
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021 1049

Uncovering Lateral Movement Using
Authentication Logs

Haibo Bian , Tim Bai , Mohammad A. Salahuddin , Member, IEEE, Noura Limam , Member, IEEE,
Abbas Abou Daya , and Raouf Boutaba , Fellow, IEEE

Abstract—Network infiltrations due to advanced persistent
threats (APTs) have significantly grown in recent years. Their pri-
mary objective is to gain unauthorized access to network assets,
compromise system and data. APTs are stealthy and remain dor-
mant for an extended period of time, which makes their detection
challenging. In this article, we leverage machine learning (ML)
to detect hosts in a network that are a target of an APT attack.
We evaluate a number of ML classifiers to detect susceptible
hosts in the Los Alamos National Lab dataset. We (i) scrutinize
graph-based features extracted from host authentication logs,
(ii) use feature engineering to reduce dimensionality, (iii) explore
balancing the training dataset using over- and under-sampling
techniques, (iv) evaluate numerous supervised ML techniques
and their ensemble, (v) compare our classification model to the
state-of-the-art approaches that leverage the same dataset, and
show that our model outperforms them with respect to prediction
performance and overhead, and (vi) perturb the attack patterns
to study the influence of change in attack frequency and scale
on classification performance, and propose a solution for such
adversarial behavior.

Index Terms—Machine learning, advanced persistent threat,
intrusion detection, adversarial learning.

I. INTRODUCTION

CYBER attacks have recently grown in sophistication,
resulting in considerable damage to businesses. They

not only result in financial losses, but also impact customer
trust and churn. Typically, an attack initiates by compromis-
ing several hosts or user accounts within a network, and leaves
backdoors to gain persistent access to internal assets. This type
of attack is commonly known as an advanced persistent threat
(APT). According to Kaspersky Lab, an APT campaign in
2019 affected over one million users who installed the ASUS

Manuscript received May 2, 2020; revised October 9, 2020 and December
24, 2020; accepted January 16, 2021. Date of publication January 25, 2021;
date of current version March 11, 2021. This work was supported in part by
the Royal Bank of Canada and in part by the Natural Sciences and Engineering
Research Council of Canada Collaborative Research and Development
Grant 530335. The associate editor coordinating the review of this article
and approving it for publication was G. Casale. (Corresponding author:
Noura Limam.)

Haibo Bian, Tim Bai, and Raouf Boutaba are with the Department of
Computer Science, University of Waterloo, Waterloo, ON N2L 3G1,
Canada (e-mail: haibo.bian@uwaterloo.ca; tim.bai@uwaterloo.ca;
rboutaba@uwaterloo.ca).

Mohammad A. Salahuddin is with the David R. Cheriton School of
Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
(e-mail: mohammad.salahuddin@uwaterloo.ca).

Noura Limam and Abbas Abou Daya are with the D.C.
School of Computer Science, University of Waterloo, Waterloo,
ON N2L 3G1, Canada (e-mail: n2limam@uwaterloo.ca;
aaboudaya@uwaterloo.ca).

Digital Object Identifier 10.1109/TNSM.2021.3054356

Live Update utility [1]. Similarly, a cryptocurrency exchange
firm, DragonEx, announced in 2019 that it has suffered USD
7.09 million in losses due to an APT attack [2]. Therefore, it is
imperative to defend against APT-assisted network intrusions.

Lateral movement (LM) is a crucial phase in an APT attack,
which follows after an intruder has gained persistent access to
certain network resources (e.g., servers, end-hosts). The goal
of LM is to infiltrate other resources and gain higher priv-
ileges inside the target network. This is typically achieved
by stealing credentials or exploiting vulnerabilities of already
compromised hosts. Interestingly, 50%–90% of employees
have access to data that they no longer need [3], which is
primarily due to poor security practises, such as the violation
of the least privilege principle [4]. This increases the likeli-
hood of an attacker penetrating the crucial network assets via
LM. Therefore, it is vital to detect LM at an early stage.

An alternative to the traditional detection of successful
intrusions, is to pro-actively identify covert signs of LM.
This can potentially generate alarms even before a success-
ful intrusion has occurred, leading to LM detection during
early exploration. After acquiring footprints of such behaviour,
administrators can get insights into the attack strategy. They
can also identify system vulnerabilities that can help alleviate
future attacks. However, unlike hosts that act as proxies during
the attack, newly compromised or vulnerable hosts are fairly
dormant and leave minimal footprint, e.g., events in authenti-
cation logs. Furthermore, in large enterprises with thousands
of hosts, it is unlikely that an infiltration will compromise the
majority of hosts. Typically, the number of compromised hosts
will be minuscule in comparison to the network size, result-
ing in sparse malicious activities. These issues make early
detection of LM challenging.

Machine learning (ML) [5], [6]-based methods are widely
used for intrusion detection. An important step prior to train-
ing a ML model is feature extraction. These features act
as discriminators for training and inference, and impact the
performance of ML models. The most commonly employed
features (i.e., for ML model training and inference) in
ML-based intrusion detection are either network flow-based
(e.g., number of packets, direction, packet size and inter-
arrival statistics) or host event-based (e.g., authentication
type, authentication frequency, and user names used during
authentication). However, these features do not completely
capture the host communication patterns that may expose addi-
tional aspects of malicious behavior. Graph-based features,
derived from flow-level or host-level information to reflect

1932-4537 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4926-4897
https://orcid.org/0000-0002-6090-7988
https://orcid.org/0000-0002-5431-3278
https://orcid.org/0000-0002-7759-3751
https://orcid.org/0000-0003-4994-8559
https://orcid.org/0000-0001-7936-6862

1050 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

the true behaviour of network hosts, are an alternative that
can overcome this limitation. In [7], we show that incorpo-
rating graph-based features into ML yields robustness against
complex communication patterns, which are usually used by
attackers to remain undetected.

Though network flows can contain traces of LM, the com-
plex network topologies and diverse applications can introduce
noise in flow-based intrusion detection systems. Moreover,
widely adopted encryption protocols, such as TLS, further
limits the amount of information available from the network
traffic, in particular packet payloads. In contrast, the encryp-
tion end-point can reveal fine-grained information, such as
running processes and user accounts, which enable host-based
intrusion detection systems to differentiate between benign and
malicious behavior with high precision. Therefore, numerous
works leverage host-level information for LM detection.

At the host-level, early detection of LM can be addressed
by tracking event logs and identifying malicious events.
However, the stealthiness and sparseness of malicious events
can render this strategy ineffective. Though, crafting discrim-
inative features for each event can achieve high recall, it
comes at a high computational overhead. For instance, Fig. 1
shows that the number of events increase with the network
size. Similarly, Fig. 2 shows that feature extraction time for
event tagging using the method described in [8] significantly
increases with the number of hosts in the network. These draw-
backs make this strategy unscalable for very large networks.
Furthermore, for complex network infrastructure with spo-
radic events, tagging individual events can also result in high
false positives. In contrast, tagging target assets (TAs) (i.e.,
hosts targeted by LM) reduce computational overhead. With
carefully crafted features from sparse events, it is possible
to achieve a high precision in detection performance (see
Section IV). Therefore, we focus on the latter strategy for
early detection of LM by leveraging host authentication logs.

