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SUMMARY

MapReduce has become a popular model for large-scale data processing in recent years. Many works on
MapReduce scheduling (e.g., load balancing and deadline-aware scheduling) have emphasized the impor-
tance of predicting workload received by individual reducers. However, because the input characteristics
and user-specified map function of a given job are unknown to the MapReduce framework before the job
starts, accurately predicting workload of reducers can be a difficult challenge. To address this challenge,
we present ROUTE, a run-time robust reducer workload estimation technique for MapReduce. ROUTE
progressively samples the partition size of the early completed mappers, allowing ROUTE to perform esti-
mation at run time yet fulfilling the accuracy requirement specified by users. Moreover, by using robust
estimation and bootstrapping resampling techniques, ROUTE can achieve high applicability to a wide vari-
ety of applications. Through experiments using both real and synthetic data on an 11-node Hadoop cluster,
we show ROUTE can achieve high accuracy with error rate no more than 10.92% and an improvement
of 40.6% in terms of error rate while compared with the state-of-the-art solution. Besides, through simu-
lations using synthetic data, we show that ROUTE is robust to a variety of skewed distributions. Finally,
we apply ROUTE to existing load balancing and deadline-aware scheduling frameworks and show ROUTE
significantly improves the performance of these frameworks. Copyright © 2016 John Wiley & Sons, Ltd
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1. INTRODUCTION

Today, the explosion of data has generated tremendous demand for large-scale data processing.
MapReduce [1], as a big data analytic framework in cloud computing environment, has gained much
popularity. In MapReduce, a job consists of two stages of processing, map and reduce. In the map
stage, the processing of a job is divided to a number of smaller sub-problems, each of which is pro-
cessed by a map task in a distributed manner. Subsequently in the reduce stage, the output of all the
sub-problems is aggregated by a number of reduce tasks, thereby generating the final output for the
original problem. Because of its advantages in simplicity and scalability, many of the major IT com-
panies such as Facebook and Twitter have been using MapReduce to process large volumes of data on
a daily basis.

While the benefit of MapReduce is apparent, managing the performance of MapReduce jobs is
often challenging. Substantial efforts have been made towards improving the performance of MapRe-
duce such as load balancing, reducer locality-aware scheduling, and deadline-aware scheduling. For
these techniques, accurately and efficiently predicting the workload received by reducers is desirable
because: (i) In load balancing, we can easily identify the reducers with heavy workload and help them
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Figure 1. The SelectivityM for WordCount using different kinds of Wikipedia datasets1

finish faster through techniques such as early start [2], workload rebalancing [3–7], and resource allo-
cation adjustment [8,9]; (ii) In reducer locality-aware scheduling, we can execute reducers with heavy
workload on machines that can achieve better locality [10,11]; and (iii) in deadline-aware scheduling,
we can accurately predict the job running time even when data skew is present, thereby allocating
sufficient resources to meet the deadline [12,13].

However, predicting the workload of each reducer is non-trivial. That is because the workload of
each reducer is determined by the characteristics of the input datasets and the user-specified map
function, both of which can vary from job to job. Some research works [12,13] estimate workload
of reducers based on the assumptions that (i) map selectivity SelectivityM , which is defined as the
ratio between map output size and map input size, keeps invariant and (ii) the intermediate data are
evenly distributed to reducers. Under these assumptions, the workload of a reducer can be computed
as ReducuerLoad D Sizedataset � SelectivityM=NumberReducer. However, we would like to point out
that even for the same MapReduce job, SelectivityM may vary if different input datasets are processed.
Figure 1 shows the results when running WordCount with combiner using different kinds of Wikipedia
datasets. It is clear that there is a drastic difference between two datasets. In addition to this, we
would also like to indicate that load distribution in the reduce stage is not necessarily balanced. For
example, Zacheilas et al. [7] have shown that the largest workload of a reducer can be more than
five times larger than the smallest one when running a MapReduce job based on real-world data.
Therefore, if unfortunately these approaches encounter such MapReduce workloads in which non-
uniform SelectivityM and data skew are present, their effectiveness will be severely hampered.

Many other solutions for predicting the workload of reducers have been proposed in the context
of reducer load balancing [3–7]. These solutions estimate the workload of reducers through the inter-
mediate key distribution and then rebalance the workload of reducers based on the estimation results.
However, the techniques they used for estimating the workload of reducers have the following two
major limitations. First, in order to obtain the statistics of the key distribution, these solutions either
have to wait for the completion of all mappers [3–5] or add a sampling phase before the job execution
[6]. Both of these techniques can increase the job running time. Second, monitoring statistics at the
granularity of key-value pairs are costly because the number of the key-value pairs can be in the order
of the size of input data.

In our prior work, DREAMS [8], we proposed a run-time reducer workload estimation approach
using linear regression. DREAMS leverages the statistics of early completed mappers to predict the
workload of each reducer before the completion of all mappers. However, DREAMS is based on an
assumption that the size of the partitions that have been generated for a reducer is linearly proportional
to the number of completed mappers, which limits its generality and applicability.

Motivated by the limitations of existing approaches, in this paper, we present ROUTE, a Run-time
rObust redUcer workload esTimation technique for MapReducE. The contributions of this paper are
as follows:

� We present a technique for predicting the workload of each reducer at run time without waiting
for the completion of all mappers or adding a sampling phase before actual jobs run. In particular,
we can achieve high accuracy with the completion of only 5% of all mappers.

Copyright © 2016 John Wiley & Sons, Ltd Int. J. Network Mgmt (2016)
DOI: 10.1002/nem



RUN-TIME ROBUST REDUCER WORKLOAD ESTIMATION FOR MAPREDUCE

� We introduce a progressive sampler that collects minimum number of samples to satisfy the accu-
racy requirement specified by users. This not only reduces the time overhead of waiting for more
samples but also eliminates users’ burden of specifying the number of samples needed.
� We use robust estimation and bootstrapping resampling techniques to predict workload of reduc-

ers, allowing ROUTE requires no a priori knowledge of the map function and input datasets and
can apply to a variety of MapReduce jobs.

