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Abstract—Internet applications are deployed on the same
network infrastructure, yet they have diverse performance and
functional requirements. The Internet was not originally designed
to support the diversity of current applications. Network virtual-
ization enables heterogeneous applications and network architec-
tures to coexist without interference on the same infrastructure.
Embedding a virtual network (VN) into a physical network is a
fundamental problem in network virtualization. A VN embed-
ding that aims to survive physical (e.g., link) failures is known
as the survivable VN embedding (SVNE). A key challenge in
the SVNE problem is to ensure VN survivability with minimal
resource redundancy. To address this challenge, we propose sur-
vivability in multi-path link embedding (SiMPLE). By exploiting
path diversity in the physical network, SiMPLE provides guaran-
teed VN survivability against single link failure while incurring
minimal resource redundancy. In case of multiple arbitrary link
failures, SiMPLE provides maximal survivability to the VNs. We
formulate this problem as an integer linear program and imple-
ment it using GNU linear programming kit. We propose a greedy
proactive approach to solve larger instances of the problem in
case of single link failures. In presence of more than one link
failures, we propose a greedy reactive algorithm as an extension
to the previous one, which opportunistically recovers the lost
bandwidth in the VNs. Simulation results show that SiMPLE
outperforms full backup and shared backup schemes for SVNE,
and produces near-optimal results.

Index Terms—Survivable virtual network embedding, fault
tolerance, path splitting.

I. INTRODUCTION

THE INTERNET has to support a wide range of applica-
tions having diverse performance and functional require-

ments. For example, Audio/Video streaming and large data
transfers require dedicated bandwidth and bounded delay,
online banking requires security guarantees, while Web brows-
ing and email applications are satisfied with best-effort deliv-
ery. Currently, most of these applications are deployed on the
same network infrastructure, and usually rely on the best-
effort Internet’s communication model without guarantees.
Network Virtualization (NV) [1], [2] has been propounded
as a promising solution for enabling heterogeneous applica-
tions and network architectures to coexist on the same physical
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infrastructure (or substrate network). NV involves two entities:
Infrastructure Providers (InPs) and Service Providers (SPs).
An InP owns and maintains the substrate, e.g., data centers.
An SP, in contrast, requests network slices from one or more
InP(s), and offers customized services to end users without sig-
nificant investment in deploying and managing the substrate.
An InP manages a network slice as a Virtual Network (VN),
and embeds the VN to the Substrate Network (SN) with proper
isolation and guaranteed Quality of Service (QoS). In some
cases, a third entity, called Virtual Network Operator (VNO),
acts as a broker between an SP and multiple InPs. A VNO
accepts VN request from different SPs and installs, manages,
and operates the VNs. In this way, NV enables multiple SPs to
coexist on the same substrate without interference, and satisfies
diverse application needs.

Efficient mapping of VNs onto an SN is known as the
VN embedding (VNE) problem [3]. In its simplest form, the
VNE problem is to map virtual nodes and links of a VN
request onto substrate nodes and paths (sequence of phys-
ical links), respectively, while satisfying physical resource
constraints. The VNE problem is NP -hard and has been stud-
ied extensively in [4]–[7]. However, one important aspect of
the problem that has received less attention is VN surviv-
ability. Finding a VN Embedding that can survive arbitrary
substrate node or link failures is known as the Survivable
Virtual Network Embedding (SVNE) problem [8]. A failure
in the SN may cause multiple VNs to fail, which may signif-
icantly degrade service performance and availability. In many
applications, a service outage can incur high penalty in terms
of revenue and customer satisfaction. For example, online busi-
nesses in North America lost 26.5 billion in revenue due to
service downtime in 2010 [9]. Hence, VN survivability is
crucial for both InPs and SPs.

Survivability has been thoroughly investigated in non-
virtualized networks in the past [10]–[13]. However, these
solutions focus on ensuring that all nodes in the VN are
connected by a path. In contrary, the focus in SVNE is to pre-
serve both connectivity and the demanded bandwidth in VN.
Hence, existing solutions are not directly applicable to SVNE.
Survivability of VNs is usually achieved through allocation of
redundant (i.e., backup) resources, which introduces additional
challenges to the VNE problem. First, the failure characteris-
tics and repair time are unpredictable [14], [15]. Reserving
the full demand of a virtual link as backup is expensive, since
backup resources remain idle when there are no failures [8].
To minimize resource wastage, shared backup schemes have
been proposed in [16]. However, they do not guarantee the
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full requested bandwidth of a virtual link during failure. As
such, it is challenging to determine the minimum redundancy
level for guaranteed survivability. Second, primary and backup
resources need to be disjoint in the SN. Embedding each vir-
tual link into multiple disjoint paths mitigates the impact of
failures [17], [18]. Although effective, this approach incurs
path splitting overhead including packet redirection, increased
routing table size, and packet reordering. In general, it is dif-
ficult to find the optimal trade-off between VN survivability,
redundancy level, and path splitting overhead.

To address these challenges, we propose SiMPLE for ensur-
ing Survivability in Multi-Path Link Embedding. SiMPLE
presents a multi-path link embedding strategy by exploiting
the path diversity in the SN. Studies in [14] and [15] have
shown that link failures are more frequent than node failures,
and node failures can be modeled as multiple link failures [19].
Hence, SiMPLE focuses on survivability against arbitrary sub-
strate link failures. The major contributions of this paper can
be summarized as follows:
• Key Concept. We propose a novel concept to ensure high

survivability against multiple link failures while reserving
only a fraction of the virtual link’s demand as backup. To
the best of our knowledge, SiMPLE is the only approach
that provides provable survivability guarantee in presence
of a single link failure without allocating full bandwidth
of the virtual link’s demand as backup.

• Optimization Model. The design goal of SiMPLE is
to find a trade-off between maximizing survivability and
minimizing redundant resources and path splitting over-
head, which has not been considered in the previous
studies. We formulate this joint optimization problem as
an Integer Linear Program (ILP) to achieve this trade-off.

• Proactive Approach. We implement the ILP model in
GLPK to find optimal solutions for small scale net-
works. For larger instances of the problem, we propose
a greedy algorithm that produces near-optimal solu-
tions. We demonstrate SiMPLE’s effectiveness through
extensive simulations and comparison with full backup
and shared backup schemes for SVNE. Simulation
results show that SiMPLE provides better survivability,
requires lesser backup bandwidth, and generates more
profit.

• Reactive Approach. While the proactive approach guar-
antees survivability against a single substrate link failure,
it may not offer full protection for multiple substrate
link failures. To mitigate the impact of such scenar-
ios, we present a reactive approach in SiMPLE. This
approach recovers the lost bandwidth in each virtual link
affected by physical link failures. Simulation results show
that, compared to the proactive approach, it improves the
results by a significant margin in both minimizing failed
VNs and obtaining higher profits for the InP.

This paper extends the results presented in our earlier
paper [20] in several ways. First, we identify a failure case
in our previous approach, and theoretically prove that it can
occur with a significant probability in moderate size networks.
Second, we include a reactive survivability mechanism to solve
this problem. Third, while the previous paper was mostly

focused on data center networks, we also focus on ISP net-
works in this paper. Fourth, we evaluate our proposed solutions
in further details with additional experimental results. Fifth, we
present a more detailed survey of virtual network embedding
and survivability in this paper.

The rest of the paper is organized as follows. Section II
provides necessary background. Section III presents the main
concept and ILP model for SiMPLE. Section IV presents
two greedy solutions – one proactive and one reactive – for
link embedding in SVNE. Section V presents our evaluation
results, and Section VI discusses related literature. Finally,
Section VII concludes the paper with an outline of possible
future research directions.

II. BACKGROUND

In this section, we present the VNE problem and the existing
mechanisms for ensuring survivability in VNE process.

