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Abstract—Bot detection using machine learning (ML), with
network flow-level features, has been extensively studied in the lit-
erature. However, existing flow-based approaches typically incur
a high computational overhead and do not completely capture the
network communication patterns, which can expose additional
aspects of malicious hosts. Recently, bot detection systems that
leverage communication graph analysis using ML have gained
attention to overcome these limitations. A graph-based approach
is rather intuitive, as graphs are true representation of network
communications. In this paper, we propose BotChase, a two-
phased graph-based bot detection system that leverages both
unsupervised and supervised ML. The first phase prunes presum-
able benign hosts, while the second phase achieves bot detection
with high precision. Our prototype implementation of BotChase
detects multiple types of bots and exhibits robustness to zero-day
attacks. It also accommodates different network topologies and
is suitable for large-scale data. Compared to the state-of-the-
art, BotChase outperforms an end-to-end system that employs
flow-based features and performs particularly well in an online
setting.

Index Terms—Security management, botnet detection, machine
learning.

I. INTRODUCTION

UNDOUBTEDLY, organizations are constantly under
security threats, which not only costs billions of dollars

in damage and recovery, it often also detrimentally affects their
reputation. A botnet-assisted attack is a widely known threat
to these organizations. According to the U.S. Federal Bureau
of Investigation, “Botnets caused over $9 billion in losses to
U.S. victims and over $110 billion globally. Approximately
500 million computers are infected each year, translating into
18 victims per second.” The most infamous attack, called
Rustock, infected 1 million machines, sending up to 30 bil-
lion spam emails a day [1]. Hence, it is imperative to defend
against these botnet-assisted attacks.

A botnet is a collection of bots, agents in compromised
hosts, controlled by botmasters via command and control (C2)

Manuscript received June 10, 2019; revised November 8, 2019 and January
18, 2020; accepted January 22, 2020. Date of publication February 7, 2020;
date of current version March 11, 2020. This work was supported in part by
the Royal Bank of Canada and in part by the Natural Sciences and Engineering
Research Council of Canada Collaborative Research and Development under
Grant 530335. The associate editor coordinating the review of this article and
approving it for publication was S. Scott-Hayward. (Corresponding author:
Noura Limam.)

The authors are with the David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, ON N2L6P7, Canada
(e-mail: aaboudaya@uwaterloo.ca; mohammad.salahuddin@uwaterloo.ca;
noura.limam@uwaterloo.ca; rboutaba@uwaterloo.ca).

Digital Object Identifier 10.1109/TNSM.2020.2972405

channels. A malevolent adversary controls the bots through
botmaster, which could be distributed across several agents
that reside within or outside the network. Hence, bots can
be used for tasks ranging from distributed denial-of-service
(DDoS), to massive-scale spamming, to fraud and identify
theft. While bots thrive for different sinister purposes, they
exhibit a similar behavioral pattern when studied up-close. The
intrusion kill-chain [2] dictates the general phases a malicious
agent goes through in-order to reach and infest its target.

Anomaly-based methods are widely used in bot
detection [3], [4]. They first establish a baseline of nor-
mal behavior for the protected system and model a decision
engine. The decision engine determines and alerts any
divergence or statistical deviations from the norm as a
threat. Machine learning (ML) [3] is an ideal technique
to automatically capture the normal behavior of a system.
The use of ML has boosted the scalability and accuracy of
anomaly-based IDSs [4]. The most widely employed learning
paradigms in ML include supervised and unsupervised.
Supervised learning uses labeled training datasets to create
models. It is employed to learn and identify patterns in
the known training data. However, labeling is non-trivial
and typically require domain experts to manually label the
datasets [3]. This can be cumbersome and prone to error,
even for small datasets. On the other hand, unsupervised
learning uses unlabeled training datasets to create models that
can discriminate between patterns in the data.

An important step prior to learning, or training a ML
model, is feature extraction. These features act as discrimi-
nators for learning and inference, reduce data dimensionality,
and increase the accuracy of ML models. The most com-
monly employed features in bot detection are flow-based (e.g.,
source and destination IPs, protocol, number of packets sent
and/or received, etc). However, these features do not capture
the topological structure of the communication graph, which
can expose additional aspects of malicious hosts. In addition,
flow-level models can incur a high computational overhead,
and can also be evaded by tweaking behavioral characteristics
e.g., by changing packet structure [5].

Graph-based features, derived from flow-level information,
which reflect the true structure of communications, interac-
tions, and behavior of hosts, are an alternate that overcome
these limitations. We show that incorporating graph-based
features into ML yields robustness against complex communi-
cation patterns and unknown attacks. Moreover, it allows for
cross-network ML model training and inference. The major
contributions of this paper are as follows.
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• We propose BotChase, an anomaly-based bot detection
system that is protocol agnostic, robust to zero-day
attacks, and suitable for large datasets.

• We employ a two-phased ML approach that leverages
both supervised and unsupervised learning. The first
phase filters presumable benign hosts. This is followed
by the second phase on the pruned hosts, to achieve bot
detection with high precision.

• We propose feature normalization (F-Norm) on top of
graph-based features in BotChase and evaluate various
ML techniques. Our graph-based features, inspired from
the literature and derived from network flows, undergo
F-Norm to overcome severe topological effects. These
effects can skew bot behavior in different networks, exac-
erbating ML prediction. Furthermore, these features allow
to combine data from different networks and promote
spatial stability [6] in the ML models.

• We compare the performance of our graph-based fea-
tures with flow-based features from BotMiner [7] and
BClus [8] in a prototype implementation of BotChase.
Furthermore, we compare BotChase with BotGM [9] and
the end-to-end system proposed for BClus.

• We evaluate the BotChase prototype system in an online
setting that recurrently trains and tests the ML models
with new data. We also leverage the Hoeffding Adaptive
Tree (HAT) [10] classifier for incremental learning. This
is crucial to account for changes in network traffic and
host behavior.

This paper is an extension of our preliminary work in [11].
The rest of the paper is organized as follows. In Section II,
we present a background on bot detection, highlight limitations
of the state-of-the-art and motivate the problem. Our system
design is delineated in Section III. We evaluate the BotChase
prototype in Section IV. In Section V, we conclude with a
summary of our contributions and instigate future directions.

II. BACKGROUND AND RELATED WORKS

Botnet detection has been an active area of research that has
generated a substantial body of work. Common botnet detec-
tion approaches are passive. They assume successful intrusions
and focus on identifying infected hosts (bots) or detecting C2
communications, by analyzing system logs and network data,
using signature- or anomaly-based techniques. Signature-based
techniques have commonly been used to detect pre-computed
hashes of existing malware in hosts and/or network traffic.
They are also used to isolate IRC-based bots by detecting
bot-like IRC nicknames [12], and to identify C2-related DNS
requests by detecting C2-like domain names [13].

Metadata such as regular expressions based on packet con-
tent and target IP occurrence tuples [14] is an example of
what could be employed in a signature and pattern detection
algorithm. More generally, signature-based techniques have
been employed to identify C2 by comparison with known
C2 communication patterns extracted from observed C2 traf-
fic, and infected hosts by comparison with static profiles and
behaviours of known bots [15]. However, they can be easily
subverted by unknown or modified threats, such as zero-day

attacks and polymorphism [15], [16]. This undermines their
suitability to detect sophisticated modern botnets.