Experiments using both real and synthetic data have been conducted to evaluate ROUTE. The
results show that ROUTE achieves high accuracy with error rate no more than 10.92% on an 11-
node real cluster and a 40.6% improvement in terms of error rate while compared with the existing
solution. Besides, in terms of robustness of ROUTE, we show that ROUTE is robust to skewed dis-
tributions such as Weibull, log-normal, and exponential distributions. Further, we apply ROUTE as
an extension technique in existing load balancing solution [8] and deadline-aware scheduling solu-
tion [12]. The results show that ROUTE achieves a significant job completion time reduction in load
balancing and enables the scheduler to meet the deadline effectively for various input datasets in
deadline-aware scheduling.

The rest of this paper is organized as follows. Section 2 introduces the background and motivations.
The design of ROUTE is described in Section 3. Section 4 details the implementation of ROUTE over
Hadoop YARN. Sections 5 and 6 present the results of experimental evaluation. Finally, we review the
related work in Section 7 and draw our conclusion in Section 8.

2. BACKGROUND

MapReduce [1] is a parallel computing model for large-scale data processing. As shown in Figure 2, the
input of a MapReduce job is stored as identical data blocks in the distributed file system. Each mapper
processes one block and produces a sequence of intermediate key-value pairs. These key-value pairs
are divided into multiple partitions and written to local disk. For example, the output ofM1 is divided
into two partitions, P1;1 and P1;2, which are assigned to R1 and R2, respectively. Subsequently, each
reducer fetches its corresponding partitions, preforms a reduce function on received data, and stores
the final result in the distributed file system.

Apache Hadoop MapReduce, one of the most commonly used MapReduce implementations, uses
a hash function Hash(intermediate key) mod NumberReducer) for partitioning. Because all mappers
use the same partitioner, all the intermediate key value pairs with the same key are stored in the same
partition. The collection of these pairs is called a cluster. Consequently, the workload of each reducer
consists of a number of clusters that have the same hash value.

However, accurately predicting the workload of each reducer is challenging. That is because the
workload of reducers is determined by the characteristics of the input datasets and the user specified
map function, both of which can vary from job to job. Even for jobs that are routinely executed, dif-
ferent workload of reducers may be produced for different datasets. Figure 1 shows one such example.

Figure 2. MapReduce programming model
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While processing different kinds of Wikipedia datasets using WordCount, SeletivityM varies. And
therefore, those approaches [12,13], which predicts the workload of reducers based on SeletivityM ,
are not effective.

Another challenge that arises in practice is that reducers can start before the completion of all map-
pers. By default, a reducer can start as soon as 5% of mappers have finished. This allows the reduce
stage to overlap the map stage and thereby reducing the job completion time.

While this overlap operation can be beneficial, it also increases the difficulty for estimating the
workload of reducers before they can be scheduled. Most of existing solutions [3–6] build the load
model of reducers based on the data statistics at the granularity of key-value pairs (e.g., tuple count and
number of clusters), and consequently, they have to wait for the completion of all mappers or gather
samples before job executions. However, both waiting for the completion of all the mappers and adding
the sampling phase before actual job runs are time-consuming. As reported in [14], executing reducers
after the completion of all the mappers can severely prolong the job completion time. Therefore, in
this work, we seek an alternative solution, which neither needs job profile nor is based on the statistics
of key-value pairs. We estimate the workload of reducers based on the statistics at the granularity of
partition level and predict the workload for each reducer at run time without causing a synchronization
barrier and thereby providing accurate and a priori information for making better scheduling decisions.

3. ROUTE DESIGN

In this section, we describe in detail the design of our reducer workload estimation technique, ROUTE.
First, we provide an overview of ROUTE in Section 3.1 and then elaborate main components in
subsequence sections.

3.1. Overview

Figure 3 illustrates the architecture of ROUTE. It consists of three main stages: sampling, reducer
workload estimation, and accuracy verification. During the sampling stage, mappers are running while
reducers are waiting to be scheduled. ROUTE collects sample statistics of partitions from running
mappers. Based on the statistics gathered in the sampling stage, the reducer workload estimation is
performed, which estimates the workload of each reducer using statistic inference techniques. Because
the estimation is inferred from the random sample, it may contain estimation errors (i.e., standard
error, bias, and confidence interval). In ROUTE, we allow users to specify a tolerable error level and
let ROUTE verify whether the obtained accuracy is satisfied with the user requirement. If the obtained

Figure 3. Architecture of ROUTE
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accuracy is unacceptable, the aforementioned process is repeated by increasing the sample size. When
a desired accuracy is reached, the final result is returned, thereby providing information for making
better scheduling decisions.

3.2. Reducer workload estimation

As mentioned previously, every mapper produces a partition for each reducer, and the collection of
these partitions forms the workload of the reducer. We denote the size of a partition produced by
mapper i for reducer j as Pi;j . In our model, we define N as the number of mappers and M as the
number of reducers. Then, we can model the workload of a reducer as the sum of Pi;j generated by
N mappers,

8j; RLj D

NX
iD1

Pi;j (1)

where RLj is the workload of reducer j 2 Œ1;M �. Because the jobs inputs are divided into many
identical blocks and each mapper processes only a single block, Pi;j can be considered as an inde-
pendent identically distributed random variable. And for each reducer j , the set of partitions Tj D®
P1;j ; P2;j ; : : : ; PN;j

¯
can be viewed as a finite population of size N . Therefore, the population total

of Tj is exactly the workload of reducer j .
Because the map phase can be overlapped with the reduce phase, calculating Tj by gathering allPi;j

is not feasible. We consider the sizes of partitions that have been generated by the early completed map-
pers as a random sample1 from the population Tj , which is denoted by xj D

®
P1;j ; P2;j ; : : : ; Pn;j

¯
,

where n is the number of completed mappers. Therefore, for a given job, our goal is to estimate the
population total �j for all j 2 Œ1;M �, by random sample xj .