A. Virtual Network Embedding

To describe the VNE problem, we model the SN and the
VN as weighted graphs GS(NS, ES) and GV(NV , EV ), respec-
tively. Here, NS and ES denote the sets of the Substrate Nodes
(SNodes) and Substrate Links (SLinks), respectively, while
NV and EV denote the sets of Virtual Nodes (VNodes) and
Virtual Links (VLinks), respectively. Each SNode ns ∈ NS

has a CPU capacity, c(ns), and each SLink es ∈ ES has a
bandwidth capacity, b(es). Similarly, the CPU demand of a
VNode nv ∈ NV and bandwidth demand of a VLink ev ∈ EV

are denoted by c(nv) and b(ev), respectively. The residual CPU
and bandwidth resources at ns and es are represented by r(ns)

and r(es), respectively. Generally, the VNE problem can be
divided into two stages:

1) Node Embedding: Each VNode nv ∈ NV from a VN
request is mapped to a single SNode by a node mapping func-
tion: ξN : NV → NS, subject to CPU capacity constraints:
∀nv ∈ NV : c(nv) ≤ r(ξN(nv)).

2) Link Embedding: Each VLink ev ∈ EV is mapped to
a substrate path pev ∈ Pev

between ingress SNode, ξN(ev
s)

and egress SNode, ξN(ev
d), where ev

s and ev
d denote the source

and destination VNodes of ev, respectively. The link mapping
function is ξE : EV → Pev

, subject to bandwidth capacity
constraint: ∀ev ∈ EV ∧ ∀pev ∈ Pev

: b(ev) ≤ r(pev
), where

r(pev
) = min

es∈pev r(es).
Solving the VNE problem is NP -hard, as it is related to the

multi-way separator problem [6]. Even with a given VNode
mapping, the problem of optimally allocating the VLinks to
substrate paths reduces to the unsplittable flow problem [21],
and is thus NP -hard as well. Fig. 1 depicts the mapping of
the two VN requests, GV1 and GV2 (on the left) on an SN,
GS (on the right). Here, the SNodes and VNodes are labeled
with letters inside the corresponding node. Node mapping for
GV1 is ξ1

N(a) = D, ξ1
N(b) = A, ξ1

N(c) = F, and link mapping
is ξ1

E(ab) = DBA, ξ1
E(ac) = DEF, ξ1

E(bc) = ACF; while GV2

has node mapping ξ2
N(e) = D, ξ2

N(d) = G, ξ2
N(f ) = F, and

link mapping ξ2
E(ed) = DG, ξ2

E(ef ) = DEF.
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Fig. 1. Embedding VN requests onto a substrate.

B. Survivable Virtual Network Embedding

An SLink may not operate properly all the time due to
various reasons such as fiber cut, maintenance, misconfigura-
tion, and so on [14], [15]. To see the impact of such failure,
let us consider a failure in SLink DE in Fig. 1. It causes
the VLinks ac and ef to fail. In general, survivability against
SLink failures can be achieved by either of the following ways:

1) Allocating Backup Resources: To survive against SLink
failures, backup resource can be allocated in two ways [22],
namely, SLink protection and path protection. In SLink protec-
tion, a primary path pev

is associated to each VLink, and each
SLink es ∈ pev

is protected by a detour. Upon an SLink failure,
traffic on that SLink is locally rerouted through its detour. In
Fig. 1, SLink DE can be associated with two detours DGE and
DBAE for the VLinks ac and ef , respectively. In case of the
path protection, each end-to-end primary path pev

is protected
by an SLink disjoint backup path from source to destination.
The source activates the backup path when it is notified about
the failure of an SLink along path pev

. In Fig. 1, the bandwidth
demanded by VLinks ac and ef can be reserved in the backup
paths DGF and DBACF, respectively, which are SLink dis-
joint to the primary path DEF. Hence, redundant bandwidth
has to be allocated in SN for each backup path. However, mul-
tiple backup paths can share the same backup bandwidth to
minimize redundancy.

2) Multipath Embedding: Path splitting is a routing strat-
egy to allow a single data stream to be split across multiple
paths. Various path splitting techniques, such as, Equal-cost
Multipath (ECMP) and Multipath TCP (MPTCP), have been
used in the IP and TCP layers, respectively. Authors in [18]
introduced path splitting in VNE to embed a VLink over multi-
ple substrate paths. Multipath embedding mitigates the impact
of failure by switching the affected traffic on the failed SLink
to alternate paths [17]. In the worst case, it can salvage a
fraction of the VLink’s bandwidth during an SLink failure. In
Fig. 1, we can embed VLinks ac and ef onto multiple paths
such as ξ1

E(ac) = {DEF, DGF} and ξ2
E(ef ) = {DEF, DBACF}.

Here, upon the failure of the SLink DE, both VLinks ac and
ef can partially survive through the alternate paths DGF and
DBACF, respectively.

III. SVNE THROUGH PATH SPLITTING

In this section, we first describe the main concept of
SiMPLE. Then we present its ILP formulation.

A. The SiMPLE Embedding Concept
The main concept of SiMPLE embedding consists of two

parts. The first part is a proactive approach, which embeds
each VN as they arrive. The second part is a reactive recov-
ery mechanism, which works after the arrival of each SLink
failure, and recovers each affected VN.

1) Proactive Approach: The proactive embedding concept
of SiMPLE is illustrated in Fig. 2. A basic proactive approach
for SVNE, the Full Backup Scheme (FBS), is illustrated in
Fig. 2a. In this case, a VLink with demand x is embedded onto
two disjoint paths with sufficient residual capacity. One of the
paths acts as the primary (denoted with solid line), whereas
the other is reserved for the backup (dashed line). When an
SLink in the primary path fails, the backup path serves the
VLink traffic. When the failed SLink recovers, the primary
path starts serving the VLink again. However, such technique
provisions twice the demand of each VLink. As a result,
the number of accepted VNs and SLink utilization decreases
significantly.

SiMPLE operates according to Fig. 2b – Fig. 2d. In Fig. 2b,
the VLink is split into three disjoint substrate paths, and x/2
bandwidth is allocated to each of them. In this case, two
paths are used to carry the primary flow, whereas the third
path is used as backup. Since these paths are disjoint, at
most one of them can be affected by a single SLink fail-
ure. If an SLink fails, the two unaffected paths deliver the
requested bandwidth x. Note that only half of the requested
bandwidth is allocated in the backup path, or, in other words,
50% backup bandwidth is saved in contrast to FBS. We can
extend this idea to a higher number of splits, say k. Fig. 2c
and Fig. 2d present the VLink embedding scenario for k = 4
and 5, respectively. As highlighted in these figures, 67% and
75% backup bandwidth is saved in these two cases, respec-
tively. In addition, the splitting of each VLink into multiple
substrate paths improves the possibility of VN request accep-
tance; even if the full requested bandwidth is not available
in any of the SLinks, a VLink can be embedded by splitting
the required bandwidth over multiple paths. In other words, it
utilizes the links more efficiently than FBS, and increases the
number of accepted VNs. However, increasing the number of
splits introduces additional overhead, which must be taken into
consideration.

There is a trade-off between the number of splits, and VNE
overhead. Indeed, each path splitting has a cost in terms of
routing entry updates, source and destination buffers, and addi-
tional SLink delays. We formulate these costs mathematically
in Section III-B. If we increase the number of splits too much,
these costs may result into infeasible VN embeddings. For an
SN with small SLink to SNode ratio, SiMPLE will perform
similar to FBS.

Theorem 1: SiMPLE proactive embedding guarantees to
preserve the full demand of every embedded VLink in case of
a single SLink failure.

Proof: We prove this Theorem by contradiction. Assume
that a VLink ẽv ∈ EV is not supported with its full
demand. According to the SiMPLE working principle, at

least two paths pẽv

1 and pẽv

2 in ẽv are impacted by a sin-
gle SLink failure. By definition, pẽv

1 and pẽv

2 are disjoint,
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Fig. 2. Proactive Embedding in SiMPLE.