On the other hand, anomaly-based techniques use heuris-
tics to associate certain behaviour and/or statistical features
extracted from system or network logs, with bots and/or C2
traffic. C2 occurs at the early stages of a botnet’s lifecycle, thus
its detection is deemed essential to prevent malicious activi-
ties. Most existing anomaly-based C2 detection techniques are
based on the statistical features of packets and flows [7], [12],
[17]–[27]. Works like [17], [18] are focused on specific com-
munication protocols, such as IRC, providing narrow-scoped
solutions. Whereas, BotMiner [7] is a protocol-independent
solution, which assumes that bots within the same botnet are
characterized by similar malicious activities and communica-
tion patterns. This assumption is an over simplification, since
botnets often randomize topologies [15] and communication
patterns as we observe in newer malwares, such as Mirai [28].
Other works, such as [23], [27], leverage ML and traffic-
based statistical features, for detecting C2 with low error rates.
However, such techniques require that all flows are compared
against each other to detect C2 traffic, which incurs a high
computational overhead. In addition, they are unreliable, as
they can be evaded with encryption and by tweaking flow
characteristics [5]. Therefore, it is evident that a non-protocol-
specific, more efficient, and less evadable detection method is
desired.

Anomaly-based bot detection solutions that do not focus on
detecting C2 per se, but rather identify bots by observing and
analyzing their activities and behaviour, address some of the
aforementioned issues. Graph-based approaches, where host
network activities are represented by communication graphs,
extracted from network flows and host-to-host communica-
tion patterns, have been proposed in this regard [5], [9],
[29]–[40]. Le et al. [37] present a strong case for leveraging
Self-Organizing Maps (SOMs) in the context of bot detec-
tion with recall rates beyond 90%. However, SOM remains
an unsupervised learning algorithm that ultimately requires
manual expertise to distinguish unknown network traffic.

BotGM [9] builds host-to-host communication graphs from
observed network flows, to capture communication pat-
terns between hosts. A statistical technique, the inter-quartile
method, is then used for outlier detection. Their results
exhibit moderate accuracy with low false positives (FPs)
based on different windowing parameters. However, BotGM
generates multiple graphs for every single host. That is,
for every pair of unique IPs, a graph is constructed, such
that every node in the graph represents a unique 2-tuple of
source and destination ports, with edges signifying the time
sequence of communication. However, this entails a high
overhead.

Khanchi et al. [41] propose botnet detection on non-
stationary stream of data using incremental non-overlapping
window. They propose to use a team of genetic programs
to predict on records in a stream of data. These records are
archived to build a data subset to further train the classifier.
The true labels of the records are requested from human oper-
ators as long as the label budget is met. However, if records
from minor classes are targeted for true label queries, minor
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classes are promoted aggressively, reducing the performance
of major classes.

Chowdhury et al. [39] use ML for clustering the nodes in
a graph, with a focus on dimensionality and topological char-
acterization. Their assumption is that most benign hosts will
be grouped in the same cluster due to similar connection pat-
terns, hence can be eliminated from further analysis. Such
a crucial reduction in nodes effectively minimize detection
overhead. However, their graph-based features are plagued by
severe topological effects (see Section IV). They use statisti-
cal means and user-centric expert opinion to tag the remaining
clusters as malicious or benign. However, leveraging expert
opinion can be cumbersome, error prone and infeasible for
large datasets. Recently, rule-based host clustering and classi-
fication [40] have been proposed, where pre-defined thresholds
are used to discriminate between benign and suspicious hosts.
Unfortunately, relying on static thresholds make the technique
prone to evasion and less robust to ML-based outlier detection.

Big Data has received a lot of attention lately, which is also
often paired with streaming. Employing ML in a streaming
context [42] undoubtedly yields better result than batching.
Keen statistical techniques, such as concept drifts and ADWIN
windowing, help surmount the challenges facing classification
in data streaming. However, retraining the ML model only
when a concept drift occurs may require specific threshold
tuning, which does not generalize.

Graph-based approaches using ML for bot detection are
intuitive and show promising results. In this paper, we propose
BotChase, an anomaly-, graph-based bot detection system,
which is protocol agnostic, i.e., it detects bots regardless of
the protocol. BotChase employs graph-based features in a two-
phased ML approach, which is robust to zero-day attacks,
spatially stable, and suitable for large datasets.

III. SYSTEM DESIGN

The BotChase system consists of three major components,
as depicted in Fig. 1. These components pertain to data prepa-
ration and feature extraction, model training, and inference. In
the following, we discuss these components.

A. Dataset Bootstrap

1) Flow Ingestion: The input to the system are bidirectional
network flows. These flows carry the basic IP layer information
required to forward packets from one network node to another.
By applying reduction on these flows, we create a set T that
contains 4-tuple flows ti = (sipi , srcpktsi , dipi , dstpktsi ).
sipi is the source IP address that uniquely identifies a source
host, srcpktsi quantifies the number of data packets from sipi

to dipi , the destination host IP address. The number of desti-
nation packets, dstpktsi , is the number of data packets from
dipi to sipi .

Set A is a set of tuples that have exclusive source and
destination hosts. That is, if multiple tuples have the same
source and destination hosts, they are reduced to form
an aggregated exclusive tuple ax ∈ A, such that ax =
(sipx , srcpktsx , dipx , dstpktsx ). Therefore, if two tuples
ti , tj ∈ T have the same source and destination hosts, i.e.,

Fig. 1. Components of the BotChase bot detection system.

sipx = sipi = sipj and dipx = dipi = dipj , then the number
of source packets and the number of destination packets are
aggregated in ax , such that

srcpktsx =
∑

tk∈T | sipx=sipk ,dipx=dipk

srcpktsk (1)

dstpktsx =
∑

tk∈T | sipx=sipk ,dipx=dipk

dstpktsk . (2)

2) Graph Transform: The system creates a graph G(V, E),
where V is a set of nodes and E is a set of directed edges ei ,j
from node vi to node vj with weight |ei ,j |. The set of nodes V
is a union of hosts from set A, such that

V =
⋃

∀ax∈A

({sipx} ∪ {dipx}). (3)

For every ax ∈ A, there exists directed edges ei ,j and ej ,i
from vi to vj and vj to vi , respectively, such that sipx = vi
and dipx = vj . Therefore,

E =
⋃

∀ax∈A

({(sipx , dipx )} ∪ {(dipx , sipx )}). (4)

The weights |ei ,j | and |ej ,i | of edges ei ,j and ej ,i are srcpktsx
and dstpktsx , respectively. Moreover, if there exists a reverse
tuple ay ∈ A | dipy = vi , sipy = vj , then |ei ,j | =
srcpktsx + dstpktsy and |ej ,i | = dstpktsx + srcpktsy .

3) Feature Extraction: BotChase creates the required
graph-based feature set for the ML models. Features are
intrinsic to the success of ML models that should represent
and discriminate host behavior, especially bot behavior. We
leverage the following commonly used graph-based features.

• In-Degree (ID) and Out-Degree (OD)—The in-degree,
fi ,0, and out-degree, fi ,1, of a node vi ∈ V are the
number of its ingress and egress edges, respectively.

F(
ei ,j

)
=

{
1, if ei ,j ∈ E
0, otherwise (5)
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fi ,0 =
∑

vj∈V , vi �=vj

F(
ej ,i

) ∀vi ∈ V (6)

fi ,1 =
∑

vj∈V , vi �=vj

F(
ei ,j

) ∀vi ∈ V (7)

These features play an important role in the network
behavior of a host. Though, a higher ID for a host makes
it a point of interest, it is often the case that nodes with a
high ID offer a commonly demanded service. Therefore,
observing ID alone may not signify malicious activity.
For example, a gateway is a central point of communi-
cation in a network, but it is not necessarily a malicious
endpoint. Intuitively, bots attempting to infect the network
will tend to have a higher ID than benign hosts. Similarly,
OD is also an intrinsic feature. Typically, in the recon-
naissance stage of the intrusion kill-chain, bots attempt
to survey the network. This mass surveillance can be
captured via the OD.