Because the distribution of the population Tj varies from job to job and from dataset to dataset, accu-
rate estimation of the population total �j is challenging. Besides, some extreme cases (i.e., extremely
large/small partitions), which are called outliers, will even complicate this problem. One common way
to estimate population total is to multiply sample mean by population size. However, sample mean is
the maximum likelihood estimator of population mean for normal distributed data, and the distribution
of the population Tj is unknown before jobs run. Trimmed mean is a widely used robust statistic that
removes the largest and smallest ˇ percent of the values and then calculates the mean of the remain-
ing set. By doing this, it not only can reduce the impact of outliers but also will still give a reasonable
estimate of central location [15]. Baltagi [16] has also shown that trimmed mean has higher efficiency
for mixed distributions. Therefore, we use trimmed mean multiplied by the population size as the
estimator of �j , which is defined as

O�j D N � xj.ˇ/ (2)

where xj.ˇ/ is the ˇ percent trimmed mean of xj :

xj.ˇ/D
1

n � 2d

n�dX
tDdC1

xj.t/; with d D

�
ˇ � n

2

�

and xj.t/ is the t th order statistic when the observations are arranged in increasing order. Prescott et
al. [17] have proposed a solution that adaptively determines the value of ˇ according to underlying
distributions, which is out of the scope of this paper. In this paper, we use ˇ D 5.

3.3. Estimating accuracy

Estimating the accuracy of an estimator plays an essential role in statistical analysis. There are several
measures that are widely used in practice such as bias, standard error, and confidence interval, which

1We randomly shuffle the submission order of mappers; therefore, the order of task completions can be approximately
considered as random.
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can determine the quality of the estimator. In ROUTE, we use confidence interval, which is a range
of values that does contain the unknown population parameter with high confidence. Note that our
approach is independent of the accuracy measure and is applicable to other measures. In the following
sections, we present the confidence intervals for our reducer workload estimation.

3.3.1. Analytical confidence interval for reducer workload estimation
Observe that the size of sample xj depends on the number of mappers in the MapReduce job, which
tends to be large in practice. For instance, Kavulya et al. [18] reported that the average number of map-
pers is 154, according to a 10-month trace data from a Yahoo! production Hadoop cluster. Therefore,
we leverage the analytical formula based on large sample theory (e.g., the common value is greater
than 30) to derive the confidence interval. Tukey and Mclaughlin [19] suggest that the 1�˛ confidence
interval for the ˇ trimmed mean x.ˇ/ with large sample size can be defined as

x.ˇ/ ˙ t1�˛2 ; n�2d�1 Ose
�
x.ˇ/

�
(3)

where t1�˛2 ; n�2d�1 is the 100
�
1 � ˛

2

�
th percentile of the Student’s t-distribution with n � 2d � 1

degrees of freedom. And the standard deviation of ˇ trimmed mean Ose
�
x.ˇ/

�
is derived based on the

Winsorized sum of squared deviation Os2w [19],

x Ose
�
.ˇ/

�
D

Oswp
.n � 2d/.n � 2d � 1/

(4)

Accordingly, we can construct the 100.1 � ˛/ confidence interval for O�j by

N � xj.ˇ/ ˙N � t1�˛2 ; n�2d�1 Ose
�
xj.ˇ/

�
; j 2 Œ1;M � (5)

Here, we use ˛ D 0:05 in this paper. However, assuming all of the MapReduce jobs have a large
number of mappers is problematic. We believe there are also many jobs that only have a small number
of mappers (e.g., less than 30 mappers). For these small jobs, the use of the aforementioned analytical
confidence interval based on large sample size is not justified. In the next section, we will provide an
alternative approach to construct the confidence interval.

3.3.2. Bootstrap confidence interval for reducer workload estimation
The bootstrap method, first proposed by Efron in 1979 [20], is a data-based simulation technique
for statistical inference. This approach does not require theoretical formulas to produce the estima-
tion. Through repeatedly computation of the estimators (e.g., Nx) on a large number of resampled data,
bootstrap provides accurate estimation under violations of regularity conditions.

The authors of [21] have shown better accuracy of the bootstrap approximation over the approxima-
tion using normal distributions, and Fisher et al. [22] have shown that the bootstrap method is suitable
for small sample sizes. Therefore, using bootstrap method for estimating the workload of reducers is a
better choice while accommodating unknown distribution population with sample of small size.

Accordingly, a bootstrap samples x�j can be generated by randomly sampling n times, with replace-
ment, from the original random sample xj . Suppose we perform B repetitions of bootstrap sampling,
we can obtain the B bootstrap samples denoted as x�1j ; x

�2
j ; : : : ; x

�B
j . Let O�j D u.xj / be the estimate

of a parameter of interest �j , the bootstrap replicates O��bj D u
�

x�bj
�

with b 2 Œ1; B� can be obtained

by calculating the estimator on each bootstrap sample. The sampling distribution of O�j is then esti-
mated by its bootstrap distribution of O��bj with sufficient largeB . Hence, we can construct the bootstrap

bias-corrected percentile interval (BC ) [23] of intended coverage 1 � ˛ by

BC W
�
O�
�.˛1/
j ; O�

�.˛2/
j

�
(6)
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where,

˛1 D ˆ
�
2 � Ó0 C ´

.˛2 /
�

˛2 D ˆ
�
2 � Ó0 C ´

.1�˛2 /
�

Here, O��.˛1/ denotes the 100˛1th percentile of bootstrap distribution of O��bj ,ˆ indicates the standard

normal distribution function, and ´.
˛
2 / D ˆ�1

�
˛
2

�
. Ó0 is called bias-correction that adjusts the bias

of the original estimator and Ó0 D ˆ�1
 

#
�
O��b
j
< O�j

�
B

!
.

3.4. Progressive sampling

The relationship between sample size and model accuracy can be depicted by a learning curve [24]
shown in Figure 4. As the sample size increases, the model accuracy improves monotonically in the
early portion of the curve. After reaching a point nmin, where the model accuracy has converged,
there will be little improvement for increasing the sample size. On the other hand, the sample in our
context is a set of completed mappers. The larger the sample size, the more time it takes to wait for the
completion of mappers, which is quite expensive. Therefore, it motivates us to design a sampler that
collects the minimum number of samples, based on which the workload estimation will guarantee the
accuracy meeting with the user specified requirement.

