
Computer Communications 165 (2021) 9–19

R
T
R
D

A

K
C
A
L
A
M

1

c
v
a
t
C
i
w
w

i
t
p
a
l
i
s
v
e
k

w

a

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

DP-based Lateral Movement detection using Machine Learning
im Bai, Haibo Bian, Mohammad A. Salahuddin, Abbas Abou Daya, Noura Limam ∗,
aouf Boutaba

avid R. Cheriton School of Computer Science, University of Waterloo, Ontario, Canada

R T I C L E I N F O

eywords:
ybersecurity
dvanced Persistent Threats
ateral Movement
dversarial learning
achine Learning

A B S T R A C T

Detecting cyber threats has been an on-going research endeavor. In this era, Advanced Persistent Threats (APTs)
can incur significant costs for organizations and businesses. The ultimate goal of cybersecurity is to thwart
attackers from achieving their malicious intent, whether it is credential stealing, infrastructure takeover, or
program sabotage. Every cyber attack goes through several stages before its termination. Lateral Movement
(LM) is one of those stages that is of particular importance. Remote Desktop Protocol (RDP) is a method used
in LM to successfully authenticate to an unauthorized host that leaves footprints on both host and network
logs. In this paper, we propose to detect evidence of LM using Machine Learning (ML) and Windows RDP
event logs. We explore different feature sets extracted from these logs and evaluate various supervised ML
techniques for classifying RDP sessions with high precision and recall. We also compare the performance of
our proposed approach to a state-of-the-art approach and demonstrate that our ML model outperforms in
classifying RDP sessions in Windows event logs. In addition, we show that our model is robust against certain
types of adversarial attacks.
. Introduction

Advanced Persistent Threat (APT) is one of the most prominent
yber attacks that has the potential to cause significant damage to
arious organizations and businesses. It is a stealthy attack in which
ttackers gain unauthorized access to a network for a long period of
ime. According to Kaspersky Lab [1], a backdoor program, called
arbanak, caused a billion dollar in cumulative losses for a financial

nstitution. Furthermore, more than 80 million social security numbers
ere siphoned from Anthem, a big health insurance company, which
as only detected after nine months [2].

Most secured systems maintain a strong boundary between the
nternet and the intranet, thus attackers choose targets that have access
o hosts behind the network security functions (e.g., firewalls, intrusion
revention systems, etc.). It is difficult for attackers to launch attacks
gainst assets that reside in the intranet. Thus, an attacker usually
everages social engineering techniques (e.g., phishing, pretexting, bait-
ng, etc.) to trick network insiders into executing malicious code or
urrendering credentials. This allows the attacker to gain access to the
ictim’s computer and gradually explore for valuable information by
xploiting vulnerabilities of other intranet entities. This is commonly
nown as Lateral Movement (LM).

During the LM phase, attackers tend to use legitimate system tools,
hich make the detection of APT a challenging endeavor. However,

∗ Corresponding author.
E-mail addresses: tim.bai@uwaterloo.ca (T. Bai), haibo.bian@uwaterloo.ca (H. Bian), mohammad.salahuddin@uwaterloo.ca (M.A. Salahuddin),

aboudaya@uwaterloo.ca (A. Abou Daya), noura.limam@uwaterloo.ca (N. Limam), rboutaba@uwaterloo.ca (R. Boutaba).

Machine Learning (ML) techniques have been widely used for APT
detection [3]. ML is an ideal tool to extract knowledge from data and
learn system behavior [4]. Some research utilize a single ML model,
while others combine different learning techniques to form an ensemble
or a hybrid model for intrusion detection. For instance, Kaiafas et al. [5]
build an ensemble classifier that leverages voting mechanism, whereas
Kim et al. [6] employ both Support Vector Machine (SVM) and Decision
Tree (DT) to build a two-stage classification model. These techniques
demonstrate significant advances in intrusion detection.

APT detection methods generally rely either on network flow data
[7–10], or host system logs [11,12] to uncover evidence of APT.
Network-based intrusion detection has been well explored but has
several shortcomings. Firstly, there is limited information that can
be extracted from network data. For privacy concerns, it is illegal
to inspect network payload without user consent [3], making it non-
trivial to extract meaningful information beyond packet statistics and
the basic five tuple (i.e., source IP, destination IP, source port, des-
tination port, and protocol). In addition, 72% of the recent network
traffic is encrypted using protocols, such as Transport Layer Security
(TLS) [13]. This makes inspection of packet’s payload challenging with-
out significantly degrading system performance. Furthermore, attackers
launching APT tend to be cautious and often leverage custom protocols,
making it harder to detect abnormal behavior within network data.
ttps://doi.org/10.1016/j.comcom.2020.10.013
eceived 25 May 2020; Received in revised form 14 October 2020; Accepted 20 O
vailable online 28 October 2020
140-3664/© 2020 Elsevier B.V. All rights reserved.
ctober 2020

https://doi.org/10.1016/j.comcom.2020.10.013
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.10.013&domain=pdf
mailto:tim.bai@uwaterloo.ca
mailto:haibo.bian@uwaterloo.ca
mailto:mohammad.salahuddin@uwaterloo.ca
mailto:aaboudaya@uwaterloo.ca
mailto:noura.limam@uwaterloo.ca
mailto:rboutaba@uwaterloo.ca
https://doi.org/10.1016/j.comcom.2020.10.013


T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

a
f
r
F
w
l
T
l
F
i

i
d
a
a
t
t
I
w
B
d

r
(
p
a
i
o
f
t
h
o

•

•

•

a
i
p
p
e
a
m
i
o
a
i

2

2

s

On the other hand, host-based intrusion detection can overcome the
forementioned limitations. At the end host, data is decrypted, allowing
or extraction of information, including payload entropy, packet drop
ate, and login failures, which can improve detection performance.
urthermore, operating systems have built-in logging functionalities,
hich provide abundant information. By enabling or disabling different

ogging levels and policies, only useful information can be logged.
here are multiple stages in APT (cf., Section 2) and certain stages will

eave footprints allowing for the detection of intrusion in its early stage.
or example, an intruder can gain access to the target host within the
ntranet, but this action would generate suspicious logs on the end host.

Since the ML algorithms were designed without taking security
nto consideration [14], both network-based and host-based intrusion
etection systems are vulnerable to attacks from adversaries. Therefore,
ny ML-based system must be designed with defense strategies against
dversarial attacks. There are numerous works that attempt to tackle
his issue (cf., Section 2). For example, Marco et al. [15] present a
axonomy, identifying and analyzing attacks against ML-based systems.
n addition, a variety of defense techniques are proposed in their
ork to protect systems from different types of adversarial attacks.
iggio et al. [14] develop systematic approaches to defend against the
ifferent types of adversarial attacks.

Remote Desktop Protocol (RDP) is designed by Microsoft to provide
emote display and input capabilities, while Remote Desktop Service
RDS) is a native service on Microsoft Windows platform that im-
lements RDP. This service is frequently used by legitimate network
dministrators. However, it is also a primary tool used by attackers dur-
ng LM [16], since discriminating between legitimate and malicious use
f this tool is challenging. We surveyed nine distinct APT incidents and
ive of them (i.e., over 50%) used RDP during the attack. Therefore, in
his paper, we detect anomalous RDP sessions based on evidence from
ost logs with a focus on optimizing recall. The primary contributions
f this work are as follows:

We highlight the limitations of two publicly available Windows event
log datasets from Los Alamos National Laboratory (LANL) [17,18].
To overcome their limitations, we combine these two datasets while
preserving their realistic properties.
We propose an ML-based approach for detecting malicious RDP ses-
sions. We explore different feature sets and evaluate various super-
vised ML techniques for classifying RDP sessions in Windows event
logs.
We compare the performance of our proposed approach to a state-of-
the-art method [5], and demonstrate that our ML model outperforms
in the classification of RDP sessions in Windows event logs. In ad-
dition, we show that our model is robust against certain types of
adversarial attacks.

The rest of the paper is organized as follows. Section 2 provides
background and presents the current state of existing host-based

ntrusion detection systems. Section 3 describes the characteristics and
roperties of the two datasets we employ in this paper. Section 4
resents the approach of crafting our synthetic dataset based on the
xisting dataset. Furthermore, the features extracted from this dataset
re elaborated, and ML techniques and their performance evaluation
etrics are discussed. In Section 5, we delineate our evaluation results

n detecting anomalous RDP sessions and benchmark the robustness
f our proposed model. Section 6 highlights our main contributions
nd provides a brief summary of this paper. In addition, this section
nstigates future research directions.