Fig. 3. Reactive Failure Recovery in SiMPLE.

(i.e., they have no common SLink), and this leads to a
contradiction.

Theorem 2: While embedding VNs with same characteris-
tics (e.g., size, demand, and arrival rate), SiMPLE outperforms
FBS in the number of accepted VNs by a factor of 2

(
k−1

k

)
,

where k is the average number of splits in embedding a VLink.
Proof: Assume that FBS and SiMPLE are evaluated for

time T, and accepted a series of n VNs. Each VN has ν

VLinks, and each VLink demands x bandwidth. At time T,
substrate bandwidth consumptions of FBS and SiMPLE are
given by BT

F = 2nl̄νx and BT
S = knl̄ν x

k−1 , respectively, where l̄
is the average length of the substrate paths used in embedding.
The additional substrate bandwidth used in FBS is given by
BT

F−BT
S = nl̄νx k−2

k−1 . Before SiMPLE consumes bandwidth BT
F ,

an additional n̂ VNs with same characteristics would occupy
B̂T

S bandwidth, where B̂T
S = kn̂l̄ν x

k−1 . Since B̂T
S = BT

F − BT
S ,

we obtain, n̂ = n k−2
k . Hence, the number of accepted VNs in

SiMPLE is n + n̂ = 2 k−1
k n. Note that this theorem presents

the upper bound for the number of accepted VNs. Hence, we
consider VNs with similar characteristics.

2) Reactive Approach: The proactive approach described in
the previous paragraph guarantees survivability of each VLink
in case of a single SLink failure. However, this approach can
be vulnerable in presence of multiple SLink failures, especially
when they arrive within a very short time window. This is
because multiple failures can affect different paths in a single
VLink.

Theorem 3: In SiMPLE Proactive Embedding, if multiple
SLink failures are present in a moderate size substrate network,
then they affect the same VLink with a probability between
2− 16%.

Proof: For simplicity, assume that each VN share the same
characteristics (e.g., size, demand, and arrival rate). In a satu-
rated SN, the expected number of VLinks embedded onto an
SLink is α. The first SLink failure will affect α VLinks, each
of which have (k − 1)l critical SLinks, where k and l are the
average number of splits and average path length, respectively.

TABLE I
APPROXIMATE VALUES FOR THEOREM 3

In one extreme, these α(k− 1)l can be shared among (k− 1)l
physical links, and in other, they may be totally disjoint. The
probability of a second failure in one of these SLinks can be
between (k−1)l

L and α(k−1)l
L , where L is the total number of

SLinks. We conducted experiments to determine approximate
values for the above terms, which are given in Table I. By
substituting these values, we estimate that this probability lies
within 2− 16%.

To handle the impact of multiple failures, we propose a
reactive approach in SiMPLE. This approach, as presented in
Fig. 3, works for each VLink that are affected by an SLink
failure. In essence, this approach considers each possibility
to recover an affected VLink (a VLink with a failed path, see
Fig. 3a), and selects the most feasible one. The first possibility,
as shown in Fig. 3b, is to provision another link-disjoint path
for the affected VLink. The second and third possibilities, as
shown in Fig. 3b and 3c respectively, considers increasing the
lost bandwidth by a fixed or variable amount among the other
working paths. Among these possible alternatives, SiMPLE
considers a set of certain criteria (e.g., amount of physical
resources used, load balancing) to evaluate their goodness, or
cost. A detailed description of the cost function can be found
in Section III-B. The embedding contributing to the lowest
cost is chosen by SiMPLE.

Note that, in the worst case, none of these possibilities will
work. This implies that another link disjoint path does not
exist, and the existing paths do not have enough residuals to
support the lost bandwidth. In this case, the VLink will be
served with less than 100% of its demand. Nonetheless, we
argue that this case can only arise when a highly congested
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network is subject to a massive number of failures in a very
short time, which is often less frequent. As a basis of the
argument, we present the study in [15], where it is evident
that at most 5% of the SLink failures occur in presence of
another SLink failure.

B. ILP Formulation

We use the following notations to represent different aspects
of embedding. The set Pev

represents a set of disjoint paths
{pev

1 , pev

2 , . . . , pev

k } in SN where ev is embedded. Note that the
number of paths in Pev

will be equal to the number of splits for
ev ∈ EV , i.e., |Pev | = kev

. Two boolean variables are defined
as follows.

X(nv, ns) =
{

1, if nv is embedded to ns

0, otherwise
(1)

Y(pev

i , es) =
{

1, if the path pev

i contains es

0, otherwise
(2)

We formulate SiMPLE as an ILP Model, since it involves
integer (binary) variables as well as linear constraints. In this
model, we optimize both the number of splits and the set
of substrate paths for each VLink of a VN such that the
overall embedding cost is minimized. Afterwards, the corre-
sponding VLinks are mapped to optimal sets of paths. The
VN embedding cost has the following three components.

1) Split and Join Cost: The first cost is the split and join
cost at the source and destination SNodes for a VLink ev.
In SiMPLE, we assume that the SN supports path splitting,
and this assumption relies on the substrate switches. This is
because each data stream is split at the ingress switch, and
subsequently joined at the egress switch.1 Let d1(ns, k) and
d2(ns, k) be the splitting and joining costs into k branches at
ns ∈ NS. The total split and join cost at ns is denoted by
D(ns, k) = d1(ns, k) + d2(ns, k). We can represent the total
split and join cost as follows in (3)

Ï
(

ev, Pev
, kev

)
=
(

D
(
ξN
(
ev

s

)
, kev

)
+ D

(
ξN(ev

d), kev
))

. (3)

2) Switching Cost: The second cost is the packet switch-
ing cost, and it is presented in (4) as S̈(ev, pev

i ). This cost is
associated with each mapped path of ev due to forwarding
the fragmented data stream between the source and desti-
nation SNodes. For such a path pev

i ∈ Pev
, all intermediate

SNodes forward each flow to the next appropriate SNode.1

The switching cost at ns ∈ NS is denoted by β(ns)

S̈(ev, pev

i ) =
∑

ns∈pev
i

(
c(ns)

r(ns)
β(ns)

)
. (4)

3) SLink Cost: The third and final cost component, SLink
cost, is given by L̈(ev, pev

i ) in (5). This cost represents the
sum of allocated substrate bandwidth cost and accumulated
delays along the SLinks on pev

i . This cost is also defined for
each mapped path pev

i ∈ Pev
for ev. In (5), the term wE repre-

sents the relative weight of the SLink delay (δ(es)) (in time

1Without loss of generality and for simplifying the formulation, we do not
place any cap on the number of splits, joins, or switchings per SNode.

units) compared to the allocated bandwidth cost (in bandwidth
units). In today’s data center networks, the link delay is usu-
ally very small. For this reason, we suggest that wE should
take a fractional value less than one.

L̈
(

ev, pev

i , kev
)
=

∑

es∈pev

(
b(es)

r(es)

b(ev)

kev − 1
+ wEδ

(
es)
)

(5)

A goal in our ILP model is to ensure proper load balanc-
ing across SNodes and SLinks. To this end, each SNode and
SLink is associated with a non-linear weight function that
produces low values for under-utilized SNodes and SLinks,
while weight function value increases rapidly as an SNode’s
or SLink’s utilization approaches saturation. The fractions
c(ns)
r(ns)

and b(es)
r(es)

give higher privilege to less loaded SNodes
and SLinks, respectively, over the saturated ones. Therefore,
in (4) and (5), these two fractions are chosen as the load
balancing factors for SNodes and SLinks, respectively. The

possible alternates, e.g., (1− r(ns)
c(ns)

) and (1− r(es)
b(es)

), have a lin-
ear relation between utilization and demand, and so cannot be
used for our purpose.