Suppose .�L; �H / is a 100.1�˛/% confidence interval for estimator O� , where � is the parameter of
interest that needs to be estimated, and �L and �H are the lower and upper limits, respectively.

Let
ˇ̌̌
� � O�

ˇ̌̌
define the error in estimating � by O� , we can infer that this error is less than

max
°ˇ̌̌
�H � O�

ˇ̌̌
;
ˇ̌̌
�L � O�

ˇ̌̌±
with 100.1 � ˛/% confidence. This value is called margin of error.

In particular, if this confidence interval is symmetrical, the margin of error can be obtained by
�H��L
2

[25].
Observed that as the sample size increases, the accuracy is increased. Therefore, equation (7) arises

for the accuracy verification on the reducer workload estimation, and the sampler can stop when the
accuracy is retained, that is,

8j;
max

°ˇ̌̌
O�
.H/
j � O�j

ˇ̌̌
;
ˇ̌̌
O�
.L/
j � O�j

ˇ̌̌±
E. O�j /

� � (7)

where
�
O�
.H/
j ; O�

.L/
j

�
is the 100.1�˛/% confidence interval for O�j ,E. O�j / is the expectation value of O�j ,

and � is the user specified error level. Because different reducers may have different scales of workload
even in the same MapReduce job, we normalize the margin of error for each reducer by the expectation

Figure 4. Learning curve and progressive samples [24]
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of its workload estimation O�j . Then, the user specified error level � can be set as a scale-independent
value (e.g., 0.05 and 0.1). When the confidence interval width is satisfied with equation (7), it is highly
reliable that the estimation error is less than � times as its expectation value.

4. ROUTE IMPLEMENTATION

We have implemented ROUTE on both Hadoop v1 and YARN as an extended function, which provides
accurate workload estimation for reducers before making reducer scheduling decisions. Because of the
limited space, we only detail the implementation of ROUTE on YARN in this paper. It consists of the
following components shown in Figure 5:

� Partition Monitor: It monitors the statistics of partitions generated by mappers at run time and
sends them to the ApplicationMaster through heartbeat messages.
� Progressive Sampler: It is responsible for collecting the statistics and drawing the random sample

for the reducer workload estimation. Because the required sample size is not known beforehand,
the Progressive Sampler continues sampling until the required accuracy is obtained.
� Reducer Workload Estimator: It estimates the workload for each reducer using the random

sample drawn from the sampler and then requests the accuracy verificator to verify the estimating
accuracy. Once the required accuracy is reached, it notifies the sampler to stop sampling and
finalizes the reducer workload estimation.
� Accuracy Verificator: It calculates the confidence interval for the workload estimation and

then verifies whether the corresponding confidence interval width is satisfied according to user
specified error level.

Note that ROUTE leverages the task status report mechanism in Hadoop and attaches the par-
tition size statistics Pi;j to the heartbeat messages (i.e., TaskUmbilicalProtocol). Hence, collecting
the samples will not incur noticeable overhead over Hadoop. Besides, ROUTE performs the reducer
workload estimation every time the heartbeat message between ApplicationMaster and ResourceM-
anager (i.e., ApplicationMasterProtocol) is received. ROUTE is not triggered every time a mapper
completes. Therefore, while burst processing scenarios happen, ROUTE can still work normally. The

Figure 5. ROUTE implementation
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Algorithm 1 Reducer workload estimation algorithm
Input: � - User specified error level;

�max- Maximum sample size;
�init- Initial sample size.

Output: VRL - Vector of Workload estimation for each reducer j; j 2 Œ1;M �.
1: Initialize VRLŒM � D ¹0º and VerifiedŒM � D ¹0º

2: When a heartbeat from the ResourceManager is received:
3: Obtain the partition size statistics Pi;j and number of completed mappers n from the Hadoop Counters
4: if n < �init then
5: Wait for the next heartbeat from the ResourceManager
6: break
7: else if n � �max then
8: obtain a sample xj drawn from the progressive sampler for each reducers j 2 Œ1;M �

9: for each reducer j 2 Œ1;M � do
10: Calculate O�j based on xj , VRLŒj � D O�j
11: end for
12: return VRL
13: else if n � �init &n < �max then
14: obtain a sample xj drawn from the progressive sampler for each reducers j 2 Œ1;M �

15: end if
16: for each reducer j 2 Œ1;M � do
17: Calculate O�j based on xj
18: Verify whether the estimating accuracy for reducer j is satisfied with � using the accuracy verificator
19: if reducer j is verified then
20: VRLŒj � D O�j ;VerifiedŒj � D 1
21: end if
22: end for
23: if

PM
mD1 VerifiedŒm�/ < M then

24: Wait for the next heartbeat from the ResourceManager
25: else
26: return VRL
27: end if

detailed schema is shown in Algorithm 1. Specifically, upon receiving a heartbeat from the Resource-
Manager, the estimator obtains the partition size statistics and the number of completed mappers n
(lines 2–3). Only when n is greater than �init, the estimator will obtain a sample xj (lines 4–13). In
the iteration from line 14 to 18, the workload estimation is performed based on the sample xj . The
estimator returns the final estimation results when all the reducers satisfy the user specified require-
ment or when the sample size reaches a user specified maximum �max. Otherwise, it will wait for
the next map task completion event to obtain a larger sample size, thereby trying to increase the
estimating accuracy.

The computational complexity of this algorithm is O.M � .n C B//, where M is the number of
reducers, n is the sample size, and B is the number of bootstrap replicates. Specifically, the computa-
tional complexity is dominated by the iteration (line 14 to 18), where ROUTE verifies the confidence
intervals for every reducer. It takes O.M � n/ for calculating the analytical confidence intervals with
large sample size, whereasO.M �B/ is needed for calculating the bootstrap confidence intervals when
sample size is less than 30 (the common critical value in large sample theory). We found that B D 100
and 5% sample rate can already achieve high accuracy in practice (see details in Section 5.2). Thus,
the time overhead is small in all our experiments (<500 ms).