• In-Degree Weight (IDW) and Out-Degree Weight
(ODW)—These features augment the ID and OD of the
nodes in the graph. The in-degree weight, fi ,2, and the
out-degree weight, fi ,3, of a node vi ∈ V is the sum
of all the weights of its incoming and outgoing edges,
respectively.

fi ,2 =
∑

vj∈V , vi �=vj , ej ,i∈E

∣∣ej ,i
∣∣ ∀vi ∈ V (8)

fi ,3 =
∑

vj∈V , vi �=vj , ei,j∈E

∣∣ei ,j
∣∣ ∀vi ∈ V (9)

For a fine-grained differentiation, it is important to expose
features that will eventually bring bots closer to each
other, and discriminate bots from hosts. IDW and ODW
features add another layer of information, further alien-
ating the malicious hosts from the benign. Similar to ID,
mass-data leeching bots will tend to expose a high IDW in
the action phase of the intrusion kill-chain. Similarly, the
ODW is the aggregate data packets a node has sent, which
can potentially expose bots that mass-send payloads to
hosts in a network.

• Betweenness Centrality (BC)—The betweenness central-
ity of a node vi ∈ V , inspired from social network
analysis, is a measure of the number of shortest paths
that pass through it, such that

fi ,4 =
∑

vj ,vk∈V , vi �=vj �=vk

σvj vk (vi )
σvj vk

∀vi ∈ V . (10)

where σvj vk is the total number of shortest paths between
node pairs vj , vk ∈ V , and σvj vk (vi ) is the number of
shortest paths that pass through vi . This feature has a high
computational overhead with O(|V |.|E |+ |V |2. log |V |)
time complexity [43]. However, it can alienate bots early
on as they attempt their first connections. This is when
the bots exhibit low IDW and ODW. Thus, it would be
more favorable for the shortest paths in the network to
pass through the host. Likewise, when the IDW and ODW
increase, the BC of a node decreases immensely, as it is
less favored for being included in shortest paths.

Fig. 2. Example topology of benign hosts with a gateway.

Fig. 3. Example topology of benign hosts without a gateway.

• Local Clustering Coefficient (LCC)—Unlike BC, local
clustering coefficient has a lower computational overhead,
and it quantifies the neighborhood connectivity of a node
vi ∈ V , such that

fi ,5 =

∑
vj ,vk∈Ni , vi �=vj �=vk

F(
ej ,k

)

|Ni |(|Ni | − 1)
∀vi ∈ V (11)

where Ni is neighborhood set for vi , ∀vj ∈ Ni | ei ,j ∈
E ∨ ej ,i ∈ E . LCC feature can play an important role
in discriminating malicious host’s behavior. Successfully
infected hosts tend to exhibit a higher LCC, as bots often
deploy collaborative P2P techniques, making its adjacent
host pairs strongly connected.

• Alpha Centrality (AC)—Alpha centrality, also inspired
from social network analysis, is a feature that general-
izes the centrality of a node vi ∈ V . AC extends the
Eigenvector centrality (EC), with the addition that nodes
are also influenced by external sources. These external
sources can be user-defined, according to their graphical
analysis technique. In EC, each vi is assigned an influ-
ence score xi , that is iteratively exchanged with adjacent
nodes. In essence, EC is the relative weight of a node
in the graph, such that connections to high-scoring nodes
contribute more to the score of vi . Hence, AC is given as

fi ,6 = αAT
i xi + ei ∀vi ∈ V . (12)

where Ai is the adjacency matrix, ei is the external influ-
ence of node vi , and α is influence factor that controls
focus between external sources to internal influence. AC
is important for the intermediate and terminal phases
of the intrusion kill-chain. Early on, it may be negligi-
ble. However, as time progresses and bots perform more
actions in the network, their AC will gradually increase,
making it discriminative.

4) Feature Normalization (F-Norm): Topological alter-
ations can severely affect the host’s behavior and pattern of
communication in the graph. For example, in Fig. 2, g acts
as a gateway for host h2 to communicate with the rest of the
network (i.e., hosts h3, h4 and h5). In this configuration, h2

carries an ID of 2. In contrast, Fig. 3 shows the topology with-
out a gateway, where h2 communicates with other hosts in the
network individually. This boosts the ID of host h2 to 4. To
alleviate this adverse effect of different network topologies,
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we normalize the above base features to include neighbor-
hood relativity. To control the overhead of computing these
normalized features, the neighborhood set Ni for vi ∈ V is
restricted to a certain depth D. The mean of j features for vi
across its neighbors vk ∈ Ni are computed. Each feature for
vi is then normalized by incorporating neighborhood relativity.
Thus, features relative to their neighborhood mean is given as

μi ,m =

∑
vk∈Ni

fk ,m

|Ni | ∀vi ∈ V , 0 ≤ m ≤ j (13)

fi ,m =
fi ,m
μi ,m

∀vi ∈ V , 0 ≤ m ≤ j . (14)

After normalizing the features (with D = 2) for h2 and h4

with gateway, their IDs change from 2 to 0.8 and 3 to 1.1,
respectively. Without the gateway, their IDs change from 4 to
1.6 and 3 to 1.1, respectively. As aforementioned, normaliza-
tion attempts to make hosts of the same nature look similar,
making the topological alterations less severe. Similarly, in
situations where network data is recorded over varying time
intervals, IDW and ODW tend to increase substantially with
larger time intervals. By normalizing features, the effect of
time also diminishes.

B. Model Training

The model accepts graph-based features as input and learns
to distinguish between malicious and benign hosts. The two
learning phases in BotChase are explained below.

1) Phase 1: The first ML phase performs unsupervised
learning (UL) to cluster the hosts. Generally, benign hosts
exhibit similar behavior that can be gauged by the graph-
based features. These hosts exhibit resembling patterns in data,
such as sending (OD/ODW) and receiving (ID/IDW) sim-
ilar number of packets [39]. Since BC, LCC and AC are
directly affected by these traits, their influence can be sim-
ilar for all benign hosts. Therefore, maximizing the size of
the “singleton” benign cluster is crucial.

This phase not only acts as a first filter for new hosts,
but also significantly reduces the training data for the sec-
ond phase. If a host is clustered into the benign cluster, then
it is strictly benign. However, it is important to note that a
malicious host can also be incorrectly clustered into a benign
cluster, adversely affecting system performance. Therefore,
though the system objective is to maximize the size of the
benign cluster, it is essential to jointly minimize the number
of bots that are co-located in this cluster.

Various UL techniques can be deployed in this phase. Some
of these techniques include k-Means, Density-Based Spatial
Clustering (DBScan) and SOM.

• k-Means—The k-Means clustering algorithm attempts to
find an optimal assignment of nodes to k pre-determined
clusters, such that the sum of the pairwise distance from
the cluster mean is minimized. k-Means is static, it results
in the same cluster composition for a given dataset across
different runs of the algorithm, with the same number
of clusters and iterations. Assume k is set to the car-
dinality of the label set. Idealistically, there should be
a clean assignment of hosts to corresponding clusters.