In this article, we propose a novel approach for ML-based
LM detection at the host level. Our main contributions are:

• Leverage ML for identifying TAs to facilitate early
detection of LM. We evaluate numerous supervised ML
techniques and their ensemble, and compare them in
classification performance and overhead.

• Employ graph-based features using real datasets from the
Los Alamos National Lab (LANL) [9]. We explore fea-
tures that are extracted from host authentication logs, and
perform feature engineering to reduce dimensionality.

• Due to the highly imbalanced nature of the LANL dataset,
we evaluate various over- and under-sampling techniques,
and scrutinize their impact on classification performance.

• Compare our approach to state-of-the-art approaches that
leverage the LANL dataset for detecting LM. We show
that our approach outperforms the other approaches with
respect to detection performance and overhead.

• Perturb the attack patterns of LMs and study the impact
of varying attack frequency and scale on classification
performance. We show that adding synthetic TAs (i.e.,
noise and variation) in training data helps to mitigate the
influence of attack pattern changes, making the system
more robust to adversarial attempts.

Fig. 1. Number of Hosts vs. Events: Random sample of hosts from the
original LANL dataset and corresponding authentication events.

Fig. 2. Number of Hosts vs. Feature Extraction Time: Random sample
of hosts from five days in LANL dataset and features from corresponding
authentication events.

This article is an extension of our previous work in [10], and
evaluates our classifier performance in an adversarial setting.
We show the influence of such perturbations on our classifier
and instigate its cause, leading to strategies for complement-
ing the training data and address classifier vulnerabilities (see
Section IV-C). The rest of this article is organized as follows.
Section II provides a background on APT and LM detection,
and highlights the most recent related works. We discuss the
characteristics of the LANL dataset, delineate the explored
sampling algorithms, expose feature extraction and selection,
and present the ML techniques employed for TA detection in
Section III. In Section IV, we delineate the results of our eval-
uation and compare with the state-of-the-art approaches for
LM detection. We also explore the impact of attack pattern
changes on classification performance, and propose a solution
to mitigate its influence. We conclude with a brief summary
and instigate future research directions in Section V.

II. BACKGROUND AND RELATED WORKS

A. Advanced Persistent Threat and Lateral Movement

In an APT, attackers gain access to systems or networks and
reside there for an extended period of time. Different from tra-
ditional intrusions, APTs have several distinct characteristics:
(i) clear objectives, (ii) highly organized and well-resourced,
(iii) long-term persistence with repeated attempts, and (iv)
evade detection [11]. Due to these characteristics, APTs are
challenging to detect. Nevertheless, their distinct characteris-
tics lead to several common attack stages.

Table I summarizes the typical steps performed by an
APT. During Reconnaissance, attackers collect information
about the target from various resources. They may be sophis-
ticated and gather information from organization websites,

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1051

TABLE I
APT STAGES

multimedia, and social networks. Then by tricking the employ-
ees to click on crafted URLs or open malicious attachments,
attackers deliver the malware onto the target hosts. With the
malware successfully installed on the victim host, a command
and control channel is used to control the victim from the
master server. After moving laterally and compromising fur-
ther hosts, attackers exploit the valueable assets through data
exfiltration.

LM is used by adversaries to systematically explore the
network to access valuable assets. As a crucial stage in APT,
LM normally lasts for the longest time. Attackers gain more
information about the system by scanning the network and
compromising more hosts. To explore the internal network and
remain undetected, attackers perform this stage slowly, leaving
minimal footprints. They often reduce the attack frequency and
utilize legitimate system tools [12]. Mixed in a large volume
of benign activities, identifying LMs is challenging.

B. Lateral Movement Detection

Two attributes of LM make its detection non-trivial. First, a
plethora of possible attacking techniques (e.g., Pass the Hash,
Remote Desktop Protocol, Remote services, etc.) can be used
during LM [13]. These leave different traces on either the
network, the hosts, or both. Second, to remain undetected,
attackers launch their attacks slowly and infrequently. As a
result, their traces are mixed with the copious benign activ-
ities. Typically, researchers tackle the first problem by using
anomaly detection. As opposed to detecting states (e.g., num-
ber of bytes received, CPU usage, memory usage, etc.) caused
by the attack, they detect new attacks that result in an unde-
fined state. For the second problem, different methods are used
to collect all evidence available, seeking traces of LMs from
both the host and the network. They also balance the dataset
using well-known or custom methods.

1) Anomaly Detection: Anomaly detection has been exten-
sively used for network intrusion detection [14]. As opposed
to methods targeting characteristics of individual attacks, it
detects activities aberrant from normal forms, which makes the
method robust to unknown attacks. After building the knowl-
edge of the normal behavior, the system assigns abnormal
scores to new activities, which are then classified accordingly.
Research efforts in this area can be classified into statistic-
based, knowledge-based and ML-based anomaly detection.

Statistic-based anomaly detection systems (SB-ADS) build
the baseline from historical data, such as the frequency of
network events, kind of protocols used, and the number
of destination hosts contacted. By comparing the profiles of

historical data and that of new incoming events, SB-ADS
decides the degree of irregularity with a score. Over a span of
time, statistic-based systems can efficiently detect malicious
activities with well-defined normal profile. However, they are
vulnerable when the normal profile is contaminated. Attackers
can interfere during the training phase, which can cause attack-
ing events to be classified as benign. On the other hand,
knowledge-based ADS infers the legitimacy of events accord-
ing to pre-defined rules. However, benign patterns that have
not been anticipated, can be misclassified in this approach.
Besides, composing the rules is difficult and time consum-
ing [14]. Compared to the previous two methods, ML-based
approach can adapt to behavioral changes. It resembles SB-
ADS in theory, but with new labeled data and properly selected
models, ML-based approach can improve its performance pro-
gressively. In this article, we focus on leveraging ML-based
approaches to capitalize on their robustness to new attack
patterns.

2) Host-Based LM Detection: Liu et al. [15] propose a
ranking system to detect targeted hosts. The authors first
construct a connection graph from Windows security events
generated by Kerberos service ticket requests. Then they rank
the hosts according to path-rate score, which reflects the
rarity of a path in the network. To reduce the false posi-
tives, the authors build a remote file execution detector and
filter out benign behaviours. Their system can detect all LM-
related remote file execution. Chen et al. [16] leverage features
from multiple data sources to identify LM. They utilize rudi-
mentary graph-based features based on host communication,
while employing autoencoder to improve feature extraction. To
address imbalance in the LANL dataset, the authors propose
a custom under-sampling technique. They employ k-nearest
neighbor (k-NN) and achieve an average of 91.3% precision
in LM detection. However, their evaluation is limited to the
k-NN classifier.