5. EVALUATION

In this section, we want to evaluate the accuracy and robustness of ROUTE. The experiments are
performed on 11 virtual machines (VMs) in the SAVI test bed [26]. Each VM has four 2 GHz cores,
8 GB RAM, and 80 GB hard disk. We deploy the Hadoop YARN with one VM as ResourceManager
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and NameNode and the remaining 10 VMs as workers. Each worker is configured with eight virtual
cores and 7 GB RAM (leaving 1 GB for other processes). The HDFS block size is set to 64 MB, and
the replication level is set to 3. The MapReduce jobs used in our evaluation are as follows:

1 Sort: This job takes input data generated by RandomWriter as input and outputs the data sorted
by the key. Each map task sorts one split of the input dataset, and then each reduce task merges
the output of the map tasks for a given partition key. The default RandomWriter uses the random
number generator that follows a uniform distribution. In order to generate skewed intermediate
key-value pair, we modify the random number generator in RandomWriter to generate random
data follow Zipf 0.5 distribution.

3 WordCount: WordCount computes the occurrence frequency of each word in the large collection
of documents. Each map task emits < word; count > pairs. The reduce task sums up the counts
for a given key, which maybe several words, from all map tasks and outputs the final counts.

4 RelativeFrequency: RelativeFrequency is introduced in [27]. Other than measuring the num-
ber of times word wi co-occurs with word wj within a specific context, this job measures the
proportion of time word wj appears in the context of wi . It is also denoted as F.wj jwi /. To
compute F.wj jwi /. RelativeFrequency counts up the number of co-occurrences of the bigram
.wi ; wj /, and then divides it by the number of occurrences of all the bigrams .wi ;�/. We use the
implementation of this job provided by Lin and Dyer [27].

5 KMeans: KMeans is a data mining algorithm that classifies input data to k clusters. We use
the implementation of this job provided by PUMA [28]. More specifically, it classifies movies
based on their ratings using Netflix movies rating data and initial centroid data. Each map task
determines which clusters the movies belong to based on the similarity computation, and then
emits < centroid_id; .similari ty_value;movie_data/ >. Each reduce task merges all the
movie data with the same centroidid , and computes the average of similarity of all the movies
in this cluster. The movie closest to the average is used as the new centroid data for the next
iteration. After that, each reduce task emits the movie data with its corresponding cluster and the
new centroid data.

Table 1 summarizes these MapReduce jobs and their configurations used in our experiments. Both
synthetic and real-world data (e.g., Wikipedia data dumps pages-articles and Netflix) are used in the
benchmarks. Besides, in order to better show the generality of ROUTE, we will present results of
running these MapReduce jobs with small and large datasets in the following sections.

5.1. Accuracy of ROUTE

In this set of experiments, we validate the accuracy of ROUTE and compare it with the existing run-
time reducer workload estimation technique, DREAMS [8], which is based on online linear regression.
We use the mean absolute percentage error (MAPE) as the accuracy metric, which is defined by

MAPE D
1

M

PM
jD1

ˇ̌̌
RL

pred
j �RLmeasrd

j

ˇ̌̌
RLmeasrd

j

(8)

where M is the number of reducers in this job, RLpred
j and RLmeasrd

j are the predicted and measured
load of reducer j , respectively. Note that the smaller the MAPE, the more accurate the estimation is.

Table 1. Benchmarks characteristics

Dataset type Input size, #Map, Input size, #Map,
Application type small (GB) reduce tasks large (GB) reduce tasks

Sort RandomWriter 5.381 89, 16 30.757 512, 64
WordCount Wikipedia 5.759 92, 16 29.049 467, 64
RelativeFrequency Wikipedia 5.759 92, 16 29.049 467, 64
KMeans Netflix 4.686 76, 12 28.077 451, 12
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(a) (b)

Figure 6. Comparison of estimation error between DREAMS and ROUTE

In DREAMS, a threshold of the percentage of completed mappers ı is required to be specified (e.g.,
ı D 5%). In order to fairly compare these two approaches, we configure �max D 5% in ROUTE,
so it uses equal sample size as DREAMS in this evaluation. �init and � are configured as 5% and
0.1, respectively.

Figure 6 compares the MAPE between DREAMS and ROUTE by running the benchmarks on small
and large datasets. We repeat each experiment 10 times and adopt the averages. It is clear that ROUTE
outperforms DREAMS in all cases. In particular, DREAMS incurs high estimation error reaching at
more than 15% for KMeans. In comparison, ROUTE can significantly improve the accuracy for this
job, and the error rate is reduced to 10.92%. In average, over all these jobs, ROUTE can achieve 40.6%
improvement over DREAMS in terms of error rate.

The reason for the gain over DREAMS is that the assumption that DREAMS relies on is not neces-
sarily true. In other words, the assumption that the size of intermediate data that have been generated
for a reducer is linearly proportional to the number of completed mappers is not accurate. Figure 7
shows an example of the workload estimation in DREAMS for a random selected reducer while run-
ning 30G KMeans. As shown in Figure 7a, the statistics before the completion of 5% mappers are used
as training data2 (blue points). DREAMS performs linear regression based on this training data. After
the linear model is determined, DREAMS predicts the workload of the reducer. However, there is an
error of approximately 50 MB in this case. In order to show the linear regression result more clearly,
we plot the detailed drawing of the linear regression in Figure 7b. We can see that the regression line
does not accurately fit the training data. Because these training data only represents the beginning of
the regression line, and DREAMS predicts the workload of the reducer using the tail of the regression
line, slight error may have a significant impact on the workload prediction. In comparison, ROUTE
uses trimmed mean to estimate the workload of the reducer, which mitigates the impact of outliers
and improves its robustness. Figure 8 shows the workload estimation for the same reducer of the same
job while using ROUTE. It is clear in Figure 7 that as the fraction of mappers increased, the predicted
values are getting closer to the real value. In particular, when the fraction of mappers stays at 5%, the
prediction error is less than 30 MB.