However, in reality, some benign hosts exhibit an outlier
behavior. For example, network nodes that host web-
servers and public APIs will depict a huge amount of
data and connections, thus impacting ID, IDW, OD and
ODW. Therefore, depending on the dataset, altering k
may adversely affect clustering performance.

• Density-Based Spatial Clustering (DBScan)—Unlike k-
Means, DBScan does not require the parameter k, the
pre-determined number of clusters. In contrast, it com-
putes the clusters and assignment of nodes according to a
rigid set of density-based rules. DBScan requires a pair of
parameters: (i) p, the minimum number of points required
to be assigned as core points, and (ii) e, the minimum
distance required to detect points as neighbors. DBScan
classifies points as core, edge or noise, where core points
must have p points in their neighborhood with a distance
less than e. Otherwise, if the point is reachable via e
distance from at least one of the core points, it is consid-
ered an edge. The remaining points are considered noise
and are not clustered. That is, points are not forcefully
assigned to clusters as some points may just be noise.
Therefore, DBScan is capable of detecting non-linearly
separable clusters.

• Self-Organizing Map (SOM)—A SOM is a special pur-
pose artificial neural network that applies competitive
learning instead of error-correction. It is frequently used
for dimensionality reduction and clusters similar data.
However, the notion of similarity in SOM is looser than
that of k-Means and DBScan. In SOM, neurons are
pushed towards the data points for a certain number of
iterations. It uses the best matching unit to determine
the winner neuron and updates its weights accordingly.
Furthermore, SOMs also apply a learning radius that
affects all the other neurons, when a close-by neuron is
updated. The number of neurons also play an important
role in clustering. Higher number of neurons result in dis-
persion of nodes away from a single cluster. Importantly,
the same logic applies to k-Means, hence the classifier
with the best assignment must be selected, according to
the objectives outlined in this phase.

2) Phase 2: Phase 1 separates the dataset between nodes
that are inside and outside the benign cluster. All the nodes,
ideally small, that reside outside the benign cluster are input to
Phase 2 for further classification. Optimally, all the bots should
be outside the benign cluster, regardless of whether or not they
are co-located in the same cluster. Depending on the amount of
hosts outside the benign cluster, the supervised learning (SL)
classifiers used in this phase will exhibit different results.

The primary objective in this phase is to maximize recall.
Recall is a measure of how many bots are recalled correctly,
i.e., do not go unnoticed. It is proportional to the number
of true positives (TPs) and inversely proportional to false
negatives (FNs). Various SL classifiers can be deployed in
this phase to achieve this objective, such as logistic regres-
sion (LR), support vector machine (SVM), feed-forward neural
network (FNN) and decision tree (DT).

• Logistic Regression (LR) and Support Vector Machine
(SVM)—LR focuses on binary classification of its input,
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Fig. 4. Flowchart of node classification with i nodes and j features.

based on a sigmoid function. Input features are coupled
with corresponding weights and fed into the function.
Once a threshold p is defined, usually 0.5 for the logis-
tic function, it establishes the differentiator between
positive and negative points. Unlike LR, SVM is a non-
probabilistic model for classification. It is not restricted
to linearly separable datasets. There are various methods
of computing SVM, including the renowned gradient-
descent algorithm.

• Feed-forward Neural Network (FNN)—FNNs are arti-
ficial neural networks that do not contain any cyclic
dependencies. For a given feed-forward network with
multiple layers, a feature vector is dispersed into the
input layer, fed to the hidden layer of the network, and
then to its output layer. While the input layer is con-
strained by the number of features exposed, the hidden
and output layers are not. Every neuron may rely on
a separate activation function that shapes the output.
Popular activation functions for FNNs include identity,
sigmoid, ReLU and binary step, among others. FNNs
and the previously mentioned SL techniques are online
classifiers. An online classifier is capable of incremen-
tal learning, as the weights associated with the deployed
perceptrons are not static. This makes FNNs an attractive
candidate for production-grade deployment.

• Decision Tree (DT)—DTs rely heavily on information
entropy (IE) and gain to conjure its conditional routing
procedure. Generally, IE states how many bits are needed
to represent certain stochastic information in the dataset.
By using DT, information gain is maximized from the
observed data and the taken path. After training a DT,
newly observed data points can be predicted. However,
unlike all the other classifiers, DTs are not online. That
is, optimally retraining a DT must be done from scratch.

Recall the objective from Phase 1, i.e., minimize hosts out-
side the benign cluster (HOB), while maximizing bots outside
the benign cluster (BOB). This results in a minimal training
dataset for Phase 2. Also, it is expected that the resultant train-
ing dataset from Phase 1 would be unbalanced, with a bias

towards benign hosts. This may prove problematic for LR,
SVM and FNN in achieving high recall rates.

C. Inference

Once the models are trained, they are deployed in the system
to perform bot detection. Ideally, the system must allow for
two modes of execution: (i) model (re)training, to adjust to
the dynamics of the network, and (ii) inference, i.e., for a
given host predict whether or not it is a bot. In BotChase,
the inference unfolds in two steps—presumable benign hosts
get filtered out in Phase 1 as they get assigned to the benign
cluster, while suspicious hosts that are assigned to a differ-
ent cluster are further classified in Phase 2. Fig. 4 captures
the inner workings of host classification. For consistency, the
system must execute requests in order of observation.

IV. EXPERIMENTS

We implement and evaluate the BotChase prototype bot
detection system on a Hadoop cluster. In this section, we detail
the experimental setup and the results of our evaluation.

A. Environment Setup

1) Hardware: The Hadoop cluster consists of a manage-
ment node (2×Intel Xeon Silver 4114, 192 GB RAM), a
compute node (2×Intel Xeon Gold 5120, 384 GB RAM) and
four data nodes (2×Intel Xeon Silver 4114, 192 GB RAM).
A 25Gbit and 10Gbit physical networks are deployed, inter-
connecting the nodes. The former network is primarily used
for data and applications, while the latter is for administration.

2) Software: The software implementation is primarily
based on Java. To ease dependency management, we incor-
porate Gradle [44]. JGraphT [45] graph library is used to
construct the graph and extract graph-based features from
network flows. Both Smile [46] and Encog [47] are used in
tandem for ML. In order to support rapid prototyping, a cus-
tom in-house DataFrame (DF) library has been developed. DF
conforms to the incremental streaming paradigms, data streams
with well-defined source, pipelines and sinks. Furthermore,
the underlying data structures are immutable, and all the basic
stream-based transformations are available.

B. Dataset

The evaluation of BotChase is based on the CTU-13 [8]
dataset. CTU-13 comprises of 13 different subset datasets
(DS) that include captures from 7 distinct malware, performing
port scanning, DDoS, click fraud, spamming, etc Every sub-
set carries a unique network topology with a certain number
of bots that leverage different protocols. CTU-13 labels indi-
cate whether a flow is from/to botnet, background or benign.
Known infected hosts are labeled as bots, while remaining
hosts are tagged as benign. We leverage 12 datasets as base
training data, while a single dataset, #9, is left out for test-
ing purpose. This test dataset contains NetFlow data collected
from a Neris botnet, 10 unique hosts labeled as bots, perform-
ing multiple actions including spamming, click fraud, and port
scanning. We use this dataset configuration for training and
testing, unless stated otherwise.
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TABLE I
GRAPH TRANSFORM, BASE FEATURE EXTRACTION AND

NORMALIZATION COMPUTATION

C. Results and Discussion

1) Graph Transform, Feature Extraction & Normalization:
For every subset in the CTU-13 dataset, BotChase first ingests
all the network flows, creates the graph, extracts base features
and normalizes them. For each dataset, Table I highlights the
graph creation time, i.e., graph transform (GT), number of
graph nodes (|V |), total runtime to extract only base BC fea-
ture and all base features (FE), and total runtime to normalize
features (i.e., F-Norm).