. Background and motivation

.1. Intrusion kill-chain and lateral movement

Conventional APT detection approaches assume successful intru-

ions and focus on individual events. However, in recent sophisticated

10
APT, a single adversary campaign consists of multiple small, less de-
tectable attacks. Detecting these attacks can be challenging, as a single
campaign may develop over time with multiple steps, each designed to
thwart a defense and take place in a different timeline.

All attacks occurring in cyberspace have patterns that can be de-
scribed as a chain of events—the intrusion kill-chain [19]. At a high-
level, an APT starts with reconnaissance, observing and identifying
a target in the network. This is followed by creating a weaponized
payload. Weaponization of payloads typically take the form of malicious
emails and attachments, which are delivered to the subject of inter-
est. Exploitation starts after delivery, where the malevolent code gets
triggered. While malicious code execution can be stand-alone, some
malwares exploit applications on the subject’s machine. This can range
from OS-based bugs (e.g., in RDP and PsExec) to application-based
faults (e.g., in live processes, such as Google Chrome and Microsoft
Office). The attacker then proceeds with the installation of a security
back-door on the system or activation of system built-in functional-
ity (e.g., RDP), which permits external persistent connections. After
the establishment of a persistent connection, the attacker can start
executing different actions while moving laterally in the environment.
These actions leave system logs on end hosts, that we leverage in our
host-based intrusion detection.

In addition to Command & Control, the kill-chain identifies LM as a
crucial attack behavior. LM includes credential stealing and infiltrating
other hosts controlled by attackers, to move laterally within the net-
work and gain higher privileges to fulfill adversarial objectives. Fig. 1
illustrates an example of LM. In this figure, a host (i.e., Host 1) that
resides in an enterprise network is compromised by an attacker via
social engineering, such as (spear) phishing [16]. Suppose there was a
previous RDP connection from Host 1 to Host 2, and the credential used
for accessing Host 2 is cached on Host 1. In this case, the attacker can
perform credential stealing on Host 1 to gain access to another internal
host (i.e., LM to Host 2) that has physical access to the databases. Note
that these databases are not directly connected to the Internet. The
attacker can then make connection attempts to the internal databases
using the stolen credentials of another internal host. Indeed, it is less
likely that adversaries could launch a successful intrusion without LM,
as crucial assets are typically not directly reachable from the outside
of a network [20]. Thus, detecting APT using LM can also contribute
to early attack detection [19,21]. In this paper, we focus on host-based
RDP evidence for LM detection.

2.2. Related works

Host-based intrusion detection enables quick microscopic per-host
analysis, and is well-suited for observable malware activities. It is
typically accomplished by examining system traces, such as event logs
and system calls. Existing works [12,22] show that host-based detection
has a higher potential in comparison to its signature-based counterpart.
However, as it requires extensive monitoring of system activities, it
tends to consume host resources (e.g., CPU cycles, memory, virtual
machines). Consequently, this can negatively impact user experience on
the host. Therefore, we use event logs collected by the native Windows
event monitoring system, to minimize this logging overhead.

While Windows event logs can be used for detecting anomalous
RDP sessions, they are also useful in detecting malicious tools exe-
cuted on end hosts. Berlin et al. [23] implement a virus detection
system that complements the host anti-virus software by applying
ML techniques on Windows event logs. Therefore, similar techniques
can be useful to detect the execution of malicious tools used during
LM. However, it is a challenge to achieve low error rates in host-
based intrusion detection [22]. Nevertheless, host-based analysis for
LM detection is advantageous over the network-based alternative with
respect to granularity and scalability [24].

Ussath et al. [16] analyze techniques and methods employed in

22 different APT campaigns, and help reveal their different relevant



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

c
a
R
a
d
s
p
t
s
f
m

d
a
a
o
o
w
a

c
b
a
f
t
a
a
i
c
a
t
a
s
l
p
f

c
m
T
b
T
f
o

Fig. 1. An illustration of lateral movement.

haracteristics. According to the authors, different tools and techniques
re leveraged in different phases of APT attacks. Among these tools,
DP is one of the most popular technique for obtaining persistent
ccess. Surprisingly, none of the surveyed APT campaigns use zero-
ay attacks during the LM phase. They also implement a user behavior
imulation system [25] to generate user activity logs for Windows
latforms. They leverage feed-forward and recurrent neural networks
o identify malicious log events. However, their dataset, generated by
imulation, is based on hypothetical assumptions. For example, ML
eatures such as longitude and latitude of the user, are impractical for
ost real-world scenarios.

Kaiafas et al. [5] successfully employ an ensemble of classifiers for
etecting malicious events in the LANL dataset [17]. The features used
re extracted based on a constructed bipartite graph. However, the
uthors are oblivious to the biased nature of the LANL dataset. Based
n our analysis (cf., Section 3), all red team events in the dataset
riginate from four unique hosts. This implies that the ML classifiers
ill be biased to the source host feature (employed in [5]) in training
nd inference. We highlight this limitation in Section 5.

Siadati et al. [26] propose APT-Hunter that visualizes the logon
onnections between computers. By filtering out logon events specified
y the security analysts, the unusual logon events can be further
nalyzed. However, such a system requires constant monitoring and
iltering by the experts. The authors also implement a system [27]
hat extracts anomalous logon patterns. They propose a pattern mining
lgorithm that consists of two components, an exact matching classifier
nd a pattern matching classifier. While the exact matching classifier
s prone to logon history poisoning, the pattern matching classifier
omplements it by matching a logon to all possible combination of
ttributes that describe it. A real dataset provided by a financial institu-
ion is employed for evaluation. However, due to the lack of malicious
ctivities, they inject attack traces based on pen test campaigns. Their
ystem yields 82% recall and 99.7% precision in detecting malicious
ogons. While the authors propose host-based detection that leverages
attern matching, the focus of our work is to harness ML techniques
or intrusion detection.

Milajerdi et al. [28] develop a system, called Holmes, that leverages
orrelation between suspicious flows during an APT attack. It aims to
ap suspicious events found in the host logs to stages of an APT attack.
o achieve this goal, Holmes first constructs a high-level scenario graph
y mapping low level audit logs to behavioral patterns defined as
actics, Techniques, and Procedures (TTPs). These TTPs are patterns
rom commonly used techniques in APT attacks. Then, it maps a set

f TTPs to a particular stage in an APT attack. The proposed system is

11
evaluated on a dataset generated from engagements of red teams and
blue teams. This dataset contains 9 different APT scenarios and Holmes
is able to achieve 100% recall and precision by selecting the optimal
threshold for malicious scores. The main limitation of this work is the
patterns used for generating TTPs, which require constant updates in
order to detect new threats. Notably our system does not depend on
any database to perform classification.

Lopez and Sartipi [29] propose different feature extraction tech-
niques and provide a list of features that can be employed for detecting
Information System misuse. The authors employ logistic regression
on the LANL dataset. Their Receiver Operating Characteristic (ROC)
produces a 82% area under the ROC curve, which outperforms random
draw. Although, the authors propose features for detecting misuse, they
do not evaluate the performance of various ML techniques on these
features.

Creech et al. [22] design a host-based intrusion detection system
that leverages system call patterns. They use a new type of neural
network i.e., extreme learning machine, with novel features derived
from semantic analysis to achieve a high detection rate. They employ
two datasets (i.e., KDD98 and ADFA-LD) for evaluation with 100%
detection rate and 0.6% false alarm rate. While their approach relies
on the analysis of system calls, our work focuses on log analysis. In
addition, their solution is customized for Linux-based systems, making
it infeasible to directly leverage on the Windows platform due to the
inherent differences in OS architectures [30].

Biggio et al. [14] analyze pattern recognition systems under adver-
sarial settings. The authors point out that the existing pattern recogni-
tion systems are designed without taking security into consideration.
Once the underlying assumption of data stationarity is broken, ma-
licious attackers are capable of easily compromising the classifier.
They review numerous existing works that leverage ML, and highlight
vulnerability with examples and experiments. To cope with the security
vulnerability in the clustering and classification systems, the authors
propose both proactive and reactive defense approaches. The proactive
approach can be categorized into security by design and security by
obscurity, whereas the reactive approach focuses on learning from
the past. This work helps us outline the different types of adversarial
attacks that may compromise our proposed model.