We also compare ROUTE with map selectivity-based approach (SElECTB) while running Word-
Count with different kinds of datasets shown in Table 2. For ROUTE, we use the same configuration
as the previous experiments. With regard to SElECTB, we profile SelectivityM from running Word-
Count on pages-articles datasets and then use it to estimate the workload of each reducer according to
Verma et al. [12]. We repeat each experiment 10 times and take the averages. Figure 9 shows the results.
When estimating that the datasets have similar SelectivityM as pages-articles datasets, SElECTB can
predict the workload of reducers. However, when SelectivityM changes, SElECTB loses its applica-
bility. In comparison, ROUTE can achieve high accuracy in all experiments. Note that SElECTB will
obtain the same result for repeated experiments; thus, the corresponding error bar is zero.

2These statistics are the fraction of completed mappers (F j ) and the size of the partition generated by the completed

map tasks for each reducer
�
S
j

i

�
.
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(a) (b)

Figure 7. Workload estimation using DREAMS

(a) (b)

Figure 8. Workload estimation using ROUTE

Figure 9. Comparison of estimation error between selectivity-based approach and ROUTE for
WordCount

5.2. The number of bootstraps replicates and sample size

To compute an ideal bootstrap estimation, the number of bootstrap replicates B should be as large as
possible. However, because the computational complexity increases monotonously with B , we must
minimize the value of B . However, doing so will lead to a trade-off between the number of replicates
and the accuracy of the estimation. A minimum number of replicates is usually desired for the specific
accuracy requirement in the application of bootstrap method. Take the bootstrap standard error O�B
as example, Efron [29] showed that there is no significant improvement on coefficient of variation of
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Figure 10. Effect of number of bootstrap replicates

Figure 11. Effect of the sample size

O�B beyond B D 100. He also pointed out that, in the case of bootstrap confidence intervals, more
replicates are recommended. However, we found 100 bootstrap replicates is already enough for the
reducer workload estimation in practice. Figure 10 shows how B affects the coefficient of variation of
the width of the bootstrap confidence interval. It is clear that little improvement can be achieved when
we increase B beyond 100. Therefore, we use B D 100 in ROUTE.

Figure 11 shows how the sample size affects the margin of error (defined in Section 3.4) for a
reducer. As described previously, we normalized the margin of error by the expectation of its workload
estimation O�j . We can see that as the sample size increases, the error level continuously decreases. But
after sample size reaches 40%, little improvement can be achieved. This is consistent with the learning
curve demonstrated in Section 3.4. Therefore, based on the user specified error level, the progressive
sampler stops sampling when it has collected enough samples to guarantee the accuracy requirement.
Note that the statistics in Figures 10 and 11 are obtained from a reducer when running 5G WordCount.
Similar results can be also found when running other MapReduce jobs.

5.3. Robustness evaluation

In this section, we want to evaluate the robustness of ROUTE to different intermediate data distribu-
tions. Unlike the evaluations in the previous sections where the experiments are carried out on a real
Hadoop Cluster, the experiments in this section are run on a simulator. The simulator allows us to
input synthetic data with controlled distributions for Tj and perform the reducer workload estimation
according to Algorithm 1. Each synthetic dataset, which is simulated as the partition size statistics
of a MapReduce job, can be generated by (i) Weibull, (ii) log-normal, and (iii) exponential distribu-
tions with various parameters. All of these distributions include some departures from normality. Each
synthetic dataset has 1000 � 100 partitions, which suggests that the simulated MapReduce job has
1000 mappers and 100 reducers. The configurations for DREAMS and ROUTE are the same as that
in Section 5.1. We repeat each simulation 100 times and report the averages in Figure 12. From the
figure, we can see that ROUTE achieves low error rate when the partition size statistics follow skewed
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Figure 12. Robustness of ROUTE to different distributions

distributions and outperforms DREAMS significantly. In particular, for Weibull and log-normal dis-
tributions, ROUTE stays at 11.59% and 13.84% error rate, respectively, when the skewness3 is the
greatest. With respect to exponential distribution, because the skewness changes little while varying
the parameter � of the distribution, the MAPE for ROUTE hovers over at 11%. In summary, ROUTE
outperforms DREAMS in all experiments, and it can achieve from 55.13% to 78.4% improvement
compared with DREAMS.

6. APPLICATIONS OF ROUTE

In this section, we demonstrate the effectiveness of ROUTE in real scenarios. While ROUTE can
be applied in many cases such as load balancing, reducer locality-aware scheduling, and deadline-
aware scheduling, we focus on using ROUTE in load balancing and deadline-aware scheduling in the
sequence sections.

6.1. Load balancing

The existing load balance solutions are detailed in Section 7. Because ROUTE only collects the statis-
tics of intermediate data at the granularity level of partitions, those solutions [3,4,30], which are
based on the statistics of the key-value pairs, cannot exploit ROUTE. Here, we choose DREAMS [8],
which dynamically adjusts resource allocation among reducers based on their partition sizes to mit-
igate data skew. In this experiment, we compare the job completion time improvement over Native
Hadoop YARN between DREAMS and DREAMS with ROUTE (DREAMS_R). In DREAMS_R, we
use ROUTE to estimate the workload of reducers instead of using the linear regression technique. After
the workload of each reducer is predicted, we keep using DREAMS’s resource allocation algorithm.
The same setup with Liu et al. [8] is deployed, which is an 11-node cluster with Hadoop 2.4.0, and the
benchmarks listed in Table 1 are used for evaluation.