It is evident that there is a non-linear relationship between
BC and the number of nodes in the graph. BC alone consumes
a large portion of the FE time. Furthermore, the inconsistent
variation between GT and the number of nodes is due to the
differing time windows across datasets. Also, dataset #3 has
a much higher number of flows than #2, which increases the
runtime of graph creation. This is primarily due to the repeated
modification of exclusive flow tuples in set A. The system then
normalizes the base features, and Table I depicts its total run-
time with D = 1. Evidently, normalizing does not significantly
increase the total runtime of the system, with 13.755 seconds
for the most complex dataset.

We highlighted the limitations of a stand-alone supervised
learning approach in [11]. Based on our evaluations, LR
outperforms DT in precision, while DT shows a superior
training time and robustness to unknown attacks. However,
precision, training time and robustness are all crucial for our
bot detection system. Can we achieve the best of all three? To
investigate this, we set out to evaluate a two-phased system
that employs an initial clustering phase (i.e., UL), followed by
a classification phase (i.e., SL).

2) Phase 1 (UL): For the first ML phase in BotChase, we
evaluate three UL techniques, namely k-Means, DBScan and
SOM. However, DBScan results are inconclusive, where bots
are co-located with benign hosts. DBScan is evaluated with
varying minimum number of neighborhood points (minPts)
and distance (ε). Multiple ε values are tested in the range of
[10−5, 10−4, . . . , 105]. Also, we infer ε values that correspond
to the boundary of the bots themselves. We vary minPts in [1,
2,. . . , 25] depending on the number of bots in the aggregated
training dataset. However, maximal separation of bots from
benign hosts could not be achieved with the tested parame-
ters. In essence, DBScan does not produce a single, prevalent

Fig. 5. Comparison of SOM and k-Means with respect to training time.

TABLE II
k-MEANS CLUSTERING WITH F-NORM

benign cluster. On the other hand, both k-Means and SOM
show appreciable results, with a learning rate of 0.7 for SOM.

3) Phase 2 (SL): Tables II and III highlight the evaluation
metrics, including number of clusters or neurons, number of
hosts outside the benign cluster (HOB), percentage of hosts
outside the benign cluster relative to the total number of hosts
(HOB%), number of bots outside the benign cluster (BOB),
and percentage of bots relative to the total number of bots
(BOB%). Recall, the dataset #9 is removed for testing, which
includes 10 hosts labeled as bots and ≈366K hosts. Also,
≈3.2M hosts from the remaining datasets are used to train
the classifiers. In comparison to the number of clusters for k-
Means, SOM is able to alienate its first bot outside the benign
cluster with a lower number of neurons (9 vs. 16). With 81 neu-
rons, SOM has a recall of 92%, with k-Means achieving 42%.
However, k-Means catches up with 121 clusters. Nevertheless,
SOM outperforms k-Means by maximizing the number of bots
isolated with a smaller number of neurons.

With a cluster size of 100, k-Means alienates 21 bots, while
having an outside host sum of 3028 for the remaining non-
benign clusters. In contrast, SOM removes 23 bots from the
benign cluster with an outside host sum of 3675. The very
next k-Means cluster size, i.e., 121, boosts HOB from 3028 to
26935, while SOM remains at a close 3894. However, k-Means
isolates three extra bots, yielding 24 BOB for 26935 HOB.
That is, three extra bots were detected for a ≈23K increase
in HOB. Recall that our objective in this phase is to jointly
minimize HOB while maximizing BOB. Therefore, SOM with
100 neurons becomes the natural choice.
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TABLE III
SOM CLUSTERING WITH F-NORM

TABLE IV
SUPERVISED LEARNING WITH F-NORM

With respect to runtime, k-Means mostly outperforms SOM,
as depicted in Fig. 5. With 100 clusters, k-Means took 16.8
seconds to train, in comparison to 47.1 seconds of SOM. We
speculate that SOM’s ever increasing training time is con-
tributed to how it updates the surrounding neurons. As the
number of neurons increase, the density of their neighborhood
also increases. Eventually, more neurons will tend to be within
the threshold radius. Nevertheless, with recall being our top
priority, we leverage SOM as a UL classifier in Phase 1.

The training set for Phase 2 is determined by the number
of hosts outside the benign cluster in Phase 1. These are the
relevant hosts for this phase, as hosts that are assigned in
the benign cluster never make it to Phase 2. With a 10×10
(i.e., 100 neurons) SOM and normalized features in Phase 1,
the size of the dataset is significantly reduced. Therefore, we
have 3675 HOB, including 23 bots, for further classification
in Phase 2.

For this phase in BotChase, we evaluate four SL techniques,
namely DT, LR, SVM and FNN. We use DT with Gini instance
split rule algorithm, LR without regularization, and SVM with
the Gaussian kernel and a soft margin penalty of 1. Moreover,
NN is configured to use cross entropy as an error function and
10 hidden layers of 1000 units each. The DT classifier shows
the best performance with the small dataset, as depicted in
Table IV. It successfully detects all bots in the test dataset,
with only a single FP out of the 366871 benign hosts. In
contrast, all other classifiers are lackluster and unable to recall
even a single bot from the dataset. We believe this is because
all classifiers, except DT, rely on gradient-descent for error-
correction. This implies that every single node in the dataset
will affect the end-hypothesis function. Thus, with a dataset
that is unbalanced, the hypothesis will be biased towards the
benign hosts, which is the case for LR, SVM and FNN.

TABLE V
TRAINING TIME OF SUPERVISED CLASSIFIERS ON THE PRUNED DATASET

TABLE VI
SUPERVISED LEARNING WITH F-NORM ON THE BALANCED DATASET

TABLE VII
SOM WITH NEWLY AGGREGATED DATASET

Therefore, to balance the training dataset we follow a mixed
sampling approach. The benign hosts are subject to downsam-
pling to defined set size K in a range of [1K, 2K, 5K, 10K].
We then perform oversampling with replication for the bots
at a 1:1 ratio with respect to the benign hosts. This provides
a balance in between the dataset labels. The experiments are
repeated per unique set size and the best overall outcome is
then selected. Table VI shows the results with a balanced train-
ing dataset in this current scenario. SVM and FNN remain
unfazed, not being able to classify a single bot. However,
DT shows a significant drop in its classification performance.
Since this is the pruned dataset, the number of unique data
points present is minimal and the imbalance is not as signif-
icant as observed in [11]. However, balancing at this stage
means balancing data points that were all outliers. This makes
it more difficult for DT, which relies on information entropy,
to converge to a proper bot classification state. As DT incurs
a significantly less training time than LR, we proceed with the
vanilla pruned dataset in the following analyses.

Table V highlights the training time for the supervised clas-
sifiers. For Phase 1, a 10×10 SOM incurs a training time of
47.1 seconds, while DT has the lowest training time of 88 mil-
liseconds in Phase 2. Thus, the aggregate training time for both
phases is ≈47.2 seconds, which is an 11 seconds improvement
over the 58.2 seconds of stand-alone LR [11].