Now we introduce the SiMPLE objective function. The goal
is to minimize the cost presented in (6). In this equation,
Ï and S̈ have units in MIPS (for split, join, switching costs
involving CPU resources), whereas L̈ has Mbps unit. To unify
these different units, we multiply the split, join, and switching
costs with a weight, wN . Furthermore, in comparison with the
bandwidth resources, the CPU resources are cheaper and more
available. Therefore, we propose that wN should be a fraction.
In this process, we prioritize bandwidth in the cost function
above other resources.
SiMPLE_ILP:

minimize

⎡
⎢⎢⎢⎣
∑
ev∈EV

⎛
⎜⎜⎜⎝

Ï(ev, Pev
, kev

)wN

+
∑

pev
i ∈Pev

(
S̈(ev, pev

i )wN+
L̈(ev, pev

i , kev
)

)
⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ (6)

The constraints for SiMPLE_ILP are presented
in (7) - (12). SNode and SLink capacity constraints are
presented in (7) and (8), whereas VNode demand constraint
is given by (9). Constraint (10) ensures that a VNode is
mapped to exactly one SNode. Path disjointness constraint is
presented in (11). Constraint (12) ensures that a total of kev

paths are found.

∀ns ∈ NS :
∑

nv∈NV

c
(
nv)× X

(
nv, ns) ≤ c

(
ns) (7)

∀es ∈ ES :
∑

ev∈EV

b(ev)

kev − 1
× Y

(
pev

, es
)
≤ b

(
es) (8)

∀ev ∈ EV : Y
(

Pev
, es
)
× b(ev)

kev − 1
≤ r

(
es) (9)

∀nv ∈ NV :
∑

ns∈NS

X
(
nv, ns) = 1 (10)

∀ev ∈ EV :
∑

pev
i ∈Pev

Y
(

pev

i , es
)
≤ 1 (11)

∀ev ∈ EV :
∑

pev
i ∈Pev

∑

es∈pev
i

1

|p| × Y
(

pev

i , es
)
= kev

(12)
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Algorithm 1 SiMPLE Proactive Allocation, SiMPLE-PR

1: function SIMPLE-PR(GS, GV , ξN )
2: for all ev ∈ EV do
3: ∀k ∈ {2, 3, 4, 5} : Pk ← φ ∧ Cost(Pk)←∞
4: for k ∈ {2, 3, 4, 5} do
5: E

S ← ES

6: for j← 1, k do
7: Q← Dijkstra (NS, E

S, ξN (ev
s ), ξN (ev

d),
b(ev)
k−1 )

8: Pk ← Pk ∪ Q
9: E

S ← E
S − Pk

10: end for
11: end for
12: P∗ ← min(P2, P3, P4, P5)

13: if Cost(P∗) = ∞ then
14: return φ

15: end if
16: ξE(ev)← P∗
17: end for
18: ∀es ∈ ES ∩ P∗ : update r(es)

19: return ξE

20: end function

IV. PROPOSED SOLUTIONS

The ILP model presented in Section III can find optimal
solution for small instances of the multi-path embedding prob-
lem, but it will not scale with SN and VN size. In this section,
we propose two scalable greedy algorithms for each part in
SiMPLE, as introduced in Section III-A. The first one is
a survivable multi-path proactive embedding approach, and
the second one is a recovery mechanism that operates after
each SLink failure. Both solutions operate under the assump-
tion that the node mapping has already been done, possibly
using one of the greedy approaches (e.g., First Fit or Best Fit
approach [23]).

A. Proactive Solution

The proactive solution, SiMPLE-PR, embeds each VLink
of a VN request as it arrives. The algorithm iteratively com-
putes a set of disjoint paths for each VLink, and returns the
result of embedding, or φ if none exists.

The input to SiMPLE-PR, as presented in Algorithm 1, is
an SN GS, a VN GV , and its node mapping function, ξN .
In SiMPLE-PR, we split each VLink into no more than
five paths. This is because, as illustrated experimentally in
Section V-H, a higher number of splits will cause a very
high splitting, joining, routing and delay overheads, which
will eventually make the embedding expensive and infeasi-
ble. SiMPLE-PR iteratively works on each VLink of a newly
arrived GV (Lines 2−19). The set Pk (initially empty) denotes
the set of candidate paths selected for split k, where 2 ≤ k ≤ 5
and k ∈ N (Line 3). At each iteration of k (Lines 4 − 11),
SiMPLE-PR runs the Dijkstra’s weighted shortest path algo-
rithm to select a candidate path with the sufficient residuals
(b(ev) / (k − 1)) between the source and destination SNodes
of the corresponding VLink (Line 7). This path is added to Pk

(Line 8). To maintain the disjointness constraint, the SLinks of

Algorithm 2 SiMPLE Reactive Recovery, SiMPLE-RE

1: function SIMPLE-RE(GS, ev, ξN)
2: Pev ← Pev − {pev

f }
3: P1 ← FindNewPath(GS, ev)

4: P2 ← ∀pev ∈ (Pev − pev

f ) : alloc (pev
, b(ev)

kev−1
)

5: P3 ← ∀pev ∈ (Pev − pev

f ) : add (pev
, b(pev

f ) · r(pev
)∑

r(pev
)
)

6: P∗ ← min(P1, P2, P3)

7: ξE(ev)← P∗
8: ∀es ∈ ES ∩ P∗ : update r(es)

9: return ξE

10: end function
11: function FINDNEWPATH(GS, ev)
12: E

S ← ES − Pev

new
13: Pev ← Pev∪ Dijkstra (NS, E

S, ξN(ev
s), ξN(ev

d))

14: return Pev

15: end function

the path are temporarily removed from GS (Line 9). After the
end of this loop, the discarded SLinks are restored (Line 5),
and the set of paths with the minimal cost, P∗, is calculated
(Line 12). If no such set is found (i.e., cost of P∗ is ∞),
SiMPLE-PR finds no feasible mapping for this VLink (and
hence GV ) and returns φ (Lines 13−15). Otherwise, it updates
the link mapping function ξE (Line 16), and moves on to pro-
cess the next VLink. If the mapping of all the VLinks are
found in this process, SiMPLE-PR returns ξE (Line 19). In
this case, GV is embedded onto GS, and the residual capacities
in the corresponding SLinks are updated (Line 18).

Theorem 4: The running time of SiMPLE-PR is O(|EV |×
(|NS| · log|NS| + |ES|)).

Proof: As mentioned in the previous paragraph,
SiMPLE-PR iteratively embeds each VLink of a VN.
For each VLink, it runs Dijkstra’s algorithm O(1) times.
Since, for i splits, Dijkstra’s algorithm is invoked i times,
where 2 ≤ i ≤ 5. In total, Dijkstra’s algorithm is called at
most 2+3+4+5 = 14 times. The running time of Dijkstra’s
algorithm is O(|NS| · log|NS|+|ES|). The later operations, e.g.,
temporarily discarding the SLinks in the selected path, take
O(|ES|) running time. At the end of the iteration, updating
the residual capacities of the SLinks in the optimal path P∗
also takes O(|ES|) running time. Therefore, a single VLink
is embedded in a running time O((|NS| · log|NS| + |ES|)).
In total, SiMPLE-GR embeds a VN in a running time of
O(|EV | × (|NS| · log|NS| + |ES|)).