Apruzzese et al. [31] study a network-based intrusion detection
system [32] that uses ML techniques. The analyzed system uses network
flow-based features with a random forest classifier for detecting botnet.
The CTU-13 [33] dataset is used for evaluation. According to the exper-
iments performed by the authors, botnet can easily evade the detection
of such a classifier by slightly modifying its original commutation
patterns (e.g., flow duration, source bytes, destination bytes and total
packets, etc.). The authors further demonstrate the effect of perturbing
different combination of features. For instance, the detection rate of
botnet drops from 99.85% to 19.22% after adding just 1 second to flow
duration. While they analyze the weakness of a network-based intrusion
detection system, we develop a similar benchmark approach to show
that our model is robust against this type of adversarial attacks.

3. Dataset

The dataset plays a crucial role in the success of ML. However,
Windows event log datasets that represent real user behavior are fairly
limited. Most publicly available datasets, such as [33,34], facilitate
network-based intrusion detection. In contrast, host event logs contain
sensitive information limiting their distribution by organizations [25].
To overcome this limitation, researchers (e.g., [25]) often simulate
user and attacker behavior to generate synthetic datasets. However,
datasets generated using this approach are purely based on hypothetical
assumptions, and may not depict real-world user behavior. Therefore,
to preserve the realism of user behavior, we leverage and combine two
real datasets from LANL, namely comprehensive and unified datasets.
In the combined dataset (cf., Section 4), the Windows event IDs of
interest to this work are 4624, 4625 and 4634, which pertain to RDP
authentication. Table 1 provides a description of these events.



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

u
L
e
u
u
(

4

4

o
c
t
l
d
s
o
h
b
p

p
n
d
c

a
u

Table 1
Windows event ID Ref. [18].

Event ID Description

4624 An account was successfully logged on
4625 An account failed to log on
4634 An account was logged off

3.1. Comprehensive events dataset

The comprehensive dataset [17] spans 58 days, and consist of activ-
ities generated from 12,425 users and 17,684 computers. The dataset
is divided into five different logs, namely authentication, process, flow,
DNS and red team logs. The red team log contains a subset of events
from the authentication log, which are generated from red team activ-
ities (e.g., compromise events). Hence, the red team log provides the
ground truth for ML. In this paper, we leverage the authentication and
red team logs for detecting malicious RDP sessions. However, based on
the dataset description and our observations, there are limitations in
the authentication log:

• The number of red team events is very small, accounting for less than
0.0001% of the total events and only appear in certain time intervals.

• There are no logoff events, making it impossible to deduce certain
crucial features, such as the logon session duration.

• The timestamp is obfuscated in UNIX time epoch. As a result, it is dif-
ficult to categorize events into days, which could be a discriminating
feature to identify abnormal usage.

• A large number of RDP logon events have the same source and
destination host, which is beyond reason.

3.2. Unified events dataset

The unified dataset [18] is collected within LANL over a 90 day
interval. Table 2 highlights a sample event from this dataset. Unlike
the previous dataset, this dataset provides comprehensive and detailed
Windows event logs, including the missing logoff events. Although
the timestamps in this dataset are also obfuscated, events are already
divided into days. However, the primary limitation of this dataset is
the lack of red team activities, i.e., this dataset only contains benign
ser activities. Furthermore, the source host is missing in some 4624
ogonType 10 events and all 4625 LogonType 10 events. The 4624
vent records all successful logons and event 4625 records logon fail-
res with reason, while type 10 in both events indicate that RDP is
sed for remote login. Both of these events are crucial for tracking
malicious) RDP sessions [35].

. Methodology

.1. Combining datasets

Both datasets have limitations according to their authors [36] and
ur observations. Hence we decided to inject red team events from the
omprehensive dataset [17] into the unified dataset [18]. Since these
wo datasets were collected within the same organization, we do not
ose the properties and patterns of attack events. However, these two
atasets are obfuscated with different hash functions and cannot be
imply merged. Also, recall that the red team events originate from
nly four unique hosts. Indeed we could have mapped these four source
osts into a larger group of hosts in our synthetic dataset to avoid any
ias in the ML classifier. However, we did not choose this approach to
reserve the authenticity of the attacks.

We ensure that: (i) the network topology and the communication
atterns between benign hosts, along with the attack patterns are
ot modified, and (ii) the synthetic field in the dataset (i.e., session
uration), uses a statistical (i.e., normal) distribution. Let 𝑅 be the
ollection of red team logon events from the comprehensive dataset
12
nd 𝐵 the collection of benign RDP logon events extracted from the
nified dataset. For each event 𝑒𝑖 ∈ 𝑅, we map the source host 𝑆𝑟𝑐𝑖 to

a randomly selected unique source host 𝑆𝑟𝑐𝑗 from an event 𝑒𝑗 ∈ 𝐵. We
further map the user name and destination host tuple {𝑈𝑠𝑟𝑖, 𝐷𝑠𝑡𝑖} of 𝑒𝑖,
to a randomly selected unique tuple {𝑈𝑠𝑟𝑘, 𝐷𝑠𝑡𝑘} from an event 𝑒𝑘 ∈ 𝐵.
After mapping, we insert, in chronological order, the modified red team
events 𝑒′𝑖 into the set 𝐵, labeled as malicious. There are no changes
needed for timestamp, since the unified dataset already spans the red
team events time interval (i.e., the normal events span 90 days and
red team events span first 30 days). The detailed injection algorithm is
depicted in Algorithm 1.

We extract a total of 222,692 events with IDs 4624, 4625 and 4634,
and authentication type 10. We discard all 4625 events and those 4624
events with missing source host. After cleaning the dataset of invalid
data entries and extracting relevant features (cf., Section 5), we end up
with 56,837 events. The significant reduction in datapoints comes from
combining logon events (ID 4624) with their corresponding logoff event
(ID 4634) into an RDP session event with a well-defined session length.
Benign logon events from the unified dataset with no corresponding
logoff events are omitted as well.

Note that the injected red team authentication events only contain
logon events (ID 4624) but no logoff events (ID 4634). Hence, this
hampers the computation of malicious RDP session’s duration. To this
end, we generate a session duration for each red team event from a
normal distribution  (𝜇, 𝜎2), where 𝜇 and 𝜎 are the mean and stan-
dard deviation, respectively, computed from all benign RDP session’s
duration. Though a random distribution may be more reasonable, as
attacks can last for any duration, we assume that attacks have similar
behavior (session duration) to benign users. This assumption makes the
classification problem more difficult, since the malicious data points
are closer to benign data points in terms of this feature. It also makes
the data more realistic, as some attackers may simulate the benign
activities to avoid detection.

4.2. Feature engineering

We extract the following baseline features from the combined
dataset derived in the previous subsection:

• User (Usr): The user name used for RDP authentication.
• Source (Src): The source host where the RDP authentication origi-

nated.
• Destination (Dst): The destination host for the RDP authentication.
• Session duration: The duration of the RDP session in seconds.
• User time difference: For user 𝑈𝑠𝑟𝑖, the time difference of two sequen-

tial RDP authentication events 𝑒𝑗 and 𝑒𝑘 that contain user 𝑈𝑠𝑟𝑖.
• Source time difference: For source host 𝑆𝑟𝑐𝑖, the time difference of two

sequential RDP authentication events 𝑒𝑗 and 𝑒𝑘 that contain host 𝑆𝑟𝑐𝑖.
• Destination time difference: For destination host 𝐷𝑠𝑡𝑖, the time dif-

ference of two sequential RDP authentication events 𝑒𝑗 and 𝑒𝑘 that
contain host 𝐷𝑠𝑡𝑖.

• Mean of session duration for user : The average duration of all RDP
sessions that contain user 𝑈𝑠𝑟𝑖.

• Mean of session duration for source: The average duration of all RDP
sessions that contain source host 𝑆𝑟𝑐𝑖.

• Mean of session duration for destination: The average duration of all
RDP sessions that contain destination host 𝐷𝑠𝑡𝑖.

