantly over time for a variety of MapReduce
jobs. We then present a phase-level job scheduling
algorithm that improves job execution without introducing
stragglers. In a 16-node Hadoop cluster running standard
benchmarks, we demonstrated that PRISM offers high
resource utilization and provides 1:3� improvement in job
running time compared to the current Hadoop schedulers.

Lastly, we believe there are many interesting avenues
for future exploration. In particular, we would like to
study the problem of meeting job deadlines under phase-
level scheduling. Also, in this paper we assume all
machines have identical hardware and resource capacity. It
is interesting to study the profiling and scheduling prob-
lem for machines with heterogenous performance charac-
teristics. Finally, improving the scalability of PRISM using
distributed schedulers is also an interesting direction for
future research.
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