B. Reactive Solution

The reactive recovery mechanism, SiMPLE-RE, performs
on each SLink failure as they arrive. As briefly discussed
in Section III-A2, SiMPLE-RE recovers a failed path in an
affected VLink by exploring different recovery strategies. In
the end, it returns the recovery embedding with lowest cost,
which minimizes the physical resource consumption while
considering load balancing.
SiMPLE-RE is briefly presented in Algorithm 2. The input

to this algorithm is the substrate network, GS, and the affected
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virtual link, ev, and the node mapping function, ξN . At first,
this algorithm discards the failed path, pev

f , from the existing
paths in ev, Pev

(Line 2). Then, it calls the FindNewPath
method (Line 3), which finds another link-disjoint path, adds
it to Pev

(Lines 11−14), and returns this set into P1 (Line 3).
Next, SiMPLE-RE allocates the fixed amount of bandwidth
in the existing paths, and stores the result in P2 (Line 4).
Afterwards, SiMPLE-RE recovers the lost bandwidth, b(pev

f ),

among the existing paths, Pev
. For this purpose, it splits b(pev

f )

in proportion to residuals of the paths in Pev
, adds this split

bandwidth to these paths, and saves this set into P3 (Line 5).
After that, SiMPLE-RE chooses the embedding with lowest
cost, P∗, among P1, P2 and P3 (Line 6). In the end, the new
embedding of ev is changed to P∗ (Line 7), the residuals of
the substrate network is updated accordingly (Line 8), and the
resultant embedding is returned (Line 9).

Theorem 5: The running time of SiMPLE-RE is
O(|NS|log|NS| + |ES|).

Proof: Note that the steps presented in Lines 3 − 5 in
SiMPLE-RE are independent of each other, and can be
parallelized. Provisioning a new path, as presented in the
FindNewPath method (Lines 11 − 14) invokes Dijkstra’s
shortest path algorithm, and this can be run in O(|NS|log|NS|+
|ES|) time. The fixed and variable bandwidth allocations, as
presented in Lines 3− 4, are linear operations in the number
of physical links, |ES|. Line 6 performs finding the min-
ima among three possible alternatives embeddings, and this
is a constant-time operation. Lines 7 − 8 are also linear in
|ES|, since they involve updating the virtual links and sub-
strate links, respectively. As a result, the running time of
SiMPLE-RE is determined by the FindNewPath method
call in Line 3, which is O(|NS|log|NS| + |ES|).

V. PERFORMANCE EVALUATION

A. Simulation Setup

We consider the online version of the SVNE problem, where
each VN request is embedded as it arrives. We use the Fat tree
topology [24] and a Synthetic topology to assess the behavior
of SiMPLE in data center networks and ISP networks, respec-
tively. The Synthetic topology connects each SNode at a low
probability (≤ 0.1), which represents an arbitrary ISP network.
To demonstrate the SiMPLE scalability, we present the results
on VN embedding performance at small scale, and VN surviv-
ability at large scale. In small scale experiments, we evaluate
both SiMPLE-PR and the optimal solution, SiMPLE-OP,
where the later is an implementation of the ILP model pre-
sented in Section III-B using GLPK. This ILP model finds an
optimal embedding for all VLinks of a VN request. To reduce
the solution space, the GLPK implementation considers the
first 200-shortest loop-less paths between a pair of SNodes,
computed using Yen’s Algorithm [25]. However, for the large
instances, GLPK exceeds memory limits and is unable to find
any solution. Also note that we evaluate SiMPLE-RE only at
the survivability experiments, since its major focus is failure
recovery.

For all experiments, VN requests are generated by varying
their size randomly. We use Poisson process to model VN

TABLE II
EVALUATION ENVIRONMENT

arrival and SLink failure events. The VN lifetime is modeled
using a Geometric distribution. It is worth noting that, our
simulation setup, choice of simulation parameters, VN and
failure arrival distributions, and VN lifetime distributions sum-
marized in Table II are similar to the previous works [8], [26].
In Table II, [xmin, xmax] denotes a uniform distribution between
xmin and xmax. Pois{p} and Geo{g} stand for the Poisson and
Geometric distributions with mean p and g, respectively. For
our experiments, we use random node mapping, which is less
informed and thus makes the VLink embedding more chal-
lenging than the systematic node mapping approaches (e.g.,
First Fit [23]). However, the basic constraints in VNE ((7),
(9), (10)) were satisfied by this random node mapping algo-
rithm. We run our experiments on a workstation with AMD
III+ FX-6100 X6 processor, 16GB DDR3 Non-ECC SDRAM,
and Windows 7 64 bit operating system.

We run our experiments under different levels of workload,
α, defined as the percentage of the average VLink demand to
the average SLink capacity. To observe the impact of different
workloads, α is varied from 10% to 60%. Furthermore, since
our focus is to mitigate SLink failures, we measure SiMPLE’s
ability to survive different failure levels, expressed as γ – the
ratio of the failure rate to the VN arrival rate. In large scale
experiments, we stress the SN with a lot of failures, even at a
rate higher than the VN arrival rate. For this reason, γ is varied
from 1 to 6. In addition, the mean time to repair (MTTR) is
significantly higher than the mean VN lifetime (Table II) to
magnify the impact of failures.

B. Baseline Algorithms

We compare SiMPLE to two proactive approaches, Full
Backup Scheme (FBS) and Shared Backup Scheme (SBS).

210-ary Fat tree topology.
320-ary Fat tree topology.
4Synthetic topology.
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1) FBS: In FBS, the full demand of each VLink is mapped
to two disjoint substrate paths, which are computed using
Dijkstra’s weighted shortest path algorithm. The shorter of
these two paths act as primary, whereas the other path is
reserved as backup.

2) SBS: The primary and backup path allocations in
SBS [16] are similar to that in FBS. However, in contrast to
FBS, multiple VLinks can share the same resources for their
backup flows. When a failure occurs, the affected VLinks try
to recover their full demand from the backup path. When mul-
tiple VLinks try to use the same backup link simultaneously,
fair sharing policy is adopted.

C. Terminology

We use the following terms to analyze failure impacts.
1) Path Failure: A path failure event is defined as the fail-

ure of one (or, more) SLink(s) belonging to a specific path. At
this state, the corresponding path cannot carry the flow from
the source to the destination SNode.

2) Affected VLink: A VLink is affected by a SLink failure
if and only if one (or, more) of its substrate paths fail(s). An
affected VLink may still retain its full demand depending on
the severity of failure. For example, both FBS and SiMPLE
retain their full demand in presence of a single SLink failure.

3) Failed VLink and Failed VN: A VLink is failed if and
only if all of its mapped substrate paths fail (i.e., when it meets
0% of its demand). A VN fails if and only if one (or, more)
of its VLinks fail(s).

D. Performance Metrics

Unless otherwise mentioned, the symbols used in
this Section have their usual meanings as described in
Section III-B.

1) Profit, 	: We first define the revenue, 
(GV ), for a VN
as 
(GV ) = c1

∑
ev∈EV b(ev)+ c2

∑
nv∈NV c(nv). Here, c1 and

c2 are application-specific constants that represent the relative
importance of bandwidth and CPU. The profit of GV is defined
by 	(GV) = T(GV )× (
(GV)− Cost(GV )

)
. Here, T(GV ) is

the lifetime of GV , and Cost(GV ) represents the total substrate
cost for GV , as represented in (6). The overall profit is given
by, 	 =∑∀GV 	(GV).

2) Acceptance Ratio, AR: It is the ratio of the number
of accepted VNs in the system (|ZA|) to the total number of
arrived VN requests (|ZT|). Formally, AR = |ZA|/|ZT|, where
Z

A ⊆ Z
T.

3) Average Fraction of Backup Bandwidth, B̂: For ev, B
ev

is the ratio of its backup bandwidth allocation to its total band-
width allocation, i.e., B

ev = |pev

b |/
∑

pev
i ∈Pev |pev

i |. Here, |pev

b | is
the bandwidth consumption for backup path pev

b . The average
fraction of backup bandwidth is, B̂ = Avg

∀ev∈EV (Bev
).

4) Average Splitting Overhead, Ŝ: The average splitting
overhead is given by the average of the total split, join, and
switch cost for all VLinks, i.e., Ŝ = Avg

ev∈EV (Ï(ev, Pev
, kev

) +∑
pev

i ∈Pev S̈(ev, pev

i )).