• Weekday : The weekday extracted from timestamp.
• Seconds in a day : The seconds elapsed within a day.

Not all the attributes from the original dataset (cf., Table 2) are em-
ployed to extract the above features. Features such as event ID, process
name, process ID, logon type description and domain name have iden-
tical values across all events. Therefore, we remove them from our
feature list. The logon ID is used to compute session duration only.

Furthermore, we do not employ the timestamp as is, but instead we

extract from the timestamp the weekday and the time (in seconds) in



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19
Table 2
A sample event extracted from the unified dataset.
Field Value Description

UserName User451666 User name used for authentication
EventID 4624 Microsoft defined Windows event ID
LogHost Comp313779 The destination host that authentication targeted
LogonID 0 × 9c279eb A semi-unique ID for current logon session
DomainName Domain001 Domain name of user name
Source Comp288750 The source host that authentication originated from
LogonType RemoteInteractive Description of logon type below
ProcessName winlogon.exe Process that processed the authentication event
Time 732 The obfuscated epoch time of the event in seconds
LogonType 10 Type of authentication event (e.g., remote or local)
ProcessID 0xaa4 A semi-unique ID identifies process
Algorithm 1 Inject malicious RDP authentication events into benign events
Input: Benign RDP authentication events 𝐵𝑒𝑛𝑖𝑔𝑛, red team RDP events 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠
Output: A synthetic dataset that combines benign and red team RDP events

/* Initialize some variables */
1: 𝜇 ← 𝐵𝑒𝑛𝑖𝑔𝑛.𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠.𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛.𝑚𝑒𝑎𝑛() ⊳ Mean of session duration of 𝐵𝑒𝑛𝑖𝑔𝑛
2: 𝜎2 ← 𝐵𝑒𝑛𝑖𝑔𝑛.𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠.𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛.𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒() ⊳ Variance of session duration of 𝐵𝑒𝑛𝑖𝑔𝑛
3: 𝑅𝑒𝑑𝐻𝑜𝑠𝑡𝑠 ← 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠.𝑠𝑜𝑢𝑟𝑐𝑒𝐻𝑜𝑠𝑡𝑠 ⊳ Set of source hosts in 𝐵𝑒𝑛𝑖𝑔𝑛
4: 𝐵𝑒𝑛𝑖𝑔𝑛𝐻𝑜𝑠𝑡𝑠 ← 𝐵𝑒𝑛𝑖𝑔𝑛.𝑠𝑜𝑢𝑟𝑐𝑒𝐻𝑜𝑠𝑡𝑠 ⊳ Set of source hosts in 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

/* An authentication tuple is a combination of user name and destination host in an authentication event */
5: 𝑅𝑒𝑑𝑇 𝑢𝑝𝑙𝑒𝑠 ← 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠.𝑎𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒𝑠 ⊳ Set of authentication tuples in 𝐵𝑒𝑛𝑖𝑔𝑛
6: 𝐵𝑒𝑛𝑖𝑔𝑛𝑇 𝑢𝑝𝑙𝑒𝑠 ← 𝐵𝑒𝑛𝑖𝑔𝑛.𝑎𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒𝑠 ⊳ Set of authentication tuples in 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

/* Create a dictionary that maintains a one-to-one mapping from a original source host in 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 to a newly selected host in 𝐵𝑒𝑛𝑖𝑔𝑛 */
7: 𝑆𝑜𝑢𝑟𝑐𝑒 ← 𝑑𝑖𝑐𝑡{}
8: for each ℎ𝑜𝑠𝑡 ∈ 𝑅𝑒𝑑𝐻𝑜𝑠𝑡𝑠 do
9: 𝑆𝑜𝑢𝑟𝑐𝑒[ℎ𝑜𝑠𝑡] ← 𝐵𝑒𝑛𝑖𝑔𝑛𝐻𝑜𝑠𝑡𝑠.𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑝()

10: End
/* Create a dictionary that maintains a one-to-one mapping from a tuple (user name, destination host) in 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 to a newly selected tuple in 𝐵𝑒𝑛𝑖𝑔𝑛
*/

11: 𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒 ← 𝑑𝑖𝑐𝑡{}
12: for each 𝑡𝑢𝑝𝑙𝑒 ∈ 𝑅𝑒𝑑𝑇 𝑢𝑝𝑙𝑒𝑠 do
13: 𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒[𝑡𝑢𝑝𝑙𝑒] ← 𝐵𝑒𝑛𝑖𝑔𝑛𝑇 𝑢𝑝𝑙𝑒𝑠.𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑝()
14: End

/* Rewrite the fields in red team events and insert the modified event into 𝐵𝑒𝑛𝑖𝑔𝑛 */
15: for each 𝑒𝑣𝑒𝑛𝑡 ∈ 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 do
16: 𝑛𝑒𝑤𝑆𝑟𝑐 ← 𝑆𝑜𝑢𝑟𝑐𝑒[𝑒𝑣𝑒𝑛𝑡.𝑆𝑜𝑢𝑟𝑐𝑒𝐻𝑜𝑠𝑡]
17: 𝑛𝑒𝑤𝑈𝑠𝑒𝑟 ← 𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒[𝑒𝑣𝑒𝑛𝑡.𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒].𝑈𝑠𝑒𝑟𝑁𝑎𝑚𝑒
18: 𝑛𝑒𝑤𝐷𝑠𝑡 ← 𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒[𝑒𝑣𝑒𝑛𝑡.𝐴𝑢𝑡ℎ𝑇 𝑢𝑝𝑙𝑒].𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐻𝑜𝑠𝑡
19: 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ← 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝑅𝑎𝑛𝑑𝑜𝑚(𝜇, 𝜎2)
20: 𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 ← 𝑛𝑒𝑤𝐸𝑣𝑒𝑛𝑡(𝑒𝑣𝑒𝑛𝑡.𝑡𝑖𝑚𝑒𝑆𝑡𝑎𝑚𝑝, 𝑛𝑒𝑤𝑆𝑟𝑐, 𝑛𝑒𝑤𝑈𝑠𝑒𝑟, 𝑛𝑒𝑤𝐷𝑠𝑡, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛)
21: 𝐵𝑒𝑛𝑖𝑔𝑛.𝑎𝑝𝑝𝑒𝑛𝑑(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑)
22: End
23: return 𝐵𝑒𝑛𝑖𝑔𝑛
the day, which are more meaningful. Since timestamps are obfuscated,
it is not straightforward to obtain weekday information directly by
converting it from UNIX time epoch to date. Therefore, we leverage
the count of RDP events per day to identify a pattern, as depicted in
Fig. 2. That is, we identify the two consecutive days with least number
of events in a 7 day interval as Saturday and Sunday.

4.3. ML techniques

4.3.1. Supervised learning algorithms
Based on previous studies [3,5,25,37], we select a variety of ML

techniques that have proven effective in intrusion detection. We lever-
age Logistic Regression (LR), a classic regression model that is known
to capture the relationship between variables. Similarly, we employ
Gaussian-NB (GNB), a probabilistic classifier based on Bayes’ theorem,
13
without specifying any prior distribution. We also evaluate the DT
classifier with a maximum depth of three and entropy criterion. The
DT algorithm constructs a tree structure where each internal node
splits data points based on pre-defined criterion. The DT used in our
work is an optimized version of Classification and Regression Trees
algorithm [38]. Furthermore, we evaluate Random Forest (RF) [39],
LogitBoost (LB) [40] and LightGBM (LGBM) [41], which are ensemble
methods built on top of DT. RF tends to solve the over-fitting problem
in DT, whereas LB combines a set of weak learners to construct a
strong learner. LGBM is similar to LB, and is a recent DT-based gradient
boost algorithm. In comparison to other Gradient Boosting Decision
Tree, the efficiency and scalability of LGBM is better by one order of
magnitude [41]. We also evaluate Feed-forward Neural Network (FNN),
a simple neural network without cycles between each layer.



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

4

f

c
b
i
a
p
h
m
m
p
p
o
s

Fig. 2. RDP events per day.