Figure 13 shows the results. The percentage in this figure is the job completion time reduction
over Native Hadoop YARN; higher bars represent larger improvement. It is clear that both DREAMS
and DREAMS_R improve the job completion time compared with Native Hadoop YARN, and
DREAMS_R outperforms DREAMS. In particular, DREAMS_R achieves the highest job completion
time reduction of 34:65% while running 5G Sort. In comparison, the gain of DREAMS is less than
DREAMS_R in this case, which stays at 22:17%. This is because ROUTE estimates the load of each
reducer more accurately than DREAMS, which in turn improves the resource allocation in DREAMS.
It is also clear that for the WordCount application, both DREAMS and DREAMS_R cannot have much
improvement. It is because the combiner (combines the key-value pairs shared with the same key in the
map phase) relieves the load imbalance among reducers for WordCount. As a result, the skewness in
the workload distribution among reducers is very small, thereby leaving little room for load balancing
techniques to improve the job completion time.

3Measured by the standardized third central moment of the variable.
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(a) (b)

Figure 13. The job completion time reduction

Table 2. Different types of Wikipedia datasets

Types Input size (GB) #Map, reduce tasks

Pages-articles 11.16 185, 20
Pages-log 10.76 172, 20
Pages-history 9.85 158, 20
Stub-articles 8.79 141, 20
Stub-history 15.68 252, 20
All-titles 5.28 88, 20
Abstract 8.51 137, 20

6.2. Deadline-aware scheduling

Many solutions have been proposed in the area of deadline-aware scheduling. Salah et al. [31] present
a queueing model to achieve resource elasticity for satisfying the MapReduce job’s SLO response
time. Verma et al. [12] propose a deadline-aware resource provision algorithm (called DARP in this
paper) for meeting the MapReduce job’s deadline. Here, we choose DARP and extend DARP with
ROUTE for evaluation. Similar to the setup in [12], we use Hadoop 0.21.0 with one VM as JobMaster
and NameNode and other 10 VMs as workers on the same cluster in Section 5. Each worker has four
map and four reduce slots. Because of the limited space, we only take WordCount as an example and
use the Wikipedia datasets shown in Table 2 for evaluation.

In [12], the lower and upper bounds of the job completion time
�
T low and T up

�
are computed

as follows:

T low D
N J
M �Mavg

SJM
C
N J
R �

�
Sh

typ
avg CRavg

�
SJR

C Sh1avg � Sh
typ
avg (9)

T up D

�
N J
M � 1

�
�Mavg

SJM
CMmax C

�
N J
R � 1

�
�
�
Sh

typ
avg CRavg

�
SJR

C Sh1max � Sh
typ
max (10)

Table 3 lists the notations for the symbols presented in equations (9) and (10). Accordingly, we col-
lect job profiles for WordCount using pages-articles datasets with 40 map slots and 10 reduce slots,
which are summarized in Table 4. Besides, as the size of the dataset increased, Verma et al. [12] esti-
mates the workload of each reducer by ReducerLoad D Sizedataset � SelectivityM=NumberReducer
and scales up the shuffle and reduces durations using linear regression by following equation4:

C Sh0;avg C C
Sh
1;avg �RL D Sh

typ
avg (11)

4Here, we present the equation for scaling up the Shtypavg . More details can be seen in [12].
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Table 3. Notations for the job performance model in DARP

Name Description

NJ
M

The number of mappers in the job

NJ
R

The number of reducers in the job

Mavg The average duration of map phases

Mmax The maximum duration of map phases

Sh1avg The average duration of first shuffle phases

Sh1max The maximum duration of first shuffle phases

Sh
typ
avg The average duration of typical shuffle phases

Shtypmax The maximum duration of typical shuffle phases

Ravg The average duration of reduce phases

Rmax The maximum duration of reduce phases

Table 4. Job profiles for WordCount

Parameters Values Parameters Values

Mavg 28.62 s Mmax 34.57 s

Sh1avg 6.81 s Sh1max 8.25 s

Sh
typ
avg 11.31 s Shtypmax 15.46 s

Ravg 11.53 s Rmax 15.27 s

SelectivityM 0.38 SelectivityR 0.17

Table 5. Scaling factors for WordCount

Parameters Values Parameters Values

Dataset size (GB) 4.77–21.58 CSh
0;avg

; CSh
1;avg

2.32, 0.79

#Map tasks 80–354 CSh
0;max; C

Sh
1;max 3.74, 0.98

#Reduce tasks 20 CR
0;avg

; CR
1;avg

2.86, 0.76

#Map, reduce slots 40, 10 CR
0;max; C

R
1;max 4.28, 0.99

where C Sh0;avg and C Sh1;avg are scaling factors need to be determined and RL is the workload of the
reducer. We run a set of experiments by varying the size of the dataset and determined all the scaling
factors for WordCount. Table 5 shows their values.

We then compare the accuracy of predicted job completion time between DARP and DARP with
ROUTE (DARP_R). In DARP_R, we use ROUTE to estimate the workload of each reducer; mean-
while, we keep using the job performance model and the scaling regression rules in DARP. We found
that even for the same MapReduce job, the average map duration varies for different datasets. Figure 14
shows the execution timelines of WordCount with different datasets. The average map duration for
pages-articles, pages-log, and pages-history datasets are 28.62, 13.79, and 27.91 s, respectively. In
order to isolate this effect and concentrate on the effect of the workload estimation, in both DARP and
DARP_R, we dynamically collect the average and maximum map durations of the early completed
mappers for prediction.

Figure 15 compares the predicted and measured durations for WordCount between DARP and
DARP_R while processing different types of datasets. For the pages-articles dataset, DARP and
DARP_R obtain the same estimated bound as the job profile is built on page-articles dataset. And their
estimated lower bound and upper bound do contain the measured value. However, for other datasets,
DARP is not accurate. For example, DARP underestimates the job completion time for the stub-history,
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Figure 14. The execution timelines of WordCount using different Wikipedia datasets

Figure 15. Comparison of predicted and measured job completion time between DARP and DARP_R
for WordCount with different Wikipedia datasets

all-title, abstract datasets, and so on. This is because DARP cannot predict the workload of reducers
when the map selectivity of the input dataset is different from the job profile, which in turn causes error
while calculating the reduce and shuffle durations based on equation (11). In comparison, DARP_R can
accurately bound the measured job completion time in all cases. When using the average of lower and
upper bounds for prediction, the relative error between predicted and measured job completion times
for DARP and DARP_R are 17:81% and 9:12%, respectively, where DARP_R outperforms DARP
by 48:79%.