5) Average Fraction of Survived Bandwidth, F̂: Let ẼV ⊆
EV denote the set of affected VLinks. For an affected VLink

ẽv ∈ ẼV , F
ẽv

represents the ratio of the available bandwidth to
its total demand. The average fraction of survived bandwidth
(F̂) of the affected VLinks is given by, F̂ = Avg

∀ẽv∈ẼV

(
F

ẽv)
.

6) Probability of Simultaneous VN Failures, Prob(ρi): Let
ρi denote the event of i simultaneous VN failures, and τi be
the duration of time for ρi. Prob(ρi) is denoted as the ratio of
its lifetime τi to total simulation time τ , i.e., Prob(ρi) = τi/τ .

7) Nine Availability: The availability of a system is often
represented by the number of nines in its uptime probability;
e.g., 1 or 2 nines imply that the probability of the system
being available is 0.9 or 0.99, respectively [27]. We compute
the nine availability of a failed VN, GV , as (− log10 ω(GV )),
where ω(GV ) is the ratio of time GV is in failed state to its
lifetime.

E. Performance Evaluation Results

We evaluate the VN embedding performances in all four
schemes for Fat tree and Synthetic topologies.

1) Profit: In terms of Profit, SiMPLE-PR outperforms both
FBS and SBS approaches, and is very close to the optimal
result (SiMPLE-OP). Fig. 4a and Fig. 5a show the prof-
its for different load (or, α) in the Fat tree and Synthetic
topologies, respectively. As shown in these two figures, all
approaches achieve similar profits for small load (α ≤ 20).
However, at increased loads, the profits decrease for FBS and
SBS. SiMPLE-PR achieves approximately 100 − 300% and
50− 120% more profit than FBS and SBS, respectively.

2) Acceptance Ratio: Results for the AR at different α

are given in Fig. 4b and Fig. 5b, respectively. According
to these results, SiMPLE-PR performs as good as FBS and
SBS for small loads (α ≤ 20). However, at larger loads, AR

of SiMPLE-PR exceeds the baseline approaches by roughly
20–100%, and lies very close to SiMPLE-OP.

3) Overhead: The overhead of the considered approaches
are evaluated from two perspectives – backup bandwidth allo-
cation and splitting overhead. SiMPLE-PR uses a very small
fraction of the total allocated bandwidth resource as backup.
Fig. 4c and Fig. 5c show B̂ with 95% confidence intervals for
different α for Fat tree and Synthetic topologies, respectively.
These two figures show that FBS uses more than half of its
resources for backup, regardless of α and substrate topology.
On the contrary, B̂ is relatively smaller for both SiMPLE-PR
and SiMPLE-OP. The value B̂ for SBS is always small for
all α, since SBS allows sharing the same backup resource
between multiple VLinks, and thus does not guarantee surviv-
ability unlike SiMPLE. However, for heavier loads, SiMPLE
uses approximately 40−50% less backup bandwidth than FBS,
and performs very close to SBS. The splitting overhead, Ŝ,
of these approaches are shown with 95% confidence inter-
vals in Fig. 4d and Fig. 5d. According to these results, Ŝ in
SiMPLE-PR or SiMPLE-OP is roughly two to three times
higher than that in FBS or SBS. But this increase in splitting
overhead comes with the benefits of survivability guarantee
and reduced backup overhead. Moreover, with the built-in path
splitting capability, modern switches are expected to mitigate
this impact.
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Fig. 4. Performance Analysis for Fat tree topology.

Fig. 5. Performance Analysis for Synthetic topology.

TABLE III
AVERAGE EXECUTION TIME (SEC)

4) Execution Time: The average execution time for embed-
ding a VN request in SiMPLE-OP and SiMPLE-PR are
presented in Table III, which shows that SiMPLE-PR is
50 − 60 times faster than SiMPLE-OP. A significant por-
tion of the execution time of SiMPLE-OP is consumed by
GLPK in finding an optimal solution. However, the perfor-
mance of SiMPLE-PR (Fig. 4 and Fig. 5) lies very close
to SiMPLE-OP in all cases. For large scale instances, GLPK
exceeds memory limits and cannot find a solution. Please note
that these times are highly dependent on simulation environ-
ment, and different results could be obtained on a different
machine.

5) Discussion:
a) Profit vs. AR: From Figures 4a and 5a, we observe

that both FBS and SBS suffer from decreasing profit with
increasing α. This reduction in profit is due to the lower AR,
as presented in Figures 4b and 5b. To embed the VLinks,
SiMPLE relies on path splitting. Since SiMPLE spreads the
VLink demand across multiple paths, it utilizes the substrate
resources more efficiently, and achieves a higher AR. On the
contrary, FBS and SBS do not rely on path splitting, and fail
to achieve satisfactory AR due to resource fragmentation. SBS
utilizes resources more efficiently than FBS because of backup
resource sharing, and achieves slightly better performance.

b) Profit vs. overhead: In addition to providing a higher
profit as shown in Figures 4a and 5a, SiMPLE requires a lower
fraction of backup bandwidth. This behavior is depicted in
Figures 4c and 5c. SBS has the lowest backup bandwidth
over all workloads α, which is mostly due to the backup

resources fair sharing policy. On the contrary, because it is
often not cost effective to split smaller demands, SiMPLE has
a slightly higher backup bandwidth requirement than SBS at
lower α. However, with increasing α, the number of splits
at each VLink increases. Therefore, in SiMPLE, B̂ decreases,
and becomes similar to SBS. At the same time, path splitting
allows SiMPLE to achieve a higher profit than FBS and SBS.
However, path splitting brings additional overhead (presented
in Fig. 4d and Fig. 5d) to SiMPLE. Nonetheless, this overhead
is compensated by larger profit, better acceptance ratio, and
lower backup bandwidth requirement.

F. Survivability Evaluation Results for SiMPLE-PR

We conducted experiments to evaluate survivability of
SiMPLE-PR, FBS, and SBS in the event of failures for Fat
tree and Synthetic topologies.

1) Impact of Failures: The impact of failures is evalu-
ated from two perspectives. First, we present the Cumulative
Distribution Function (CDF) for Prob(ρi) – the probability of i
simultaneous VN failures, for i = 0, 1, 2, . . . , imax, where imax

denotes the maximum number of simultaneous VN failures.
For γ = 5, the CDF for Fat tree and Synthetic topologies
are shown in Fig. 6a and Fig. 7a, respectively. Second, we
measure the fraction of failed VNs to total accepted VNs in
SN. For different γ , these results are shown in Fig. 6b and
Fig. 7b for Fat tree and Synthetic topologies, respectively.
These figures show that, both simultaneous and total VN fail-
ures are less likely to occur in SiMPLE-PR. In contrast, these
quantities are higher in FBS, and the highest in SBS. For
larger γ , the number of failed VNs is approximately 50−100%
higher in FBS and SBS than that in SiMPLE-PR. These
results reveal that SiMPLE-PR provides the best resilience
to failures, whereas SBS performs the worst among these
schemes.
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Fig. 6. Survivability Analysis for Fat tree topology.

Fig. 7. Survivability Analysis for Synthetic topology.

2) Availability: The CDF of nine availability of the failed
VNs for γ = 5 are depicted in Figures 6c and 7c, for Fat tree
and Synthetic topologies, respectively. We see that a small
fraction of VNs have low nine availability in SiMPLE-PR.
In contrast, this fraction is much higher in case of FBS and
SBS. Therefore, compared to these two schemes, SiMPLE-PR
provides high availability to a higher number of embedded
VNs. For example, the number of VNs with only 68% or
less availability (0.5 nines) in FBS and SBS are roughly twice
(Synthetic topology) or four times (Fat tree topology) than that
in SiMPLE-PR.