.3.2. Metrics
We define malicious RDP sessions as positive subjects and use the

ollowing performance metrics to evaluate the different ML techniques:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇 𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
× 100%

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒

× 100%

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑇 𝑟𝑢𝑒 𝑃 𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

× 100%

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝐴𝑃 𝑠𝑐𝑜𝑟𝑒 =
∑

𝑛
(𝑅𝑒𝑐𝑎𝑙𝑙𝑛 − 𝑅𝑒𝑐𝑎𝑙𝑙𝑛−1) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

The accuracy indicates the percentage of sessions that are correctly
lassified. Whereas, precision is the percentage of sessions that have
een identified as malicious are indeed malicious. A higher precision
mplies a higher confidence in the true nature of the sessions flagged
s malicious (i.e., lower false positives). On the other hand, recall is the
ercentage of malicious sessions that have been correctly identified. A
igher recall implies a higher confidence that malicious sessions are not
issed (i.e., lower false negatives). We also present the 𝐹1 score, a har-
onic mean of precision and recall. This metric provides the aggregate
erformance of a classifier. Though accuracy also depicts the overall
erformance, 𝐹1 is more reliable when the dataset is imbalanced. In
ur case, the dataset used contains less than 3% of anomalous RDP
essions. Hence, a classifier could achieve superior accuracy (e.g., more

than 97% accuracy) by simply marking every RDP session as normal.
To illustrate the performance of the classifiers at different classifica-

tion thresholds, we leverage the Precision–Recall (PR) curve. We also
use the Average Precision (AP) score, which is the weighted average
of precision at each decision threshold, and estimates the area under
the PR curve. Although a ROC curve can also illustrate the aggregate
performance of a classifier, it suffers with imbalanced datasets. Hence,
we do not include it in our metrics.

5. Evaluation

5.1. Environment setup

5.1.1. Hardware
The data analysis, visualization and pre-processing are performed

on a cluster of four nodes, each featuring an Intel(R) Xeon(R) E3-1230
v3 3.30 GHz CPU and 16 GB RAM. Nodes are interconnected with
10 Gbps Ethernet. Model training and validation are performed on an
Amazon AWS EC2 t3.medium instance.

5.1.2. Software
A Logstash instance is deployed to ingest the dataset into an Elastic-

Search [42] cluster, and Kibana is used for data visualization. For data
pre-processing, a variety of Python packages, including Numpy [43],
Scipy [44] and Pandas [45] are employed. The ML models are devel-

oped in Python with Scikit-learn [46] and Keras [47] libraries.

14
Table 3
RDP session detection with all baseline features.
Classifier Accuracy Precision Recall 𝐹1

LR 98.50% 10.93% 1.74% 0.030
DT 99.90% 99.04% 93.58% 0.962
FNN 98.68% 0% 0% 0
GNB 99.60% 87.31% 82.11% 0.846
RF 99.95% 99.73% 96.13% 0.979
LB 99.99% 99.87% 99.73% 0.998
LGBM 99.99% 99.73% 99.33% 0.995

Table 4
Robustness of stand-alone RF in the face of unknown malicious src hosts.

Method Accuracy Precision Recall 𝐹1

Cross-validation 99.50% 86.17% 74.10% 0.797
Robustness test 99.96% 0% 0% 0

5.2. Experiment

To validate our ML models, we first employ 𝑘-fold cross-validation
(𝑘 = 10) with all baseline features, as depicted in Table 3. The FNN
with three layers, 100, 50 and 1 neuron in each layer, respectively, and
multiple activation functions (i.e., sigmoid and ReLu), classifies all RDP
sessions as benign. We tweaked the FNN by adjusting the number of
layers, the number of neurons in each layer and the activation function,
but to no avail. This can be attributed to the imbalanced nature of the
dataset, as the malicious events only account for a small fraction of the
total events (cf., Section 3). Therefore, even though the FNN classifier
has an outstanding accuracy of 98.68%, it results in zero precision and
recall with all malicious RDP sessions misclassified as benign.

Although sampling techniques can be used to balance the dataset,
they will cause other problems. In particular, the under-sampling al-
gorithms are known to inherently lose critical information, while the
over-sampling algorithms suffer from over-fitting [48]. Hence, we do
not explore sampling techniques in this paper. Due to FNN’s poor
performance, we exclude it from the remaining evaluations. In con-
trast, the DT algorithms have both high precision and recall, with LB
using DT regressor outperforming all other classifiers. This is primarily
because LB classifiers are designed for boosting the performance of
existing classifiers [40]. Another boosting algorithm, LGBM, achieves
a slightly inferior performance than LB in precision and recall. Even
though the probabilistic GNB classifier under performs the DT-based
classifiers, it outperforms LR and FNN.

Recall that all the attacks in the employed dataset originate from
four unique source hosts. Therefore, a classifier that uses the source
host feature may tend to predict all events with these source hosts as
malicious, leading to a bias in classification. To highlight this impact,
we perform a robustness test with a RF classifier that leverages a subset
of the original features i.e., user name, source host, destination host,
duration and timestamp. In this test, we demonstrate that even the
simplest classifier with biased features can achieve excellent cross-
validation results. However, such a classifier fails in detecting unknown
attacks.

We split the dataset into training and testing sets, where the testing
set contains malicious events that originate from source hosts that are
not present in the training set. This allows us to run a robustness test. As
shown in Table 4, this results in over-fitting, with RF unable to correctly
classify any malicious RDP session from unknown source hosts.

Therefore, we remove features from our feature set that cause such
a bias, namely username, source host and destination host. Table 5
depicts the result after the removal of these features. In comparison
to Table 3, no significant difference is evident in terms of precision,
recall or 𝐹1 score in classifying RDP sessions. The LGBM classifier
achieves perfect precision in this test case even though its overall
performance decreases slightly. Although these results are promising,
and most malicious RDP sessions are detected with low false positives,

we attempt to further improve the performance of our ML models.



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

a

w
s
M
T
i
m
i
c
d
u
e
i

c
W
(
c
a
W
c
L
R
i
f
t
m
m
s

i
t
c
a

Table 5
RDP session classification (user, src and dst features
removed).
Classifier Accuracy Precision Recall 𝐹1

LR 98.50% 11.34% 1.87% 0.321
DT 99.90% 99.04% 93.58% 0.962
FNN 98.68% 0% 0% 0
GNB 99.60% 87.31% 82.11% 0.846
RF 99.94% 99.59% 96.13% 0.978
LB 99.99% 99.87% 99.47% 0.997
LGBM 99.99% 100% 98.8% 0.994

Table 6
Majority voting for RDP session detection using naïve approach i.e., all five classifiers
nd baseline features.
Classifier Accuracy Precision Recall 𝐹1

GNB, RF, LB, LR, DT, LGB 99.91% 99.86% 93.19% 0.964

Table 7
Majority voting for RDP session classification using selective
classifiers (user, src, and dst features removed).
Classifier Accuracy Precision Recall 𝐹1

GNB, RF, LB 99.95% 99.87% 96.26% 0.980
GNB, RF, DT 99.91% 99.58% 93.32% 0.964
GNB, LB, DT 99.91% 99.73% 93.32% 0.964
RF, LB, DT 99.95% 99.73% 96.13% 0.979

5.2.1. Voting
The authors in [5] improve the performance of their stand-alone

classifiers by consolidating them using ensemble ML. We employ a
similar approach with Majority Voting (MV) algorithm, starting with a
naïve attempt that leverages all ML models in the ensemble. This results
in a lower precision, recall and 𝐹1 score, as shown in Table 6. Since

eak classifiers can influence the voting process, this suggests a careful
election of the classifiers to include in the ensemble prior to applying
V. Therefore, due to the lackluster performance of LR and FNN (cf.,
able 5), we remove them from the ensemble. In addition, we also elim-

nate classifiers from the same category with relatively poorer perfor-
ance (i.e., DT is removed since RF has better performance, and LGBM

s removed because of LogitBoost). The performance of the combined
lassifiers is shown in Table 7. In comparison to the previous ensemble
epicted in Table 6, the classification of RDP sessions improve, but still
nder performs stand-alone LB in the best case. The best performing
nsemble has minor improvements with respect to precision, but results
n a much lower recall than the stand-alone LB classifier.