Using dataset #6 for testing, the robustness test harbors
more hosts for training in Phase 2. Most importantly, there
are more BOB, yielding a higher ratio of bots to hosts outside
the benign cluster, as depicted in Table VII. The robustness
results are portrayed in Table VIII. Though LR is able to recall
the malicious bot while incurring only a single FP, DT exhibits
perfect results on this specific test dataset. It is able to detect
the previously unknown bot, as well as correctly classify all the
benign hosts. Therefore, with SOM selected for Phase 1 and
DT for Phase 2, the system ensures minimal training time and
robustness to unknown attacks, with high recall and precision.
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TABLE VIII
SUPERVISED LEARNING AGAINST PREVIOUSLY UNKNOWN BOT

TABLE IX
SOM CLUSTERING WITHOUT F-NORM

4) Feature Normalization: Recall that aggregating datasets
from different networks can negatively impact the base fea-
tures, thus compromising system performance. Essentially, the
topological structure of different networks affect the extracted
graphical features, greatly skewing bot pattern and behavior.
Thus, the intuition behind feature normalization is to make
hosts, including bots, from different datasets look alike.

Table IX showcases the crucial depreciation of the SOM
results without normalizing graph-based features. For exam-
ple, with 81 neurons, SOM with and without F-Norm scores
92% and 60% on BOB, respectively. On average, the results
without F-Norm have a higher HOB. This intrinsic observa-
tion signifies the lack of similarity between hosts of the same
category. For example, benign hosts from different networks
are not co-located due to the stark differences in their fea-
tures. Conversely, with F-Norm, similarly labeled hosts are
more frequently co-located, yielding better BOB and HOB.
Hence, normalized graph-based features significantly improve
the spatial stability of ML in BotChase.

For 100 neurons, SOM with F-Norm results in 23 BOB and
3675 HOB. Without F-Norm, it results in 22 BOB and 8465
HOB, as shown in Figures 6 and 7. Thus, for the same number
of neurons, feature normalization was able to maximize BOB,
while minimizing HOB. Therefore, we choose 100 neurons
with F-Norm as our primary configuration for SOM.

5) Feature Engineering: It is important to gauge the signif-
icance and impact of the chosen graph-based features on bot
detection. Albeit, different feature combinations may impact
results, but are all features necessary? Table X shows the
Pearson’s feature correlation matrix for the normalized graph-
based features. At a glance, we can determine that the first
five features are highly correlated, with a correlation close
to or greater than 0.9. Therefore, feature combinations that

Fig. 6. Number of hosts outside the benign cluster (HOB) assigned by SOM
with and without feature normalization.

Fig. 7. Number of bots outside the benign cluster (BOB) assigned by SOM
with and without feature normalization.

TABLE X
PEARSON’S FEATURE CORRELATION MATRIX WITH F-NORM

TABLE XI
SOM CLUSTERING WITHOUT IDW AND ODW

exclude some of these features may not exacerbate classi-
fication accuracy. On the other hand, the last two features
are highly uncorrelated, with LCC being the least corre-
lated. Hence, we start with removing IDW and ODW, which
decreases the benign cluster size but results higher on BOB, as
shown in Table XI. However, Table XII shows the lackluster
performance of the SL classifiers when we eliminate IDW and
ODW features. Precision drops to 52.6% for DT from 90.9%
(see Table IV). Also, LR now misclassifies two benign hosts
as bots.

A weakness of the chosen features is the runtime of BC.
For the first dataset, it took over 24 hours to compute BC.
This will render any effort to expedite the learning process in
vain. However, removing BC from the feature set adversely
affects the performance of DT, but not for SOM, as depicted
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TABLE XII
SUPERVISED LEARNING WITHOUT IDW AND ODW

TABLE XIII
SOM CLUSTERING WITHOUT BC

TABLE XIV
SUPERVISED LEARNING WITHOUT BC

TABLE XV
COMPARATIVE TRAINING AND TESTING DATASETS

in Tables XIII and XIV. SOM without BC performs identical
to the use of the entire feature set. On the other hand, DT’s
precision is affected by the removal of BC, but it performs
better than the removal of IDW and ODW from the feature
set. While the precision deteriorates, only 6 and 9 benign hosts
are misclassified out of the ≈367K hosts with the removal of
BC and IDW/ODW, respectively. This reinforces the correla-
tion matrix, i.e., these features are the most correlated. Since
recall and precision are sought after metrics in BotChase, it
is important to include these features for training and testing
classifiers.

6) Comparative Analysis: Given the modularity of
BotChase, in-place substitution of modules is possible. For
example, rather than having graph-based features, the system
can leverage flow-based features, while maintaining the
two-phased bot detection. Therefore, we first compare the
performance of our graph-based features with flow-based fea-
tures from BotMiner and BClus in BotChase. Furthermore,
we compare BotChase with the end-to-end system proposed
for BClus. Finally, we provide a rough comparison against
BotGM. In essence, BotGM and BotChase classify different
entities in a network. The former predicts upon graphs of host-
to-host communication, while BotChase classifies hosts based
on a time frame. For a fair comparison, we reselect the train-
ing and testing datasets. This conforms to the selection in [8],
where the test dataset contains multiple bot types and different
network topologies. The dataset selection of these comparisons
is depicted in Table XV.

BotMiner aggregates flows based on their source IP, proto-
col, destination IP and its corresponding port. These aggre-
gated flows, called C-Flows, are processed in time epoch

TABLE XVI
SUPERVISED LEARNING WITH BOTMINER FEATURES WITHOUT F-NORM

that lasts up to a full day of flow capture. After flows are
aggregated, 52 features are extracted by first mapping every
C-Flow into a discrete sample distribution of four random vari-
ables: (i) total number of packets sent and received in a flow,
(ii) average number of bytes per packet, (iii) total number of
flows per hour, and (iv) average number of bytes per second.
These random variables are then binned into 13 slots accord-
ing to pre-defined percentiles. Through this technique, every
variable is converted into a vector of 13 elements, totaling 52
features per C-Flow.

BClus undertakes a similar clustering approach by grouping
flows into instances. These instances are identified by unique
source IPs in a certain time window. Each instance is repre-
sented using 7 features: (i) source IP address, (ii) number of
distinct source ports, (iii) number of distinct destination ports,
(iv) number of distinct destination IPs, (v) total number of
flows, (vi) total number of bytes, and (vii) total number of
packets. These instances are then clustered using Expectation
Maximization (EM). More features are then extracted from the
clusters themselves to label clusters. These include: (i) total
number of instances, (ii) total number of flows, (iii) number of
distinct source IP addresses, and (iv) the average and standard
deviation amount of distinct source ports, distinct destination
IPs, distinct destination ports, number of flows, number of
bytes, and number of packets. Hence, every cluster exhibits 15
features, which are then used by JRip (RIPPER), a proposi-
tional rule learner. After training, JRip is capable of classifying
each cluster as malicious or benign. Ground truth label of clus-
ters is determined through a bot flow threshold that is varied
to find the best JRip model.

BotGM uses graph-based outlier detection to detect suspi-
cious flow patterns. It starts off with extracting events, i.e.,
converting flows into a key-value entry. The key represents
the source and destination IPs, while the value represents the
source and destination ports. Then a sequence is extracted that
tracks the source and destination port variations of two unique
IPs. A directed graph is extracted from these variations, with
vertices representing a port 2-tuple. The aggregate graphs are
then mined for outlier detection. BotGM uses the graph edit
distance to gauge how different a graph is from another. The
inter-quartile method is then used to detect outliers.