Bohara et al. [17] propose an unsupervised approach to
detect LM. They employ the LANL dataset and inject syn-
thetic attacks into the original dataset, instead of using the
redteam events in the dataset. However, these simulated attacks
may not capture the true characteristics of real attacks in
enterprize networks. Their LM activity simulation follows
the susceptible-infected-susceptible virus spread model [18].
The authors extract features from host communication graphs,
while principal component analysis (PCA) is used to correlate
different features. For detection, they propose a combination
of two different detectors to enhance performance. The first
detector uses PCA and k-Means, while the second employs
PCA and extreme value analysis. This combination achieves
a 88.7% true positive rate.

Chawla et al. [19] apply Convolutional Neural Network
(CNN) and Gated Recurrent Unit (GRU), a gating mechanism
in Recurrent Neural Network (RNN), on the ADFA-LD [20]
dataset. The CNN layers can capture local correlation of struc-
tures in the sequences and execute in parallel to improve
performance, while the RNN with GRU can learn sequential
correlations from higher-level features. Their system can reach
an Area Under the Curve (AUC) score of 0.81 after training on
normal sequences. However, they only employ a well balanced

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1052 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

dataset, which does not depict a true attack scenario. In real-
ity, APTs are stealthy, which will result in a highly unbalanced
trace, as evident in the LANL dataset. Failing to test against
imbalanced data undermines their classifier’s ability against
real attacks.

Tuor et al. [21] and Brown et al. [22] propose RNN for
log-level intrusion detection. Tuor et al. introduce a language
modeling framework for generic log-level intrusion detec-
tion, while Brown et al. extend a previous framework and
focus on developing RNN models with attention mechanism.
These efforts do not employ feature engineering, but rather
the ML models directly leverage tokenized log lines. They
achieve AUC of 0.98 and 0.99, respectively. However, AUC
is impacted when the dataset is highly imbalanced. In con-
trast, our approach operates on the host-level, whereas the
aforementioned approaches detect on the log-level.

Kaiafas et al. [8] construct a bipartite graph, an inspira-
tion for our approach, to extract graph-based features and
employ an ensemble of ML models to improve classifica-
tion performance on the LANL dataset. However, the authors
only perform k-fold cross-validation and do not evaluate the
robustness of their ML models to unseen data. This is crucial
to ensure the detection of zero-day APTs. We highlight this
limitation in Section IV.

C. Adversarial Learning

ML has been extensively explored for cybersecurity.
However, research shows that crafted adversarial samples can
hamper the performance of the model [23]–[26]. Xu et al. [26]
propose a generic method to identify evasive samples. After
the test against two recent PDF malware detectors, their
system successfully evades detection with 100% success rate.
Biggio et al. [27] experiment with a gradient-based approach
to evade detection and show that popular classification algo-
rithms, such as support vector machine (SVM) and neural
networks are vulnerable. Anderson et al. [28] leverage gen-
erative adversarial networks to thwart the performance of a
deep learning-based detector, which detects the use of Domain
Generation Algorithms. We perform experiments to explore
the influence of adversarial samples on our approach for TA
detection (see Section IV-C).

III. METHODOLOGY

A. Dataset

1) Characteristics: The LANL dataset contains logs from
multiple data sources, including authentication and flow
logs. In our previous work [10], we highlight the lackluster
performance of flow-based features, which can be attributed
to the inferior quality of flow data. This undermines the suit-
ability of flow-based features to detect TAs during LM in the
LANL dataset. Therefore, in this work we only explore the
authentication log.

The authentication log is composed of over 450 million
authentication events from Windows-based desktop computers,
spanning 58 days. Among these events there are 749 redteam-
driven malicious events, distributed in the first 30 days of the
dataset, as depicted in Fig. 3. We leverage data in this time

Fig. 3. Redteam activities distribution.

Fig. 4. Authentication events distribution.

frame, which consists of about 230 million events from 14,582
benign hosts and 299 hosts associated with redteam activities.
However, the malicious activities are a small fraction of the
overall activities in the LANL dataset. Fig. 4 shows the daily
events distribution. In comparison to Fig. 3, it also reveals
that malicious activities are rare, both in general and on a
daily basis.

We do not consider local redteam authentication events, i.e.,
malicious events where the source and destination hosts are
the same. The behavior of an attacker that performs malicious
activity within a physical machine tends to be quite different.
Such an attacker has access to the physical interfaces of the
host, hence their attack strategy and behaviour can be very
sophisticated. Evaluating such behavior is out of the scope of
this article. Nevertheless, we capitalize on the number of infre-
quent events. In total, there are 8,941 hosts involved in 41,400
authentication events that occur only once in the dataset. Out
of the 295 TAs, 280 are involved in such events. Therefore,
considering the event infrequency, i.e., sparseness, which is a
trait of the majority of the malicious authentication events, as
depicted in Fig. 6, can potentially facilitate the detection of
TAs.

2) Balancing: Sampling algorithms are employed when a
dataset is highly imbalanced. An imbalanced dataset can result
in a classifier that is biased towards the majority class, due
to the nature of the training procedure. The sampling algo-
rithms used to alleviate this issue can be classified into two
categories, under-sampling and over-sampling. While under-
sampling approaches balance the dataset by reducing the data
points in the majority class, the over-sampling approaches
increase the data points in the minority class. Therefore,
the under-sampling algorithms are known to inherently lose
critical information, while the over-sampling algorithms suf-
fer from over-fitting [29]. However, a potential advantage of
under-sampling is the reduced computational overhead. On the

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1053

TABLE II
SIGNIFICANT FEATURES EXTRACTED FROM AUTHENTICATION LOGS (SEE SECTION IV-B1)

Fig. 5. Graph representation of authentication events.

other hand, some classifiers have the capability to overcome
the over-fitting due to over-sampling.

We explore different algorithms from both categories for
balancing the LANL dataset. The first algorithm is Random
Under-Sampling (RUS), which randomly removes samples
from the majority class. The second algorithm is Condensed
Nearest Neighbour (ConNN), an under-sampling algorithm
based on k-NN [30]. This algorithm keeps all samples in
the minority class and uses 1-NN classifier to determine
whether to retain the data point in the majority class or not.
The next algorithm is Repeated Edited Nearest Neighbours
(RENN), which implements multiple iterations of Edited
Nearest Neighbours (ENN) [31]. For the over-sampling algo-
rithms, we start with random over-sampling (ROS), fol-
lowed by the well-known Synthetic Minority Over-sampling
Technique (SMOTE) [32]. SMOTE over-samples data points

by creating their synthetic counterparts. This is achieved by
computing a vector between a data point and one of its
neighbours. Another over-sampling algorithm is the Adaptive
Synthetic (ADASYN) [33]. ADASYN also leverages k-NN to
adaptively generate synthetic data.