Evidently, MV is unable to boost the performance of the stand-alone
lassifiers. Therefore, we explore other ensemble approaches, namely
eighted Voting (WV) and its special-case Conservative Approach

CA). We assign weights based on intuition. A higher weight for the best
lassifier may reduce both false positives and false negatives. Whereas,
low threshold with equal weight could improve the true positives.
e select the best performing ensemble from Table 7. The first three

olumns in Table 8 are the weights assigned to each classifier, namely
B, RF and GNB. The threshold is the ratio of votes required for a
DP session to be classified as malicious. For example, the second row

n the table assigns LB a weight that is equal to the sum of weights
or the remaining two classifiers. Intuitively, this has the potential
o identify more true positives (i.e., malicious RDP sessions) that are
issed by LB. However, this combination is unable to spot any extra
alicious sessions, as shown in Table 8. In this case, the malicious

essions identified by RF and GNB have already been recognized by LB.
In the last row of the table, a RDP session is classified as malicious

f any classifier in the ensemble tags it as malicious, which corresponds
o CA. Though this results in a slight increase in recall, it comes at the
ost of a large drop of precision in classifying RDP sessions and yields

lower 𝐹1 score. Therefore, we choose the stand-alone LB classifier

15
Table 8
Weighted voting for RDP session classification using LB, RF and GNB classifiers
(user, src, and dst features removed).
LB RF GNB Thr. Accuracy Precision Recall 𝐹1

0.25 0.25 0.25 0.5 99.95% 99.87% 96.26% 0.980
0.5 0.25 0.25 0.5 99.99% 99.87% 99.47% 0.997
0.25 0.25 0.25 0.25 99.83% 89.03% 99.60% 0.940

Fig. 3. Recall, precision and training time vs. # of estimators for stand-alone LB (our
model).

Fig. 4. Recall during each cross-validation round.

as Our Model for comparison to the state-of-the-art. This LB classifier
uses DT as the base estimator, where the number of estimators can
significantly impact performance. The training time increases linearly
with the number of estimators, as shown in Fig. 3, while precision and
recall are the highest with around 100 estimators. In the remaining
experiments, we use stand-alone LB with 100 estimators.

5.2.2. Comparative analysis
We compare our stand-alone LB classifier with Kaiafas et al. [5]. The

LB classifier is preferred over the LGBM because we do not want to miss
any attack. Although LGBM achieves perfect precision in our previous
experiment (cf., Table 5), its recall is lower than LB. As mentioned in
Section 1, our goal in this paper is to optimize the recall. In other words,
we tolerate a higher number of false positives in exchange for a lower
number of false negatives.

In order to compare, we implement Kaiafas’ [5] approach and eval-
uate the corresponding model on our dataset. During feature extraction,
we omit their geometric distribution feature, since all the failure events
are filtered out due to missing source host in the dataset. As shown
in Table 9, with all available features, the recall of Kaiafas’ model is
slightly lower than our model (first two rows without a *). Though



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19

d
s
m
r
f
r
s
t
o
f
o
b

p
t
t
s
P
a
t
r
s
s
s
a
c
s

5

s
t
e
a
s
a
a

m
a
t
f
t
e

l
a
e
t
n

Table 9
RDP session classification using stand-alone LB vs. [5].

Classifier Accuracy Precision Recall 𝐹1 TT (s)

Our Model 99.99% 99.87% 99.73% 0.998 11.28
Kaiafas et al. 99.98% 100.00% 98.67% 0.993 20.48
aOur Model 99.98% 99.87% 99.47% 0.992 10.53
aKaiafas et al. 99.88% 100.00% 90.66% 0.951 18.19

a= Model validation without user, src and dst features.

Fig. 5. Precision–recall curve of our model.

their precision is better, the 𝐹1 score indicates an overall performance
rop in comparison to our model. After the removal of user name,
ource host and destination host features from both models, Kaiafas’
odel has a significant drop in recall from 98.67% to 90.66% (last two

ows with a *). In addition, the standard deviation of recall is high
or [5]. For some rounds of cross-validation, it can only achieve 85%
ecall, as shown in Fig. 4. On the other hand, our model illustrates
tability in recall over multiple cross-validation rounds. Furthermore,
he training time (TT) of Kaiafas’ model is about 80% higher than
ur model. This can be primarily attributed to the larger number of
eatures and construction of extra classifiers. Therefore, our model
utperforms a state-of-the-art in RDP session classification in terms of
oth performance and training time.

Finally, to further evaluate the models against zero-day threats, we
erform a robustness test. We split the dataset into training (75%) and
esting (25%). While the training set contains attacks originating from
hree different sources, the testing set contains an additional attacking
ource that does not appear in the training set. In Fig. 5, we present the
R curve, which illustrates the trade-off between precision and recall
t different thresholds. As evident, our model’s PR curve is very close
o a perfect classifier and yields an AP score of 0.95. This asserts the
obustness of our model to detect threats from new (unseen) attack
ources. However, it is unfeasible to plot a PR curve for a MV classifier,
uch as Kaiafas’ model. A MV classifier depends on decisions made by
everal classifiers and a single chosen threshold across classifiers in not
ppropriate. Therefore, we compare the overall performance of the two
lassifiers using the 𝐹1 score. While our model achieves the highest 𝐹1
core of 0.914, Kaiafas’ model scores a low 0.675.

.2.3. Robustness to adversarial attempts
ML algorithms were originally designed without considering adver-

aries that may intentionally fabricate the input data to manipulate
he outcome of a classifier [49,50]. Typically, they assume a benign
nvironment, where both training and testing datasets are stationary,
nd follow the same statistical distribution. According to [15], adver-
arial attacks can be categorized along three axes (i.e., attack influence,
ttack specificity and security violation). A brief description of these

xes is presented in Table 10. In addition, we list examples of potential t

16
Fig. 6. Detection accuracy for polymorphic forms of known attack.

Fig. 7. Detection accuracy for polymorphic forms of unknown attack.

adversarial attacks against our classification model in Table 11, which
are inspired from Table 10. We focus on exploratory attacks, with
the assumption that attackers do not have access to the classifier and
training dataset. Indeed, should the adversaries obtain access to the
training dataset (or the classifier itself), they can easily mimic a benign
user’s logon pattern by learning their authentication and communi-
cation patterns. Since our model heavily depends on the benign user
behavior, it will perform poorly under such circumstances. In addition,
this can potentially undermine the integrity of any intrusion detection
approach.

In order to study the impact of adversarial attacks against our
model, we conduct a series of experiments. Under previous assump-
tions, we create new RDP sessions with polymorphic form of attacks by
manipulating the features of a malicious RDP session. Potentially, this
will impact the accuracy of our model, since it effectively alters the dis-
tribution of malicious data points. Not all of the features are modified
in this process. In general, we do not perturb statistical features (i.e.,

ean of session duration for user, mean of session duration for source
nd mean of session duration for destination), since they represent
he existing user behavior pattern. We replace the original timestamp
rom selected malicious RDP sessions with a randomly generated times-
amp. For the remaining features, we perturb them in percentages. An
xample of an adversarial sample is shown in Table 12.

The testing dataset in subsequent experiments only contains ma-
icious RDP sessions. Thus, the precision is always 100%, while the
ccuracy is always equal to recall. Therefore, we use accuracy as the
valuation metric in these experiments. In the first experiment, we
rain our model on the entire dataset from Section 4 and create 300
ew malicious RDP sessions for testing, by employing the aforemen-

ioned perturbations. Specifically, we randomly select 300 malicious



T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19
Table 10
Taxonomy of attacks against ML systems [49,50].

Attack influence Exploratory Attacker can only manipulate the testing data
Causative Attacker can manipulate both training and testing data

Attack specificity Targeted Attacker focuses on a subset of samples
Indiscriminate Attacker focuses on any sample

Security violation
Confidentiality Attacker obtains confidential information
Integrity Attacker gains access to a restricted service or resource
Availability System denies legitimate access for benign users
Table 11
Examples of potential attacks against our ML model.

Exploratory Targeted Integrity Attacker obfuscates RDP access pattern to simulate a particular benign user
Indiscriminate Integrity Attacker obfuscates RDP access pattern to simulate any arbitrary benign user

Causative
Targeted Integrity Mis-train classifier to grant attacker RDP access to a single protected host

Availability Mis-train classifier to block benign RDP access of a particular benign user

Indiscriminate Integrity Mis-train classifier to grant attacker RDP access to any protected host
Availability Mis-train classifier to block benign RDP access of all benign users
Table 12
Example of a polymorphic attack.
Data Weekday Seconds in a day Session duration User time diff Source time diff Destination time diff

Original 2 12 340 100 1000 1000 1000
Mutation 6 (random) 45 670 (random) 125 (+25%) 1250 (+25%) 1250 (+25%) 1250 (+25%)
data points from the training set and mutate them. The positive or
negative change implies that the original feature values are increased
or decreased by certain percentages, respectively.