• BotMiner Flow-based vs. Graph-based Features—We
start with the aforementioned flow-based features from
BotMiner in BotChase. Table XVI showcases the out-
come of classifying flows using BotMiner features, where
only LR is able to detect a few malicious flows, misclas-
sifying the majority of benign and malicious flows. To
compare, we convert our host classification into flow clas-
sification in Table XVII. With a recall (RCL) of 0.02%
and a precision (PRC) of 16.28%, BotMiner features
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TABLE XVII
FLOW-BASED SUPERVISED LEARNING

perform poorly against the graph-based features. The lat-
ter scores 81.57% and 99.51% on recall and precision,
respectively. However, in comparison to host classifica-
tion (see Table XXI), the precision is significantly higher
as the flows originating from the identified FP hosts
were relatively minimal. Likewise, the different number
of flows per host may result in a lower or higher recall
rate. While LR and DT highlight similar host classifica-
tion results, DT is the more favorable flow classifier as
it does not misclassify prominent benign hosts.

• BClus Flow-based vs. Graph-based Features—
Implementing BClus features in BotChase was an
incremental process. Alongside choosing the optimal
number of EM clusters, F-Norm has a major impact on
the results. Unlike BotMiner, BClus strictly classifies
instances pertaining to unique source IPs. An instance
becomes a full representation of host behavior, using a
large time window that fits the entire test dataset. As
depicted in Table XVIII, our preliminary implementation
of BClus without F-Norm has a zero recall rate across
all the trained supervised classifiers. Therefore, to
improve BClus we modify F-Norm to process all the
hosts. Recall that BClus extracts features for source
IPs only, thus features of destination IPs are missing
from our data pipeline. The data pipeline only consists
of hosts that have had their features extracted based
on previous aggregations. Hence, a direct application
of F-Norm, as implemented in BotChase, results in
missing data elements for hosts that are present in the
graph but not in the data pipeline. Therefore, we first
naïvely modify F-Norm to handle non-existent data
points with a zero vector. This improves the results of
LR, which now captures a single bot out of 14, while
the remaining classifiers still perform poorly, as depicted
in Table XIX. This comes with no surprise, as a zero
vector still affects the relative values of the host features.
Finally, we transform BClus to account for both source
and destination IPs as instances. This solves the issue
with F-Norm, since all unique IPs in the network are
mapped into a corresponding data point and host node
in the graph. Using this two-way analysis, Table XX
shows an appreciable improvement over the former
iterations. DT manages a jump from 0% to 64.29% in
recall and 81.82% in precision. However, even after the
improvements to BClus features, it significantly under
performs our graph-based features. Table XXI showcases
the performance of the graph-based features on the
new dataset selection. It exhibits convincing results for
both DT and LR, with high rates of 80% and 85.71%

TABLE XVIII
SUPERVISED LEARNING WITH BCLUS FEATURES

AND WITHOUT F-NORM

TABLE XIX
SUPERVISED LEARNING WITH BCLUS FEATURES

AND MODIFIED F-NORM

TABLE XX
SUPERVISED LEARNING WITH BCLUS FEATURES

AND TWO-WAY F-NORM

TABLE XXI
SUPERVISED LEARNING WITH F-NORM

on recall and precision, respectively. Interestingly, DT
and LR have similar performance on host classification
yet different on flow classification. Although both
classifiers agree metrics-wise, the underlying sets of
hosts tagged as bot or benign are different. Hence, it is
possible to combine the classifiers into a single decision
making entity. A simple rule to boost our classification
results could be to flag a host as a bot if at least one
classifier concurs. While this can increase the recall rate,
precision is expected to decline as FPs are aggregated
across classifiers.

• BClus Hybrid vs. Graph-Based Features—So far, we
have experimented with both BClus flow-based and
BotChase graph-based features. How would these fea-
tures fair together in the same ML model? With 6
flow-based and 7 graph-based features, every unique host
in the network has 13 features to be processed by the
system. In this experiment, we resort to BotChase as
our base architecture, only changing the amount of fea-
tures computed per unique source IP. Table XXII shows
the result of the corresponding analysis. When compared
to the graph-based baseline, LR is able to detect an
additional bot, while incurring 6 additional FPs. This
boosts the recall rate to 92.86%, while bringing down
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TABLE XXII
SUPERVISED LEARNING WITH BCLUS HYBRID FEATURES AND F-NORM

TABLE XXIII
BCLUS END-TO-END RESULTS

TABLE XXIV
ACCURACY OF BOTGM VS BOTCHASE

the precision to an unimpressive 59.09%. On the other
hand, the metrics for DT did not change.

• BClus End-to-End vs. BotChase—As part of our com-
parative analysis, we also implement the entire BClus
approach and perform classification on their pre-defined
selection of datasets. After optimizing the number of EM
clusters (i.e., 12) and JRip folds, BClus performs a record
100% recall on the test datasets, with an extremely poor
precision of 6%. Additionally, Table XXIII shows a high
cost of 423.9 seconds to solely train EM. BClus sig-
nificantly under performs BotChase that has a minimal
21.9 seconds in total training time, and ≥80% on recall
and precision.

• BotGM vs. BotChase—As the final comparison, we
compare BotChase to BotGM. Both systems attempt
to identify malicious and outlier behavior using graph
methodologies. In [9], BotGM shows an impressive
accuracy of up to 95% on one of the test datasets.
Can BotChase do better? We perform a leave-one-out
approach, targeting one test dataset and taking the rest
for training. The results are depicted in Table XXIV.
BotChase scores an aggregate high of 99% with a low of
84%. In contrast, BotGM shows a marginal improvement
for scenarios 6 and 8 but lags behind in the remaining
scenarios. We speculate that the traffic from the benign
hosts overshadow that of the malware, which could be
an issue for graph-based features, but not for BotGM’s
host-to-host traffic patterning.

7) Ensemble Learning: When multiple classifiers are used
together for prediction, they are categorized under ensemble
learning. Earlier, we have shown that DT and LR classify 12
out of the 14 bots with 3 FPs incurred in Table XXI. However,
once we translate the results into flows in Table XVII, the num-
bers are completely different. This shows that the classifiers
have successfully predicted a different set of bots. In essence,
having them both act as a single classifier conservatively (i.e.,
bot detected, if inferred by at least one model) should result

TABLE XXV
ENSEMBLE LEARNING WITH GRAPH-BASED FEATURES

TABLE XXVI
ONLINE SUPERVISED LEARNING

in a higher recall rate. We experimented with both of our two
successful classifiers working in tandem, DT and LR.

The results in Table XXV reflect our hypothesis. The ensem-
ble is able to correctly predict 13 bots, boosting recall to
92.86%. However, given the conservative approach, an FP
incurred in any classifier will be accounted for. In this case, the
classifiers on their own predict different hosts as FPs, result-
ing in an aggregate of 6 FPs. While this approach brings down
the precision of the second phase to 68.52%, it enables us to
successfully classify one more bot.

8) Analysis in an Online Setting: While our infrastructure
fully supports streaming, our initial evaluation of BotChase
was carried out on the entire CTU-13 dataset as a single data
batch. However, it will be crucial to constantly retrain the ML
models to account for change in network traffic patterns and
host behavior. This will indeed be fundamental in realizing
autonomic security management [48]. Most ML models are
trained offline, and retrained from scratch. When this proves to
be computationally intensive and time consuming, it prohibits
the aspects of online deployment. The ability to retrain the model
as new data becomes available, is fundamental to accommodate
ML models’ boundary changes after deployment.