We employ the above sampling algorithms after feature
extraction. This is primarily because applying them directly
on the authentication log can sabotage the extraction of
graph-based features. For example, all authentication events
pertaining to a particular username may get eliminated due to
under-sampling. Similarly, over-sampling without considering
the diversity of hosts in the dataset may result in emphasizing
a single type of host. We study the influence of these sampling
algorithms on TA detection in Section IV.

B. Feature Extraction

We extract a total of 29 features from the authentication
log, more precisely from a graph representation of the authen-
tication events. As the features are primarily based on the in-
and out-degree of different hosts, we build an authentication
graph that is efficient for frequent reference. We first start by
building the authentication graph G = (U, V, E), where U rep-
resents the hosts that appear as sources in the authentication
log, while V represents the hosts that appear as destinations.
Edges in E link pairs (u, v) ∈ U × V and summarize all
authentication events involving source u and destination v.

Authentication events are inserted in the graph as shown
in Fig. 5. For example, consider an authentication event
e(Day2,User02,ComPtr10099,ComPtr4017), where Day2

represents the day when the logon was recorded, User02 is
the username used in the logon attempt, and ComPtr10099
is the source host used by User02 to logon to destination
host ComPtr4017. Assuming that User02 was already recorded

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1054 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 6. Median day count, per-day count and sparseness (see Algorithm 1)
of malicious and legitimate authentication events.

logging into ComPtr4017 from ComPtr10099 twice on Day1,
and 3 times on Dayn , the event e is added to the edge linking
ComPtr10099 to ComPtr4017 on the graph G with a count
of 1 (i.e., e is the first and unique event linking User02,
ComPtr10099, and ComPtr4017 on Day2), as depicted in
Fig. 5. Once the graph G is completed, we build dictionaries
that are used to extract the features, as described in [34].

A complete list of 29 authentication-based features is avail-
able in [34], while Table II delineates the 17 features after
feature selection, as described in Section IV-B1. A high-level
description of the authentication-based features is provided
below.

a) In-degree (ID) and out-degree (OD): In the early
phase of LM, attackers use stolen credentials to attempt log-
ging into and eventually compromising other hosts. This will
result in the increase of ID of the targeted hosts and OD of
successfully compromised ones.

b) In-degree-avg-frequency (IDAF) and out-degree-avg-
frequency (ODAF): Infrequent malicious authentication events
will have little impact on ID/OD in the presence of a much
larger number of benign authentication events. Thus, they can
be overlooked by the classifier. We consider IDAF, the daily
average number of authentication events targeting the host, as
well as ODAF, the average number of authentication events
originating from the host, and leverage the discriminatory
nature of these features.

c) IDAF-standard-deviation (IDAFSTD) and ODAF-
standard-deviation (ODAFSTD): Sparse malicious authenti-
cation logs can be shadowed by regular and repetitive benign
logons when calculating IDAF and ODAF. On the other hand,
the standard deviation of IDAF will be higher for TAs targeted
by a mix of frequent legitimate logons and sparse malicious
logons, than non-TAs. Similarly, compromised hosts will have
higher ODAFSTD than benign ones.

d) In-degree-sparseness (IDS) and out-degree-sparseness
(ODS): In order to capture infrequent events that are likely
to be malicious, we introduce a sparseness function (SF), as
depicted in Algorithm 1. SF considers infrequent events with a
specific (combination of) source host, destination host, or user-
name, and assigns a higher score to more infrequent events.
This amplifies the impact of such events on graph-based fea-
tures, which are otherwise largely affected by benign events.
IDS and ODS reflect the sparseness of the incoming and
outgoing logons, respectively. In this case, SF evaluates the
sparseness of these events and amplifies the impact of sparse
authentication events when computing the ID of a TA and OD

Algorithm 1 Sparseness Function (SF)
input : Source host Src, username Usr , destination host Dst ,

threshold θ, factor β
output: Sparseness , a sparseness score of event defined by

Src, Usr , and Dst
1: Initialize Events to all events in authentication log
2: Sparseness ← 0

/∗ filter(∗) is a no-op, countByDays() counts the number
of days where the event occurs ∗/

3: TotalDays ←
4: Events.filter(Src,Usr ,Dst).countByDays()
5: if TotalDays ≤ θ then
6: Sparseness ← max (TotalDays ∗ β−
7: Events.filter(Src,Usr ,Dst).count(), 0)

/∗ θ is the number of days an event has to occur before
it is qualified as non-sparse ∗/
/∗ β is the number of times an event has to occur daily
before it is qualified as non-sparse ∗/

8: end if
9: return Sparseness

of a compromised host. As sparse malicious logons receive
higher SF scores, TAs are expected to have higher IDS than
non-TAs, and compromised hosts to have higher ODS than
benign ones.

e) Weighted-in-degree-sparseness (WIDS): To distin-
guish between TAs and non-TAs with comparable IDS but
legitimately targeted by a higher number of logons (e.g.,
servers), we weigh the sparseness of incoming logons by the
ODS of the source.

f) Maximum-sparseness-factor (MSF) and suspicious-
user-rate (SUR): A common characteristic of TAs is that they
have been occasionally logged into with malicious intent. The
MSF of a particular host denotes the ODS of the source that is
most likely to be malicious and that has sparsely logged into
that host. The higher is the MSF of a host the more likely it is
a TA. The SUR of a given host is the proportion of usernames
used to sparsely log into the host.

g) Attack score (AS): The AS of a host reflects the like-
lihood of it being a TA. The higher the AS of a host, the more
like it is a TA. AS is the product of MSF and SUR, hence it
is correlated with MSF and SUR. Experiments with AS show
a promising boost with respect to precision and recall. As the
product of MSF and SUR, AS serves as an evident sign that
the host has been tempted by an actively probing source host.
It further reveals that selected ML models can not capture the
product relationship of different features. With all the features,
the classifier can better distinguish the boundary between TAs
and non-TAs.

C. ML Techniques

With graph-based features extracted, we evaluate several
ML techniques to detect TAs during LM. We start with deci-
sion tree (DT), a non-parametric supervised learning method.
We also leverage random forest (RF), which is a classifier that
uses multiple DTs to improve classification performance and

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1055

avoid over-fitting. LogitBoost (LB) is another learning algo-
rithm based on DT that we leverage in our evaluation. We also
assess logistic regression (LR), which is very efficient and does
not require feature scaling. However, its performance deteri-
orates with highly correlated features. We evaluate the above
ML algorithms along with other well known algorithms, such
as SVM, k-NN, and gaussian naïve bayes. However, we omit
discussion on the latter due to their inferior performance in
our evaluation.