The classification result of newly crafted RDP sessions is illustrated
in Fig. 6. The steady lines indicate that our model is robust to poly-
morphic forms of known attacks. To further investigate the robustness
of our model, the second experiment excludes randomly selected 300
malicious RDP sessions from the original training dataset. We apply
the same perturbation approach on these malicious RDP sessions and
classify them. The results of the second experiment is presented in
Fig. 7. The overall performance drops by 2% in comparison to the first
experiment. However, this is expected, since the classifier is handling
polymorphic forms of unknown attacks. The plots from Fig. 7 have
a similar trend to the plots in the previous figure. Both experiments
indicate that our model is robust enough to exploratory types of adver-
sarial attacks. This can be attributed to the success of capturing user’s
behavior within the features and the choice of ML classifier.

6. Conclusion and future work

RDP is one of the major tools employed during the lateral movement
stage of an APT attack. Therefore, we leverage Windows event logs for
detection of malicious RDP sessions. With the identified shortcomings
of two public datasets, we synthesize a combined dataset that remains
faithful to the attack models. Using the combined dataset, we extracted
relevant features, and explore supervised learning algorithms to detect
anomalous RDP sessions. After evaluating various classification algo-
rithms, we chose LB as the best model with respect to accuracy, recall
and precision in Windows RDP session classification. LB shows promis-
ing results and outperforms a state-of-the-art model [5] in recall and
training time. In addition, we demonstrate that our approach is robust
to adversarial attacks. In the future, we will evaluate our approach on
other session-based protocols, such as Secure Shell. In addition, the
Windows event logs contain a variety of event types, which can be
leveraged to identify different stages of an APT attack. Therefore, we
will also explore system events other than authentication to classify
between benign and unauthorized use of system administration tools.

CRediT authorship contribution statement

Tim Bai: Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Data curation, Writing - original draft,
17
Writing - review & editing, Visualization. Haibo Bian: Conceptual-
ization, Methodology. Mohammad A. Salahuddin: Conceptualization,
Methodology, Writing - review & editing, Visualization, Project admin-
istration. Abbas Abou Daya: Conceptualization, Methodology. Noura
Limam: Conceptualization, Methodology, Writing - review & edit-
ing, Visualization, Project administration. Raouf Boutaba: Resources,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Royal Bank of Canada and
in part by the NSERC CRD, Canada Grant No. 530335.

References

[1] Kaspersky Lab, Carbanak APT: The great bank robbery, 2015, accessed: 2020-
11-04. [Online]. Available: https://securelist.com/the-great-bank-robbery-the-
carbanak-apt/68732/.

[2] B. Krebs, Anthem breach may have started in april 2014, 2015, accessed:
2020-11-04. [Online]. Available: https://krebsonsecurity.com/2015/02/anthem-
breach-may-have-started-in-april-2014/.

[3] R. Boutaba, M.A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-
Solano, O.M. Caicedo, A comprehensive survey on machine learning for
networking: evolution, applications and research opportunities, J. Internet Serv.
Appl. 9 (1) (2018).

[4] S. Ayoubi, N. Limam, M.A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-
Solano, O.M. Caicedo, Machine learning for cognitive network management, IEEE
Commun. Mag. 56 (1) (2018) 158–165.

[5] G. Kaiafas, G. Varisteas, S. Lagraa, R. State, C.D. Nguyen, T. Ries, M. Ourdane,
Detecting malicious authentication events trustfully, in: Proceedings of NOMS,
2018.

[6] G. Kim, S. Lee, S. Kim, A novel hybrid intrusion detection method integrating
anomaly detection with misuse detection, Expert Syst. Appl. 41 (4) (2014)
1690–1700.

[7] A. Vance, Flow based analysis of Advanced Persistent Threats detecting targeted
attacks in cloud computing, in: Proceedings of Intl. Scientific-Practical Conf.
Problems of Infocommunications Sc. and Tech., 2014.

https://securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/
https://securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/
https://securelist.com/the-great-bank-robbery-the-carbanak-apt/68732/
https://krebsonsecurity.com/2015/02/anthem-breach-may-have-started-in-april-2014/
https://krebsonsecurity.com/2015/02/anthem-breach-may-have-started-in-april-2014/
https://krebsonsecurity.com/2015/02/anthem-breach-may-have-started-in-april-2014/
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb3
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb4
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb4
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb4
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb4
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb4
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb6
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb6
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb6
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb6
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb6


T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19
[8] M. Marchetti, F. Pierazzi, M. Colajanni, A. Guido, Analysis of high vol-
umes of network traffic for advanced persistent threat detection, Com-
put. Netw. 109 (2016) 127–141, Traffic and Performance in the Big
Data Era. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1389128616301633.

[9] S. Siddiqui, M.S. Khan, K. Ferens, W. Kinsner, Detecting advanced persistent
threats using fractal dimension based machine learning classification, in: Pro-
ceedings of the ACM International Workshop on Security and Privacy Analytics,
2016.

[10] A.A. Daya, M.A. Salahuddin, N. Limam, R. Boutaba, A graph-based machine
learning approach for bot detection, 2019.

[11] Y. Tsuda, J. Nakazato, Y. Takagi, D. Inoue, K. Nakao, K. Terada, A lightweight
host-based intrusion detection based on process generation patterns, in:
Proceedings of Asia Joint Conf. on Info. Security, 2018.

[12] D. Moon, S.B. Pan, I. Kim, Host-based intrusion detection system for secure
human-centric computing, J. Supercomput. 72 (7) (2016).

[13] F.S. Team, As the Holiday Season Draws Near, Mobile Malware Attacks Are
Prevalent, Fortinet, 2018.

[14] B. Biggio, G. Fumera, F. Roli, Pattern recognition systems under attack: Design
issues and research challenges, Int. J. Pattern Recognit. Artif. Intell. 28 (07)
(2014) 1460002.

[15] M. Barreno, B. Nelson, A.D. Joseph, J.D. Tygar, The security of machine learning,
Mach. Learn. 81 (2) (2010) 121–148.

[16] M. Ussath, D. Jaeger, F. Cheng, C. Meinel, Advanced persistent threats: Behind
the scenes, in: Proceedings of Annual Conference on Information Science and
Systems (CISS), 2016.

[17] A.D. Kent, Comprehensive, Multi-Source Cyber-Security Events, Los Alamos
National Laboratory, 2015.

[18] M.J.M. Turcotte, A.D. Kent, C. Hash, Unified host and network data set, in: Data
Science for Cyber-Security, World Scientific, 2018, ch. Chapter 1.

[19] E.M. Hutchins, M.J. Cloppert, R.M. Amin, Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains,
in: Leading Issues in Information Warfare & Security Research, Vol. 1, 2011.

[20] J.R. Vacca, Network and System Security, Elsevier, 2013.
[21] S. Khattak, N.R. Ramay, K.R. Khan, A.A. Syed, S.A. Khayam, A taxonomy of

botnet behavior, detection, and defense, IEEE Commun. Surv. Tutor. 16 (2)
(2014).

[22] G. Creech, J. Hu, A semantic approach to host-based intrusion detection systems
using contiguousand discontiguous system call patterns, IEEE Trans. Comput. 63
(4) (2014).

[23] K. Berlin, D. Slater, J. Saxe, Malicious behavior detection using windows audit
logs, in: Proceedings of the ACM Workshop on Artificial Intelligence and Security
(AISec), 2015.

[24] H.-J. Liao, C.-H.R. Lin, Y.-C. Lin, K.-Y. Tung, Intrusion detection system: A
comprehensive review, J. Netw. Comput. Appl. 36 (1) (2013) 16–24.

[25] M. Ussath, D. Jaeger, F. Cheng, C. Meinel, Identifying suspicious user behavior
with neural networks, in: Proceeding of IEEE Intl. Conf. on Cyber Security and
Cloud Computing, 2017.

[26] H. Siadati, B. Saket, N. Memon, Detecting malicious logins in enterprise networks
using visualization, in: 2016 IEEE Symposium on Visualization for Cyber Security
(VizSec), 2016, pp. 1–8.