To evaluate BotChase in an online setting, we iteratively
retrain the ML models with new data and test the models.
The training and testing datasets are inferred from Table XV.
We assess the different ML models as we increase the amount
of flows ingested into the system, from the aggregated training
dataset. Therefore, a time window (w) of 5 minutes spawns N
time windows, where N is the number of training sub-datasets.
In the current dataset, a 5 minute time window is equivalent to
40 minutes of ingested data. Furthermore, the smallest train-
ing dataset has 15 minutes of flows, while the largest has 4011
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Fig. 8. The variation of the training and testing time as time progresses.

minutes. This is due to the nature of network flows. For exam-
ple, the number of flows captured in one minute of a DDoS
attack will outweigh that of an idle network. Therefore, the
percentage of flows ingested into the system will increase in
a non-linear manner. Also, it is ideal for the time window to
be smaller than the smallest dataset.

With w = 5 and the same aggregated test dataset to assess
the different ML models, we expose the elapsed time (t), per-
centage of flows ingested online (Ing.), and the classification
metrics in Table XXVI.

• At t = 5 mins, only a few flows are ingested into
the system. There are a total of 9,697,049 flows in the
dataset, while the percentage of ingested flows is minus-
cule, hence it shows as 0.00%. Since DT is the second
phase classifier, having only benign data points does not
suffice. Therefore, when the system detects this edge case,
it defaults to classifying all data points as benign.

• At t = 15 mins, 1.1% of flows are now ingested into the
system. Given the early condition of hosts, it is expected
to have high false alarms. In this case, the system results
in 21 FPs and 14 FNs. The first bot flows appear at this
time.

• At t = 30 mins, we reach 3.61% of ingested flows. The
number of TPs detected improves from 0 to 8, leading
to the first model that is able to detect malicious hosts.
Hence, it takes exactly 15 minutes for the system to
exhibit its initial TPs, after the first bot flows start to
appear. At this point, a baseline of malicious behavior is
formed, matching the classification system’s bot profile.

• At t = 60 mins, the model’s performance declines. The
amount of flows ingested is 5.07%, while the model
incurs 14 FPs and FNs. At this stage, the malicious
hosts have camouflaged their features through benign
communication and exhibit benign host-like behavior.

• At t = 75 mins, the system reaches a state which is
close to that of ingesting the full training dataset. At
only 10.32%, it is able to detect 12 out of 14 bots.
This achieves a recall of 85.71%. However, there are 2
additional FPs, resulting in a 70.59% precision.

• At t = 80 mins, the system reaches its best outcome
with only a tenth of the data ingested. Interestingly, one
FP is shaved off the standard system metrics. As afore-
mentioned, having more or less training data points may
alter the constructed bot and benign profiles. A bot may
initially behave like a benign host. Once more flows are

TABLE XXVII
ONLINE SUPERVISED LEARNING USING HAT

ingested, a bot behavior can become more prominent and
anomalous to that of benign. However, with further flows,
the bot may also be able to disguise itself as benign. Since
BotChase depends on graph-based features, an additional
flow either adds weight to an existing edge or creates one.
This will effectively change the neighbouring malicious
and benign host features used in training, thus skewing
performance.

Fig. 8 showcases the different training and testing times
observed as the time window progresses. Since we are deal-
ing with flows in this scenario, the training time incorporates
the time needed to extract the features from the flows. This
requires building the graph incrementally with the given flows
and extracting the features of every node. The plot takes on
a positive slope for the training time, while the testing time
remains at a plateau of around 9 seconds. At 75 minutes,
the training time jumps to 227 seconds, slightly increment-
ing to 244 seconds at 80 minutes. Even at this optimal mark,
the training time remains < w. This implies that the system
is ready for classification prior to the processing of the next
window interval.

Some variations in performance are observed beyond
t = 100 minutes. This is because over-fitting can occur that
contributes to additional FPs and FNs. The system reaches a
steady state at t = 270 minutes, when only 37.22% of the flows
are ingested. The sooner an online system becomes effective,
the better. The amount of ingested flows and required training
time dictates the total system overhead over time. The second
phase supervised classifier used is DT, and it uses the ID3
algorithm [49]. This specific algorithm does not permit incre-
mental learning, thus the tree is reinitialized at every epoch.
Obviously, this is not efficient.

Therefore, we further experiment with a very fast decision
tree (VFDT) variation, the HAT. This tree algorithm can be
trained on-the-fly as new data becomes available. It maintains
old branches, making sure to prune them as they become
obsolete. An internal naïve bayes selector is used when the
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Fig. 9. The variation of the training time of HAT, ID3, and SOM.

tree leaves have the same values but different labels. Using
MoA’s HAT [50], we set out to experiment with BotChase
using the Hoeffding algorithm. The results are depicted
in Table XXVII.

We ran the algorithm with the same settings as that of the
former experiment.

• At t = 5 mins, HAT should be very similar to ID3 as
both trees have the same exact data. This is exposed with
minimal flow ingestion, and zero recall and precision.

• At t = 40 mins, 3.61% of flows are now ingested into
the system. This is the first epoch at which the system
attempts to positively label hosts. However, this results
in 44 FPs.

• At t = 55 mins, we reach 4.26% of ingested flows. At
this point, the system is able to successfully detect 7 out
of the 14 bots. Compared to ID3, the system maintains
its momentum to converge to a state that is capable of
detecting bots. While the number of FPs have decreased,
20 still remain.

• At t = 70 mins, the system is able to successfully detect
2 more bots, incurring alot more FPs along the way.

• At t = 90 mins, the model becomes capable of cap-
turing most of the bots, misclassifying only one. The
amount of flows ingested is now 13.53%, The model still
incurs a few FPs, only 1 more FP than that of the former
algorithm.

• At t = 95 mins, the system reaches a steady state. The
recall rate does not change, but the precision increases to
81.25%. Throughout this progression, SOM maintains an
average training time of 4 seconds.

Fig. 9 shows the stark difference in training time once
an incremental classifier is deployed. Retraining from scratch
results in an ever increasing training time. However, leverag-
ing an incremental model allows the training time to only be
restrained to new data. In general, HAT takes longer to achieve
a good system state for detection, but will do so incrementally
without retraining from scratch. There is a prominent compro-
mise between convergence speed, training time, and efficacy of
the model. When training time is paramount, one would favor
HAT over ID3. Moreover, HAT seems more stable over time,
as we see some dips in performance across intermediate itera-
tions for ID3. With only ≈14% of the flows ingested and ≈2
minutes of training time incurred at every iteration, BotChase
proves suitable for deployment in an online classification
setting.

V. CONCLUSION

In this paper, we propose BotChase, a system that is capable
of efficiently transforming network flows into an aggregated
graph model. It leverages two ML phases to differentiate bots
from benign hosts. Using SOM, the first phase establishes an
acceptable compromise between maximizing the benign clus-
ter and alienating the malicious bots. Furthermore, the results
of the second phase favor DT, showcasing high TPs and low
FPs. Without F-Norm, the results of the SOM were exacer-
bated, isolating less bots and decreasing the size of the benign
cluster.

BotChase is also able to detect bots that rely on differ-
ent protocols, proves robust against unknown attacks and
cross-network ML model training and inference. Flow-based
features employed in BotChase under perform in comparison
to graph-based features. BotChase also outperforms an end-
to-end system that employs flow-based features, and performs
well against the graph-based BotGM system. In an online
setting, BotChase leverages HAT for incremental learning to
process data on-the-fly. While the model takes longer to con-
verge, it exhibits superior classification performance in its final
state. Further tuning the classifiers, exploring advanced ensem-
ble learning and feature engineering, and extending F-Norm
to higher degrees are candidates for future research.
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