D. Evaluation Metrics

In order to measure the performance of ML models, we use
a variety of metrics. These include:

Precision =
TruePositive

TruePositive + FalsePositive
× 100%

Recall =
TruePositive

TruePositive + FalseNegative
× 100%

F1 score = 2× Recall×Precision
Recall + Precision

The precision and recall are better criterion compared to
accuracy, false positive rate, and true negative rate, to assess
the performance of a classifier when the dataset is imbalanced.
The F1 score is essentially a harmonic mean of precision and
recall, which represents the overall performance of a clas-
sifier. A higher F1 score indicates both low false positives
and low false negatives (i.e., true TAs are identified without
raising many false alarms). In addition, we plot receiver oper-
ating characteristic (ROC) curve to illustrate the performance
of a classifier at different classification thresholds. We also
calculate AUC to quantify ML performance.

IV. EVALUATION

A. Environment

1) Hardware: We perform data pre-processing and anal-
ysis on a cluster of four nodes, each of which has a
Intel Xeon 3.30GHZ CPU and 16GB RAM. These nodes are
interconnected using 10Gbps Ethernet. ML model training,
validation and testing is performed on a machine equipped
with 2 x Intel Xeon 2.20GHz CPU and 384 GB RAM.

2) Software: We leverage Numpy [35], Scipy [36], and
Pandas [37] for data pre-processing. Imbalanced-learn [38]
is employed for balancing the training datasets, while Scikit-
learn [39] is used for building ML models.

B. TA Detection

1) Feature Selection: We start by evaluating the
performance of different ML classifiers with graph-based
features extracted from authentication events. Table III
showcases the result of k-fold cross-validation (k = 10) using
all 29 features [34] extracted from the first 30 days in the
LANL dataset. We choose θ and β based on trial-and-error
and the frequency of benign activities in the dataset. Most
authentication events for a given combination of (src, user-
name, dst) occur for more than three times per day and exist
over three days. Hence, we set θ = β = 3. The parameters
for the ML techniques are set based on their performance,

TABLE III
ML PERFORMANCE USING ALL AUTHENTICATION-BASED

FEATURE SET (29 FEATURES)

TABLE IV
PEARSON CORRELATION MATRIX FOR MOST CORRELATED

AUTHENTICATION-BASED FEATURES

TABLE V
ML PERFORMANCE ON REDUCED AUTHENTICATION-BASED

FEATURE SET (17 FEATURES)

i.e., we choose the parameters that exhibit the best result in
TA detection. DT is set to a maximum depth of 6, while RF
uses 400 estimators with a maximum depth of 12. LB uses
100 estimators and a DT regressor with a maximum depth
of 3. LR uses a tolerance of 0.0001 and a regularization
strength of 1.

With the exception of LR, which performs poorly, the other
ML techniques classify TAs with relatively high precision and
recall (i.e., over 75%). RF outperforms DT and LB with the
highest F1 score, while saving about 14s in feature extraction
time. However, the number of ML features not only influ-
ence the computational overhead, but can also result in model
over-fitting. Therefore, we study the correlation between the
features to further reduce their number. Table IV shows that
among the 29 features, 11 (column features) are correlated
with 4 others (row features), with a Pearson coefficient exceed-
ing 0.6. Hence, we remove all the 11 correlated features
from the feature set. Many of these features report on the
daily average logon times; per host, per user, and per (host,
user) combination. These features are too generic and fail
to describe the true nature of LM, which makes them less
discriminative in tagging TAs. We further remove the out-
degree-avg-frequency feature, which is only significant if there
is evidence that the TA is compromised and is actively attempt-
ing to move laterally. However, this is not evident in the LANL
dataset. We re-evaluate the ML techniques after removing the
12 aforementioned features. The authentication-based Feature
IDs (FIDs) are available in [34].

As depicted in Table V, the F1 score for all ML tech-
niques improve with RF outperforming all other classifiers.
Furthermore, LR shows the highest improvement in TA detec-
tion with an F1 score increase of 8%. Even though DT and

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1056 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE VI
ENSEMBLE LEARNING USING MAJORITY VOTING

TABLE VII
ENSEMBLE LEARNING USING WEIGHTED VOTING, PRIORITIZING

STAND-ALONE ML PERFORMANCE

LB are immune to highly correlated features [40], we notice
a slight increase in their performance. The removed features
primarily pertain to standard deviation and out-degree. On
a single host, different users can have distinct authentica-
tion patterns, which will result in high values for standard
deviation-based features, causing confusion for the classifiers.
Furthermore, if TAs do not have an exploring behaviour,
the out-degree-based features can also degrade the classifier
performance. Hence, in the following experiments we use the
reduced feature set of 17 authentication-based features (see
Table II in Section III-B).

2) Ensemble Learning: To improve the performance of the
stand-alone ML models, we consolidate them using ensemble
learning. Due to the lackluster performance of LR in compari-
son to other ML models (see Table V), we remove it from the
list of potential classifiers in the ensemble approach. First, we
employ the majority voting (MV) algorithm [41] that leverages
all ML models in the ensemble in a uniform manner, and use
k-fold cross-validation (k = 10) on the first 30 days of the
LANL dataset. The detection of TAs during LM using MV
over RF, LB and DT is shown in Table VI. This results in an
inferior performance to stand-alone RF, since low performing
classifiers can influence the voting process.

Evidently, MV is unable to boost the performance of
the best stand-alone classifier. Therefore, we explore another
ensemble approach, namely weighted voting (WV) [42], where
we can assign weights to ML models based on their stand-
alone performance. Intuitively, this can identify a higher
number of true positives (i.e., TAs during LM) that are missed
by RF, the best performing stand-alone classifier. However,
with multiple combination of weights assigned to the ML mod-
els in Table VII, stand-alone RF still outperforms WV. This
reveals that at the classification boundary where RF is unable
to differentiate between TAs and non-TAs, LB and DT also
suffer and do not facilitate better performance. Besides, these
ensemble approaches increase training time, which under-
mines their suitability for early LM detection. Therefore, we
choose the stand-alone RF classifier as our model for further
experiments.

3) Balancing the Dataset: The distribution of the dataset
can severely influence the performance of classifiers. For
example, in the case of an imbalanced dataset (e.g., sparse
malicious host events versus benign events), ML models
are more likely to classify new data to the majority class.

TABLE VIII
OVER-SAMPLING WITH DIFFERENT ALGORITHMS

USING STAND-ALONE RF (17 FEATURES)

Though, balancing the dataset can alleviate this issue, it may
also sabotage the performance of the classifier by impacting
graph-based features.