[27] H. Siadati, N. Memon, Detecting structurally anomalous logins within enter-
prise networks, in: Proceedings of the ACM Conference on Computer and
Communications Security, 2017, pp. 1273–1284.

[28] S.M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, V. Venkatakrishnan, HOLMES:
Real-time APT detection through correlation of suspicious information flows,
in: 2019 2019 IEEE Symposium on Security and Privacy (SP), IEEE Computer
Society, Los Alamitos, CA, USA, 2019, pp. 447–462.

[29] E. Lopez, K. Sartipi, Feature engineering in big data for detection of information
systems misuse, in: Proceedings of the Annual Intl. Conf. on Computer Science
and Software Engineering, 2018.

[30] G. Creech, Developing a High-Accuracy Cross Platform Host-Based Intru-
sion Detection System Capable of Reliably Detecting Zero-Day Attacks (Ph.D.
dissertation), University of New South Wales, Canberra, Australia, 2014.

[31] G. Apruzzese, M. Colajanni, Evading botnet detectors based on flows and random
forest with adversarial samples, in: 2018 IEEE 17th International Symposium on
Network Computing and Applications (NCA), IEEE, 2018, pp. 1–8.

[32] M. Stevanovic, J.M. Pedersen, An analysis of network traffic classification
for botnet detection, in: 2015 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA), IEEE, 2015, pp. 1–8.

[33] S. García, M. Grill, J. Stiborek, A. Zunino, An empirical comparison of botnet
detection methods, Comput. Secur. 45 (2014).

[34] E.B.B. Samani, H.H. Jazi, N. Stakhanova, A.A. Ghorbani, Towards effective
feature selection in machine learning-based botnet detection approaches, in: IEEE
Conference on Communications and Network Security, 2014, pp. 247–255.

[35] JPCERT Coordination Center, Detecting lateral movement through tracking event
logs, 2017, accessed: 2020-11-04. [Online]. Available: https://www.jpcert.or.jp/
english/pub/sr/ir_research.html.

[36] A.D. Kent, Proceedings of cybersecurity data sources for dynamic network
research, in: Dynamic Networks in Cybersecurity, 2015.
18
[37] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, W.-Y. Lin, Intrusion detection by machine
learning: A review, Expert Syst. Appl. 36 (10) (2009).

[38] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, in: The Wadsworth Statistics/Probability Series, Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey, CA, 1984.

[39] T.K. Ho, Random decision forests, in: Proceedings of 3rd International Conference
on Document Analysis and Recognition, Vol. 1, IEEE, 1995, pp. 278–282.

[40] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical
view of boosting, Ann. Statist. 28 (1998) 2000.

[41] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu,
Lightgbm: A highly efficient gradient boosting decision tree, in: Advances in
Neural Information Processing Systems, 2017, pp. 3146–3154.

[42] C. Gormley, Z. Tong, Elasticsearch: The Definitive Guide, first ed., O’Reilly
Media, Inc., 2015.

[43] T.E. Oliphant, Guide to NumPy, second ed., CreateSpace Independent Publishing
Platform, USA, 2015.

[44] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools
for Python, 2001–, accessed: 2020-11-04. [Online]. Available: http://www.scipy.
org/.

[45] W. McKinney, Data structures for statistical computing in python, in: Proceedings
of the Python in Science Conference, 2010.

[46] Pedregosa, et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res.
12 (2011).

[47] F. Chollet, et al., Keras, 2015, https://keras.io.
[48] P. Baldi, Autoencoders, unsupervised learning and deep architectures, in: Pro-

ceedings of the International Conference on Unsupervised and Transfer Learning
Workshop, 2011, pp. 37–50.

[49] M. Barreno, B. Nelson, R. Sears, A.D. Joseph, J.D. Tygar, Can machine learning
be secure? in: Proceedings of the 2006 ACM Symposium on Information,
Computer and Communications Security, ACM, 2006, pp. 16–25.

[50] L. Huang, A.D. Joseph, B. Nelson, B.I. Rubinstein, J. Tygar, Adversarial machine
learning, in: Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence, ACM, 2011, pp. 43–58.

Tim Bai is a candidate of MMath at the David R. Cheri-
ton School of Computer Science, University of Waterloo.
He received his BCS from University of Waterloo in
2017. His current research interests include the network
softwarization, cybersecurity, and machine learning.

Haibo Bian is a candidate of MMath at the David R. Cheri-
ton School of Computer Science, University of Waterloo.
He received his BSE from Zhejiang University in 2016.
His current research interests include the network function
virtualization, cybersecurity, and machine learning.

Mohammad A. Salahuddin is a research assistant professor
of computer science at the University of Waterloo. He re-
ceived his Ph.D. in computer science from Western Michigan
University in 2014. His current research interests include
the Internet of Things, content delivery networks, network
softwarization, cloud computing, and cognitive network
management. He serves as a TPC member for international
conferences and is a reviewer for various journals and
magazines.

Abbas Abou Daya received his MMath in Computer Science
from the University of Waterloo in 2019. He has graduated
from the American University of Beirut with a B.Eng.
in Electrical and Computer Engineering. He is a senior
software engineer at Arista Networks. His current research
interests involve machine learning, cybersecurity, networks
and systems.

http://www.sciencedirect.com/science/article/pii/S1389128616301633
http://www.sciencedirect.com/science/article/pii/S1389128616301633
http://www.sciencedirect.com/science/article/pii/S1389128616301633
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb10
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb10
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb10
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb12
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb12
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb12
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb13
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb13
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb13
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb14
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb14
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb14
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb14
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb14
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb15
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb15
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb15
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb17
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb17
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb17
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb18
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb18
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb18
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb19
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb19
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb19
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb19
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb19
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb20
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb21
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb21
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb21
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb21
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb21
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb22
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb22
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb22
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb22
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb22
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb24
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb24
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb24
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb26
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb26
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb26
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb26
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb26
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb28
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb30
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb30
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb30
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb30
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb30
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb31
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb31
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb31
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb31
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb31
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb32
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb32
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb32
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb32
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb32
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb33
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb33
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb33
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb34
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb34
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb34
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb34
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb34
https://www.jpcert.or.jp/english/pub/sr/ir_research.html
https://www.jpcert.or.jp/english/pub/sr/ir_research.html
https://www.jpcert.or.jp/english/pub/sr/ir_research.html
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb36
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb36
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb36
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb37
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb37
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb37
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb38
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb38
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb38
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb38
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb38
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb39
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb39
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb39
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb40
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb40
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb40
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb41
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb41
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb41
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb41
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb41
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb42
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb42
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb42
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb43
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb43
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb43
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb46
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb46
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb46
https://keras.io
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb49
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb49
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb49
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb49
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb49
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb50
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb50
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb50
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb50
http://refhub.elsevier.com/S0140-3664(20)31961-7/sb50


T. Bai, H. Bian, M.A. Salahuddin et al. Computer Communications 165 (2021) 9–19
Noura Limam received her M.Sc. and Ph.D. degrees in
computer science from the University Pierre & Marie Curie,
Paris VI, in 2002 and 2007, respectively. She is currently
a research assistant professor of computer science at the
University of Waterloo. Her contributions are in the area of
network and service management. Her current research in-
terests are in network softwarization and cognitive network
management.
19
Raouf Boutaba received his M.Sc. and Ph.D. degrees in
computer science from the University Pierre & Marie Curie,
Paris, in 1990 and 1994, respectively. He is a professor
in the Cheriton School of Computer Science and Asso-
ciate Dean, Research of the Faculty of Mathematics at the
University of Waterloo, and holds an INRIA International
Chair at INRIA Nancy. His research interests include net-
work and service management, cloud computing, network
virtualization, and network softwarization.


	RDP-based Lateral Movement detection using Machine Learning
	Introduction
	Background and motivation
	Intrusion kill-chain and lateral movement
	Related works

	Dataset
	Comprehensive events dataset
	Unified events dataset

	Methodology
	Combining datasets
	Feature engineering
	ML techniques
	Supervised learning algorithms
	Metrics


	Evaluation
	Environment setup
	Hardware
	Software

	Experiment
	Voting
	Comparative analysis
	Robustness to adversarial attempts


	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