3) Failure Tolerance: To evaluate the failure tolerance of
each of the considered approaches, we measure the aver-
age fraction of survived bandwidth for affected VLinks, F̂.
Fig. 6(d) and Fig. 7(d) present the changes in F̂ for different
values of γ for Fat tree and Synthetic topologies, respectively.
In these figures, we see that the F̂ obtained in SiMPLE-PR is
within 5− 10% of that in FBS for all values of γ . However,
F̂ provided by SBS is lower than the other two schemes.
For larger values of γ , F̂ obtained in SBS is approximately
50− 70% less than that in SiMPLE-PR, which demonstrates
a poor performance of SBS in presence of frequent failures.

4) Discussion:
a) Impact of failures vs. availability: We see that

SiMPLE outperforms FBS and SBS in both minimizing failure
impact (Fig. 6a, Fig. 6b, Fig. 7a, Fig. 7b) and achieving bet-
ter availability (Fig. 6c, Fig. 7c). The superiority of SiMPLE
is achieved due to embedding VLinks over multiple disjoint
paths. Since SiMPLE associates more SLinks to each VLink
ev, the minimum number of SLink failures required for ev

to fail also increases. In contrast, the number of associated
SLinks to ev in FBS and SBS are lower, because they do
not embed VLinks into multiple paths. Hence, SLink failures
are more likely to cause VLink (or, VN) failures in these
two approaches. For SBS, the SLinks in the backup path
of a VLink ev

1 may already be used by another VLink ev
2

suffering from SLink failure, which makes ev
1 more vulner-

able. For these reasons, SBS suffers from failures more than
FBS, while SiMPLE outperforms both of these approaches.
Again, the number of associated SLinks to each VLink ev is
higher in SiMPLE than that in FBS and SBS. Hence, repair-
ing an SLink is more likely to restore one of the failed paths
associated to ev in SiMPLE. This will make ev operational by
salvaging a fraction of its demand through the restored path.
In contrast, the probability of restoring one of the failed paths
in FBS or SBS is lower than SiMPLE. Therefore, SiMPLE
achieves higher availability than these two strategies.

b) Impact of failures vs. fault tolerance: The correla-
tion between low impact of failures (Fig. 6a, Fig. 6b, Fig. 7a,
Fig. 7b) and high fault tolerance (Fig. 6d, Fig. 7d) in SiMPLE
is also part of its main concept, i.e., path splitting with minimal
backup. In previous paragraph, we have seen how path split-
ting increases survivability by associating multiple SLinks to
each VLink. In addition, we notice that the number of opera-
tional SLinks in an affected VLink ev is also high. These fully
operational SLinks facilitate ev to retain its full demand (for
a single SLink failure), or a high fraction of it (for multiple
SLink failures). In SiMPLE, F̂ is very close to that of FBS.
However, FBS needs dedicated backup path with full demand
unlike SiMPLE. The backup path sharing in SBS makes it vul-
nerable to multiple and frequent failures. Therefore, for the
affected VLinks, SiMPLE performs identically to FBS, and
outperforms SBS.

G. Survivability Evaluation Results for SiMPLE-RE

In this section, we present the simulation results on sur-
vivability experiments for SiMPLE-RE. For Fat tree and
Synthetic topologies, these results are shown in Fig. 8
and Fig. 9, respectively.

1) Impact of Failures: The impact of failures are inves-
tigated from two perspectives. First, we measure the frac-
tion of affected VNs to total VNs in the network, for
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Fig. 8. Recovery Analysis for Fat tree topology.

Fig. 9. Recovery Analysis for Synthetic topology.

different values of γ . These fractions for SiMPLE-PR and
SiMPLE-RE are illustrated in Fig. 8a (for Fat tree topology)
and in Fig. 9a (for Synthetic topology). These graphs demon-
strate that, when SiMPLE-RE is adopted, the total number of
affected VNs are always decreased by a significant amount.
For smaller values of γ , SiMPLE-RE successfully recovers all
affected VNs in the substrate. The decrease in the affected VNs
is less when γ is large. However, SiMPLE-RE still decreases
the number of affected VNs by a factor of 85% (for Fat tree
topology) or 90% (for Synthetic topology).

Second, we measure the fraction of failed VNs to total VNs
in the substrate. For Fat tree and synthetic topologies, these
numbers are shown in Fig. 8b and in Fig. 9b, respectively.
These figures state that, for smaller values of γ , the number
of failed VNs are decreased completely, for both Fat tree and
Synthetic topologies. For larger values of γ , this decreasing
factor is still close to 90%.

2) Profit: The profit for both SiMPLE-PR and
SiMPLE-RE are shown for Fat tree and Synthetic topologies,
in Fig. 8c and in Fig. 9c, respectively. From these two
figures, we see that SiMPLE-RE provides a higher profit
than SiMPLE-PR, for all values of γ . Especially, for higher
values of γ , this increase in profit can reach as much as 35%.

3) Discussion: In comparison with SiMPLE-PR,
SiMPLE-RE reduces both the number of affected and failed
VNs, as well as increases the profit. For small values of γ , the
impact of failures is relatively low, and SiMPLE-RE recovers
each failure successfully. For this reason, it decreases the
number of affected VNs and failed VNs by 100%. For higher
values of γ , the impact of failures are also higher, and,

Fig. 10. Impact of different number of splits for one VLink.

as discussed in Section III-A2, there can be cases when
SiMPLE-RE fails to recover. For this reason, this affected or
failed VN decreasing factor is not 100% in these cases.

Since SiMPLE-RE recovers the affected and failed VNs
reactively, it also increases the profit 	 . This behavior is more
prominent for large values of γ . For small γ , the number of
affected or failed VNs are also small in SiMPLE-PR, and
their recoveries do not increase 	 more than 15%. However,
for large γ , the number of affected or failed VNs are also high.
In these cases, even though SiMPLE-RE cannot recover all
the affected or failed VNs, it recovers most of them. As a
result, the increase in 	 is also larger.

H. Determining the Maximum Number of Splits

To determine the upper bound on the number of
splits for a VLink, we ran an experiment on a 12-ary
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Fat tree [24] topology. For this experiment, we embedded
only one VN with only one VLink. The number of paths (i.e.,
splits, k) allocated per VLink was varied from 2 to 10, and
the embedding cost (given in (6)) for each set of paths was
measured. The experiment was run for different workloads
α = 20, 40, and 60. The results from this experiment are
shown in Fig. 10.

Fig. 10 shows that, for all α, the embedding cost increases
with an increasing number of splits. When the number of paths
increases beyond 5, this behavior becomes more prominent.
For this reason, we restricted the value of k between 2 and 5
for the experiments in Section V.

VI. RELATED WORKS

A. VN Embedding

The VN Embedding literature can be classified based on
the coordination between its two sub-problems – node embed-
ding and link embedding [22]. The first category, i.e., the
uncoordinated VNE, does not take into account the possi-
bility of coordination between these two sub-problems. One
possible example of this category is presented in [18], where
the link embedding is performed after a greedy node embed-
ding. In the link embedding step, the multi-commodity flow
problem formulation is used to find a set of paths between
the substrate hosts for each virtual link. However, this lack
of coordination might result into embedding adjacent virtual
nodes towards distant physical nodes, which increases resource
consumption. The second category, i.e., the one-stage coordi-
nated VNE [28], embeds the virtual links at the same time as
the virtual nodes. In this category, at first, a greedy algorithm
(e.g., PageRank [29]) is used to rank the virtual nodes. Then, a
virtual node pair and their intermediate virtual link are embed-
ded. Afterwards, the remaining virtual nodes and virtual links
connecting them are embedded one by one. The third cate-
gory, i.e., the two-stage coordinated VNE, embeds the virtual
network into the substrate network into two distinct steps [30].
The first step is to represent a set of preferred substrate nodes
for each virtual node as a meta-node, and perform a relaxed
Mixed Integer Programming (MIP) to calculate the physical
hosts of the virtual nodes in the corresponding meta-nodes.
The second step is to find the physical paths corresponding to
the virtual links, and this is solved by the multi-commodity
flow problem formulation. In the one-stage and two-stage
coordinated VNE approaches, the coordination between node
mapping and link mapping stages are strong, and the sub-
strate nodes chosen to map the virtual nodes are likely suited
to provide virtual link mappings with low embedding cost.