We evaluate the robustness of our ML model by training and
testing it on logs recorded on different days. Redteam activi-
ties are only conducted on certain days, generating malicious
events that account for a very small fraction of the total number
of authentication events (i.e., less than 0.0001%). Therefore,
we reserve day 9, the day with the highest number of malicious
authentication events, for testing, while the remaining days are
chosen for training the model. We evaluate several well-known
sampling algorithms (see Section III) to balance the training
dataset. For each sampling algorithm, we use distinct seeds
across 5 iterations and compute the average for each met-
ric. These seeds are consistent across the sampling algorithms.
Furthermore, each sampling algorithm has its own best sam-
pling rate, i.e., the ratio of TA versus non-TA (TA/non-TA).
Hence, we experiment with different sampling rates and select
the best sampling rate to portray the corresponding results.

a) Over-sampling: The comparison of three differ-
ent over-sampling algorithms, namely ROS, SMOTE, and
ADASYN, is highlighted in Table VIII. SMOTE results in
the second highest recall, as synthesizing minority points help
in stressing the TA class. However, the randomness in syn-
thetic points does not capture the true nature of original TAs,
resulting in a lower precision. In contrast, ADASYN achieves
better precision and recall. It generates synthetic points closer
to the decision boundary, thus enabling the classifier to better
distinguish TAs from non-TAs. As opposed to over-sampling
only a portion of the minority points, ROS simply replicates
TAs. Uniformly stressing on all TAs preserves the authenticity
of the TA class and its behavior to a large extent in compar-
ison to synthesizing, thus resulting in the highest precision.
Each algorithm over-samples the dataset with the same sam-
pling rate, thus the training time (TT) is similar. In contrast
to ADASYN, ROS and SMOTE consume less sampling time
(ST) due to their simpler sampling mechanism.

b) Under-sampling: Recall that RUS randomly removes
samples from the majority class. This may result in a high
number of non-TAs (i.e., majority class) that have similar traits
as certain class of TAs, negatively impacting precision. This
is evident in the lower precision of RUS in comparison to
ConNN, as shown in Table IX. But the TAs that starkly differ
from non-TAs are still classified with high recall. A similar
affect can be seen with RENN, which removes non-TAs that
are not very similar to their neighbors. In contrast, ConNN
preserves the non-TAs that are different from their neighbors.
Therefore, under-sampling with ConNN results in the best F1

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1057

TABLE IX
UNDER-SAMPLING WITH DIFFERENT ALGORITHMS USING

STAND-ALONE RF (17 FEATURES)

TABLE X
COMPARING DIFFERENT ALGORITHMS

USING STAND-ALONE RF (17 FEATURES)

score with precision and recall of 95.12% and 62.47%, respec-
tively. Due to its simplicity, RUS incurs the least sampling
time. In contrast, ConNN suffers from the highest sampling
time, but it also reduces the number of non-TAs to the largest
extent, which positively impacts training time.

c) Comparison: We highlight the over- and under-
sampling algorithms with the highest F1 score in Table X,
along with no sampling (i.e., imbalanced training dataset). As
evident, ADASYN increases the precision and recall by 0.54%
and 0.84%, respectively. However, this comes at the cost of
increased sampling and training times, which undermines its
suitability. On the other hand, ConNN increases precision by
0.93%. However, its sampling time is very high, while the F1
score is comparable without any sampling. Therefore, to avoid
this overhead, we proceed without any sampling to detect TAs
during LM in the LANL dataset.

4) Comparative Analysis: To further evaluate our approach,
we compare our model with two state-of-the-art approaches
for LM detection. We implement the approaches in
Chen et al. [16] and Kaiafas et al. [8]. To achieve a fair com-
parison, we balance the dataset according to the algorithm
in [16], which preserves the redteam events while under-
sampling the benign activities. Due to scalability issues in [8],
we only leverage data for k-fold cross-validation (k = 10)
from day 9. As depicted in Table XI, our model outperforms
Chen et al. in precision, recall and F1 score. However, our
approach consumes more feature extraction time (FET) and
model training time.

Kaiafas et al. marginally outperforms our model in recall,
with an improvement of 0.02 in F1 score. However, their
feature extraction and model training times are magnitudes
higher than both Chen et al. and our approach. In the balanced
dataset, there are about 97,000 authentication events and their
overhead is largely due to feature extraction for each individ-
ual event. In contrast, our approach strikes a balance between
performance and overhead.

Following cross-validation, we evaluate the robustness of
the aforementioned approaches on never seen data. Thus, we
leverage authentication events from day 9 as the test dataset,
while the remainder of the dataset (i.e., 29 days) is used
for training. In this case, the training dataset is composed

TABLE XI
TA DETECTION USING STAND-ALONE RF AND

CROSS-VALIDATION VERSUS [8], [16]

TABLE XII
ROBUSTNESS OF TA DETECTION USING STAND-ALONE

RF VERSUS [8], [16]

TABLE XIII
ROBUSTNESS OF TA DETECTION USING STAND-ALONE

RF VERSUS [8], [16] ON REDUCED TRAINING DATASET

of over 220 million log entries, which can potentially intro-
duce a lot of noise. As depicted in Table XII, the model
from Chen et al. fails miserably with a near-zero recall when
tested on never seen data. In [16] the feature set consists of
generic statistical features that fail to distinguish TAs in a noisy
environment. Unfortunately, we are unable to extract features
for Kaiafas et al. for this robustness evaluation in a reason-
able amount of time. Thus, the robustness evaluation for their
model is unavailable. In contrast, our model shows remarkable
performance with a recall and F1 score of 98.81% and 0.75,
respectively.

Nevertheless, to compare the robustness of Kaiafas et al.
we reduce the cardinality of the training dataset from the
previous experiment. Data from days 13, 14, and 15 is
used for training, while day 9 is reserved for testing. For
a fair comparison, we leverage the under-sampling method
from Chen et al. for both comparative models. Note that
Kaiafas et al. do not expose their sampling approach in
detail. Furthermore, no sampling is applied to our model. As
shown in Table XIII, our model significantly outperforms other
approaches. Even though Kaiafas’s model performs quite well
in cross-validation, it fails in robustness to unknown TAs.

The features in [8] fail to differentiate between TAs and
non-TAs in large networks. Diversity in authentication events
can result in TAs and non-TAs having similar values with
regard to less crafted features, such as the number of success-
ful/failed authentication events. Such noise will influence the
performance of ML models that leverage less-thought-of fea-
tures. However, with features based on the degree of sparse
events, our model is able to filter out noise and differentiate
TAs from non-TAs. Fig. 7 shows the ROC curve, which indi-
cates that our model has the highest AUC of 0.995. Note that
Kaiafas’s model is using MV, which is not feasible for plotting
as a ROC curve.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1058 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

Fig. 7. ROC curve for robustness in TA detection using stand-alone RF
versus [8], [16], with days 13, 14 and 15 for training, and day 9 reserved for
testing.