Besides, we want to evaluate whether DARP and DARP_R can meet deadlines based on their
predicted bound of the job completion time. First, we calculate the slot allocation for WordCount
according to the resource allocation algorithm in [12], to meet the deadline of 150 s. Figure 16a and b
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(a) (b)

Figure 16. Slot allocation for WordCount (using all-title dataset) with deadline of 150 s

(a) (b)

Figure 17. Actual job completion time with recommended allocations for WordCount (using
all-title dataset)

shows the slot allocation results for DARP and DARP_R, respectively. Each point in these figures sug-
gests a recommended slot allocation for meeting the deadline. Next, we run a set of experiments with
recommended allocations to measure the actual job completion times. Figure 17 shows the results of
these experiments. In Figure 17a, it is clear that even for upper bound-based group, most of job exe-
cutions miss the deadline. In comparison, in Figure 17b, DARP_R can guarantee the job meeting the
deadline while using the average and upper bound-based resource allocations. Note that the resource
allocation choice depends on the service agreement between the user and the service provider. We can
also see similar result for page-log, stub-history, and abstract datasets. It is true that for some datasets,
like stub-articles, DARP can meet the deadline. That is because stub-articles has similar SeletivityM
as the job profile. However, the input datasets of MapReduce jobs are usually unknown before the
actual processing starts. Hence, there is no guarantee for DARP to meet the deadline even using the
upper bound-based resource allocations.

7. RELATED WORK

In the past few years, many efforts have been made towards improving the performance of MapReduce
such as load balancing, reducer locality-aware scheduling, and deadline-aware scheduling. Estimating
the workload of reducers is one of the building blocks in these techniques.

Most of the existing solutions for load balancing in MapReduce [3–7] consist of the following two
steps: (i) estimate the workload of each reducer and (ii) reassign the workload among reducers to
achieve a better balance. For example, Gufler et al. [3] define a cost model that estimates the work-
load of each partition based on the histogram of some statistics of key-value pairs (e.g., tuple count
and number of clusters) and then reassign intermediate keys to reducers by bin packing algorithms.
In order to reduce the overhead for monitoring statistics at the key-value pair level, Gufler et al. [4]
later propose an approach that only monitors and aggregates the statistics of the top k clusters. And,
Yan et al. [5] propose a sketch-based key group size estimation, which aggregates the sketch
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information of key-value pairs in a centralized manner. The approach in [7] also uses the sketch scheme
to estimate the size of partitions and then tries to assign the partitions with large sizes to machines with
better performance to achieve load balance.

However, these solutions will cause a synchronization barrier between map and reduce stages: they
have to wait for the completion of all the mappers.

Besides, they have to monitor the statistics at the granularity level of key-value pairs and aggregate
them in a centralized manner. Although many solutions use some techniques such as top k algorithms
[4,6] and sketch [5,7] to reduce the overhead, they may still be costly because they still need to collect
the statistics of each individual key. Compared with these solutions, ROUTE accurately estimates the
workload of reducers at run time, requiring only aggregating statistics at partition level. Admittedly,
the solutions in [14,30] intend to achieve load balancing in an online manner. However, SkewTune [30]
will cause a significant run-time overhead (30 s as reported in [30]). Yan et al. [14] assume the size
of each key-value pair is identical and the load of each machine is the number of assigned key-value
pairs, which are not true in real MapReduce jobs.

In terms of deadline-aware scheduling, Verma et al. [12] propose a framework that can calculate
the resource allocation to routine MapReduce jobs while guaranteeing their service level objectives.
They use job profiles derived from small datasets to estimate the size of intermediate data of jobs
with larger datasets. Chen et al. propose a resource provision approach [13] that tries to minimize
the financial cost for running MapReduce jobs in public clouds. However, these approaches estimate
the workload of reducers based on the assumptions that the ratio of the map output size to the map
input size (SelectivityM ) keeps invariant and the intermediate data are evenly distributed to reducers,
which are not necessarily true in reality. In contrast, ROUTE does not relies on job profiling, and it can
accurately estimate the load of each reducer in the early beginning of the job execution, even when data
skew is present. Salah et al. [32] present a queueing model to achieve resource elasticity in the cloud
while satisfying the job’s SLO response time. Subsequently, Salah et al. [31] propose a continuing
work that focuses on achieving proper elasticity for MapReduce jobs. However, the solution in [31]
assumes the service times for reducers are exponentially distributed, without taking the workload of
each reducer into consideration. ROUTE can provide accurate workload estimation for each reducer.
As a result, ROUTE can enhance the prediction accuracy of the reducers’ service times, which is
complementary to the work in [31].

8. CONCLUSIONS

In this paper, we presented ROUTE, a run-time robust reducer workload estimation technique for
MapReduce. ROUTE leverages the partition size statistics of early completed mappers and predicts the
workload of each reducer without causing a synchronization barrier. In ROUTE, a progressive sampler
is developed that determines the minimum number of samples automatically for satisfying the accuracy
requirement specified by users. Furthermore, by using robust statistic interference and bootstrapping
resampling technique, ROUTE requires no a priori knowledge of the map function and input datasets,
nor making assumptions on the underlying distribution of the intermediate data. Experimental results
showed that ROUTE can achieve high accuracy with the highest error rate at 10.92% and deliver an
average error rate improvement of 40.6% compared with the state-of-the-art solution on 11-node real
Hadoop cluster. We also showed that ROUTE is robust to a variety of skewed distributions. Finally, we
demonstrated ROUTE can enhance the existing load balancing and deadline-aware scheduling solu-
tions. More specifically, in load balancing, ROUTE clearly improves the scheduler to achieve a larger
reduction in the job completion time. In deadline-aware scheduling, ROUTE enables the scheduler to
meet the deadline effectively with various input datasets.
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