B. Survivability

Survivable Virtual Network Embedding (SVNE) deals with
keeping the VNs intact, even after substrate failures (e.g.,
SNodes or SLinks). SNode failures are very rare and results
into multiple SLink failures [14], [15], [19]. Hence, majority
of the SVNE literature focuses on SLink failures.

In SVNE literature, protection (also known as, proactive
allocation) refers to allocating redundant resources per each
VLink while embedding, i.e., before any SLink failure occurs.

A number of research works contribute to the VLink protec-
tion problem. Several research works, including [8] and [31],
formulated two separate LP models for VLink embedding,
which allocate full demand of each VLink along a pri-
mary path and a disjoint backup path. These full backup
schemes result into poor bandwidth utilization. Shared backup
schemes, on the other hand, allow multiple VLinks to share
backup resources allocated to each end-to-end path [26] or
SLink [16]. However, primary paths are dedicated to each VN
and cannot be shared with other VNs. Since the same backup
resources are shared among multiple VLinks, these approaches
do not offer bandwidth guarantee, even in presence of a single
SLink failure. The authors in [16] propose two shared backup
schemes to protect against any potential single SLink fail-
ure: Shared On-Demand approach and Shared Pre-Allocation
approach. In the first approach, bandwidth resources are allo-
cated to the primary flows and backup flows upon the arrival
of each VN request. Backup resources can be reused by other
VNs to make room for accepting more incoming VN requests.
However, primary flows are dedicated to each VLink and are
not allowed to be shared with other VLinks. In the second
approach, backup bandwidth for each SLink is pre-allocated
during the initial phase, i.e., before any VN request arrives.
Since the bandwidth pre-allocation only needs to be done
once and not for every VN request, it requires less processing
during the VN embedding phase. The disadvantage of these
approaches is that they can not guarantee recovery of full band-
width even in the case of single SLink failure. For example, if
multiple VLinks are embedded on the failed SLink, bandwidth
recovery of these VLinks can be compromised due to sharing.

The recovery (or, reactive) techniques provide VN sur-
vivability without allocating any backup bandwidth at the
beginning. In practice, they react after an SLink fails, and
start the path restoration mechanism. Lu et al. [32] proposes
such a reactive mechanism where either a substitute path is
searched, or the corresponding VN is remapped after a link
failure. In a highly saturated SN, there may not be enough
resources left for finding the substitute path or remapping the
VN. We discuss two most prominent recovery approaches in
SVNE. Rahman et al. [8], [33] proposes a three-phase hybrid
mechanism where a set of possible backup detours for each
SLink is computed before any VN request arrives. Then, node
embedding is done for the arriving request with an existing
embedding algorithm [5], [7], followed by a multi-commodity
based link embedding. Finally, in the event of a SLink fail-
ure, a reactive online optimization mechanism reroutes the
affected flows along candidate backup detours selected in the
first phase. This approach may demand a long convergence
time, leaving VNs unavailable during such periods. This may
cause data loss. Furthermore, since the substrate resources are
not fragmented to serve multiple virtual requests, all proac-
tive and reactive approaches may suffer from improper load
balancing and link underutilization.

Network survivability in Optical and Multi-Protocol Label
Switched (MPLS) networks is usually considered during
the network design [34]. The solutions in these domains,
e.g., [11] and [12] assume that traffic demands are known in
advance (i.e., offline). In contrast, SVNE is online; it needs
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to provide survivability for unpredictable VN request arrivals
and demand patterns. Furthermore, SVNE solutions have to
ensure the intactness of all VLinks in presence of failures. This
restriction is not present in Optical/MPLS networks, where the
goal is to ensure connectivity in the network. Hence, these
solutions are not suitable for the NV environment.

Due to the importance of providing high service availabil-
ity in Cloud environments, recently there is a trend towards
designing survivable resource allocation schemes for band-
width constrained data centers [35]–[38]. Xu et al. [39]
proposes a resource allocation scheme for provisioning vir-
tual data centers with backup virtual machines and links.
However, this work do not consider the survivability of physi-
cal machines and links. Bodík et al. [10] proposes an optimiza-
tion framework for improving survivability while reducing the
total bandwidth consumption. However, this approach does
not consider the heterogeneous failure rates of the underlying
physical equipment, and mitigates the bandwidth bottleneck
only in the core of the data center. Zhang et al. [38] proposes a
framework for reliable virtual data center embedding in clouds
by considering heterogeneous failure rates. SiMPLE differs
from these works in its objective of simultaneously opti-
mizing VN survivability, bandwidth usage, and path splitting
overhead.

Path splitting, such as Equal-cost Multipath
Routing (ECMP) [40] or Multipath TCP (MPTCP) [41], is a
routing strategy to allow one data stream to be split across
multiple paths. Path splitting enables an increased resource
utilization, failure-tolerance, and better QoS. Multi-path
routing, such as flowlet-based traffic splitting [42], may have
an impact on applications like large data transfers and multi-
media streaming. Examples of such impacts include delivery
of out of order packets within a flow, and handle the variable
amount of delay observed by the packets in different paths.
A number of works in both VNE and SVNE literatures use
path splitting. The authors in [18] introduced path splitting
in VNE to embed a VLink over multiple substrate paths. For
this purpose, they use multi commodity flow (MCF) based
link embedding. In an MCF based solution, any intermediate
SNode between the end hosts can split the flow. However,
in SiMPLE, we assume that only the source and destination
SNodes can split the flow, hence MCF cannot be used in this
context. Oliviera et al. [17], [43], [44] proposed embedding
strategies that provide opportunistic recovery for each VLink
via path splitting. However, these approaches do not guarantee
VN survivability in presence of a single SLink failure.

VII. CONCLUSION

In this paper, we have presented SiMPLE which exploits
the substrate network’s path splitting capability for surviv-
able embedding of virtual network requests. SiMPLE’s design
goal is to reconcile the conflicting objectives of achieving
maximal survivability and minimizing both redundancy and
overhead. Compared to existing approaches, SiMPLE reserves
less backup bandwidth, yet guarantees virtual link survivabil-
ity in presence of a single substrate link failure. In case of
multiple link failures, the survived bandwidth of the affected

virtual link(s) is better than that of FBS and SBS. Simulation
results demonstrated that SiMPLE-PR reduces the failure
percentage by at least 50% over those two schemes, and
provides better availability of VNs. In addition, backup band-
width overhead in SiMPLE-PR is 40− 50% less than that of
FBS, and lies very close to SBS, as well as to SiMPLE-OP.
The recovery approach, SiMPLE-RE, improves profit gener-
ated by the SiMPLE-PR by approximately 40%, as well as
decreases the number of failed VNs by approximately 90%.
Finally, the path splitting overhead incurred by SiMPLE is
compensated by guaranteed survivability, increased profit, bet-
ter acceptance ratio and lower backup bandwidth requirement.

As a future extension of this work, we intend to evaluate the
performance of SiMPLE through a prototype implementation
in an SDN environment [45] for supporting path splitting in the
substrate, to be deployed on an SDN testbed, like Distributed
OpenFlow Testbed (DOT) [46], [47], or Mininet [48]. We
also would like to extend SiMPLE’s link embedding concept
towards a coordinated node and link mapping strategy. Finally,
it would be interesting to extend this work to multi-layer NV
environment [49] that could raise further challenges because
of the need for cross layer optimization.
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