In comparison to previous robustness result, our model
shows a marginal loss in precision and recall. However, our
model out performs both state-of-the-art approaches, with a
high recall of over 94%, while the F1 score is the highest at
0.74. Note that the F1 score of 0.74 is primarily attributed to
low precision (i.e., high false alarms) in the robustness analy-
sis. Without undermining the importance of false alarms, we
believe that false negatives are significantly more serious, as
they can compromise the integrity of an enterprise network.
This is when a malicious activity is tagged as legitimate.
Hence, our primary objective is to maximize recall.

C. Adversarial Learning

In APT, attackers during LM strive to introduce minimal
influence. Highly skilled attackers can trick a system by adding
small randomness in their activities or imitating benign behav-
ior after long-term scouting. However, in practice, it is very
difficult for an attacker to collect behaviour information of
benign users, as it may require administrative privileges, and
access to system drivers and administrative tools. This will
result in evident traces, alerting the administrators of abnor-
mal activity, e.g., abnormal memory usage and degradation
in system performance. Therefore, we study the influence of
adversarial attempts for the former scenario.

We assume that the attacker cannot access behaviour profile
of benign users, the model or the training data. Therefore, the
adversary introduces variations in attack patterns to potentially
trick the classifier. Since our approach relies on authentication
patterns, variations in other aspects, such as system vulnera-
bility and perturbing tools, will not influence the classifier’s
performance. Our approach capitalizes on the sparsity of mali-
cious authentication events. Thus, we evaluate the influence of
an adversary perturbing its probing pattern. More specifically,
this includes perturbing the number of TAs and the frequency
of malicious authentication events, as shown in Fig. 8. An
attacker can both increase the attacking frequency (in b) or
decrease it. Similarly, an attacker can also increase the num-
ber of TAs (in c) or reduce it. We start by exploring the impact
of perturbations in both of these aspects.

Fig. 8. Attacker changes probing pattern: (a) the original attack, (b) increas-
ing attack frequency (c) increasing the attacking scale (i.e., attack more TAs).
Note that arrow labels correspond to authentication events.

Fig. 9. Example of increase in number of TAs with Ratio = 2: (a) original
attack, (b) attacking more TAs, for each new host (i.e., victim VCi for cor-
responding original TAi) map to it the original attack ai on TAi , i.e., a′i .
Note, attack ai on TAi is a set of authentication events.

1) Perturbing Number of TAs: To simulate attackers prob-
ing different number of TAs, we first define the Ratio between
the sampled TAs and the original TAs as follows:

Ratio =
Number of TAs after sampling

Number of TAs in the original dataset

For Ratio greater than 1 (i.e., increase in number of TAs),
we randomly select (Ratio −1) × Original Number of TAs
from within non-TAs. Then for each of the chosen new host
(i.e., victim), we simulate the attack from the original redteam
in a one-to-one manner. An example is illustrated in Fig. 9.
Similarly, for Ratio smaller than 1 (i.e., decrease in number
of TAs), we randomly select Ratio× Original Number of TAs
from the redteam, and only preserve redteam events related to
the selected TAs.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1059

Fig. 10. ROC curve for decrease in number of TAs with different Ratio,
zoomed on top-left corner.

TABLE XIV
DECREASE IN NUMBER OF TAS WITH DIFFERENT Ratio

Decreasing the Ratio can decrease the value of features
related to sparseness (sparseFeatures). In fact, when attack-
ing fewer TAs, the ODS of the attacking (source) host will
decrease. Consequentially, the WIDS(usr ,src)(dstj) feature
will also decrease, as it is weighted by the source ODS. We
assert this claim by inspecting the features for each host in our
experiments. The decrease in Ratio does not severely impact
the true positive rate (TPR) and the false positive rate (FPR).
However, upon zooming on the upper left corner (i.e., the bal-
ance between TPR and FPR), as shown in Fig. 10, there is a
noticeable variation in TPR at the balance point. We further
highlight the corresponding results in Table XIV, where the
number of FP increases as the Ratio decreases.

By inspecting the data points after sampling, we observe
that for most non-TAs the sparseFeatures remain at a very low
level. For example, the average WIDS(usr ,src)(dstj) of TAs
is around ten times that of non-TAs. Furthermore, we notice
a drop in these features for TAs. Therefore, we concur that
the classifier is not aggressively relying on these distinctive
features. One way to adjust the sensitivity to sparseFeatures
is to tune the classifier threshold. Table XV shows the result
with the threshold values that lead to the best F1 score. There
is a clear increase in precision when compared to the use of
a uniform threshold. However, manually tuning the classifier
threshold is impractical after deployment. Therefore, to stress
on sparseFeatures, we further explore by only considering
these particular features.

Table XVI shows the result using sparseFeatures only,
i.e., excluding features, such as IDsrc(dstj), IDusr (dstj), and
ID(usr ,src)(dstj). Evidently, the classifier does not perform
well at the decision boundary where TAs and non-TAs are

TABLE XV
DECREASE IN NUMBER OF TAS WITH DIFFERENT Ratio, AND CLASSIFIER

THRESHOLD ACCORDING TO F1 SCORE

TABLE XVI
DECREASE IN NUMBER OF TAS WITH

DIFFERENT Ratio, USING ONLY sparseFeatures

TABLE XVII
INCREASE IN NUMBER OF TAS WITH DIFFERENT

Ratio, USING UNIFORM THRESHOLD

very similar. Therefore, there is a significant increase in FP
and FN, in comparison to Table XIV. With these observations,
it is clear that sparseFeatures can effectively identify TAs, but
at the same time, mis-classify non-TAs that have similar prob-
ing behavior as TAs. Furthermore, non-sparseFeatures serve
as a support to rule out these FNs, thus it is not possible to
ensure classifier robustness to smaller Ratio perturbations by
leveraging only the sparseFeatures.

We then investigate when attackers increase the number of
TAs. There is no significant drop in TPR and FPR, asserting
classifier robustness to this kind of perturbation. Table XVII
shows a significant increase in precision, while there is a
decrease in recall. Since we choose more non-TAs as TAs and
perform similar probing activities on them, the classifier is able
to identify them with higher precision. However, it is counter
intuitive for FN to increase significantly, since the classifier
has seen similar activities. Therefore, we further investi-
gate with only sparseFeatures. In comparison to Table XVII,
Table XVIII shows more stable results with respect to recall.
Therefore, using only sparseFeatures achieves stable recall at
the cost of lower precision.

2) Perturbing Attack Frequency: Another aspect that we
explore is the frequency of an attacker’s probing activity (PA).
Here we define Ratio as follows:

Ratio =
Number of PAs after sampling

Number of PAs in the original dataset

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1060 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE XVIII
INCREASE IN NUMBER OF TAS WITH DIFFERENT

Ratio, USING ONLY sparseFeatures

Fig. 11. Example of increase in attack frequency with Ratio = 2: (a) the
original attack, (b) for each attack ai on the original TAi , we add randomness
to its attack time, which results in a′i that is simulated on TAi .

TABLE XIX
DECREASE IN MALICIOUS AUTHENTICATION EVENTS

FREQUENCY WITH DIFFERENT Ratio

For increasing the attack frequency, we simulate additional
attacks by replicating the original attacks on a TA by a factor
of Ratio, as shown in Fig. 11. For each new attack we also
add randomness to its attack time. Similarly, for a decrease in
attack frequency, we randomly sample the attacks on each TA
to the Ratio of the original attack.

Since the features are built atop sparse authentication events,
reducing the frequency further emphasizes the sparseFeatures.
Thus, there is no significant drop in TPR or FPR. Fig. 12
shows the upper left corner of the ROC curve, where the
optimum balance of TPR and FPR resides. In general, the
model performs better as the Ratio decreases. Table XIX
shows the precision, recall, and F1 score with decreasing
Ratio. As the Ratio decreases, all metrics increase steadily.
That is, as attacks get less frequent, sparseFeatures become
more pronounced, which helps the classifier better identify
TAs. Hence, our model shows robustness to infrequent attacks.
However, similar to Table XVI, Table XX shows the result
using sparseFeatures only, with the classifier underperform-
ing (i.e., significant increase in FP and FN, in comparison to
Table XIX) when TAs are very similar to non-TAs.

Fig. 13 shows the ROC curve of increasing the attack
frequency. As the Ratio increases, probing behavior becomes
similar to benign activities, which diminishes the discriminat-
ing nature of sparseFeatures. As a result, both the precision

Fig. 12. ROC curve for decrease in attack frequency with different Ratio,
zoomed on top-left corner.

TABLE XX
DECREASE IN MALICIOUS AUTHENTICATION EVENTS FREQUENCY WITH

DIFFERENT Ratio, USING ONLY sparseFeatures

Fig. 13. ROC curve for increase in attack frequency with different Ratio.

and recall suffer, as shown in Tables XXI and XXII. Even
though employing all features show consistently better result,
the less prominent sparseness-related features sabotage model
performance.

3) Adding Synthetic TAs: With the above discussion, we
conclude that our model is robust when the attacker decreases
the attack frequency or increases the number of TAs. But when
the attacker changes the attacking pattern in the other direction
(i.e., increases the attack frequency or decreases the number of
TAs), our model is vulnerable (i.e., precision and recall drop
significantly).

To alleviate this impact, we incorporate synthetic TAs (i.e.,
in the training dataset) with perturbed attack patterns to

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1061

TABLE XXI
INCREASE IN MALICIOUS AUTHENTICATION EVENTS FREQUENCY WITH

DIFFERENT Ratio

TABLE XXII
INCREASE IN MALICIOUS AUTHENTICATION EVENTS FREQUENCY WITH

DIFFERENT Ratio, USING ONLY sparseFeatures

Fig. 14. Example of generating synthetic TAs from a subset of original TAs
with γ = 0.6: (a) the original attack, (b) randomly choose TA′

i among the
original TAi . Add randomness to each attack ai ’s attack time, which results
in a′i that is simulated on TA′

i .

enhance the classifier’s ability in differentiating TAs from non-
TAs in an adversarial setting. More specifically, we replace the
original TAs with synthetic ones that we generate by randomly
choosing a subset of the original TAs, with ratio γ, and adding
randomness to their attack time (i.e., for corresponding authen-
tication events), as shown in Fig. 14. We retrain our model
and reevaluate its performance. After experimenting, we get
the best result with γ = 0.6.

Table XXIII depicts the classifier performance after adding
these synthetic TAs to the training dataset. Comparing the
results with that of the original experiment (see Table XVI),
there are more FPs, which means lower precision, while
the recall is restored to 100%. Adding the synthetic TAs
in the training dataset makes the classifier more aggres-
sive at the boundary. This results in a higher number of
FPs, while enabling a 100% recall, our primary objective.
Table XXIV shows a positive influence on performance when
the adversary increases the attack frequency (when compared
to Table XXI). Interestingly, replacing the original TAs with a

TABLE XXIII
DECREASE IN NUMBER OF TAS AFTER REPLACING WITH SYNTHETIC

TAS IN TRAINING DATASET (γ = 0.6)

TABLE XXIV
INCREASE IN MALICIOUS AUTHENTICATION EVENTS FREQ AFTER

REPLACING WITH SYNTHETIC TAS IN TRAINING DATASET (γ = 0.6)

TABLE XXV
DECREASE IN NUMBER OF TAS AFTER REPLACING WITH SYNTHETIC

TAS IN TRAINING DATASET (γ = 0.1)

TABLE XXVI
INCREASE IN MALICIOUS AUTHENTICATION EVENTS FREQ AFTER

REPLACING WITH SYNTHETIC TAS IN TRAINING DATASET (γ = 0.1)

lower number of synthetic TAs in the training dataset allevi-
ates both vulnerabilities. Recall that perturbing attack behavior
makes the sparseFeatures less prominent, causing the classi-
fier to misclassify TAs with lower sparseness-related features.
Adding synthetic TAs enable the classifier to correctly classify
TAs with less prominent sparseFeatures, making it robust to
adversarial attempts.

We expect this influence to decrease as the number of syn-
thetic TAs added to the training dataset decreases. Tables XXV
and XXVI assert our conjecture with γ = 0.1, where the
recall degrades with a reduced number of synthetic TAs.
Therefore, we add synthetic TAs with γ = 0.6 in the training
dataset, to achieve the best recall at the cost of slightly lower
precision. However, in the case when an attacker increases the
attack frequency, the FN is still very high (see Table XXIV).
Therefore, we also add synthetic TAs generated by simulat-
ing this with γ = 0.6. We do observe slightly better result, as

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

1062 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 18, NO. 1, MARCH 2021

TABLE XXVII
DECREASE IN NUMBER OF TAS AFTER ADDING SYNTHETIC TAS TO

TRAINING DATASET (γ = 0.6)

TABLE XXVIII
INCREASE IN MALICIOUS AUTHENTICATION EVENTS FREQ AFTER

ADDING SYNTHETIC TAS TO TRAINING DATASET (γ = 0.6)

shown in Table XXVIII. However, Table XXVII shows slightly
worse performance in comparison to Table XXIII, where the
synthetic TAs are simulating the attackers increasing the attack
frequency. On inspecting the features for TAs when increas-
ing the attack frequency, we notice that the sparseFeatures are
much less prominent, making TAs very similar to non-TAs.
This is because our model inherently detects sparse probing
behaviour. Therefore, when the attack frequency increases too
much, the attack itself becomes similar to non-TA behaviour,
which results in it being filtered out by our model. Attacks
in this category can be detected by models that target nosier
probing behaviour.

In the two vulnerable cases of attackers increasing the attack
frequency and probing smaller number of TAs, our approach
results in an effective mitigation of adversarial attempts against
our model. However, we still notice high FN in Table XXIV.
We have explored adding synthetic TAs that are generated
by reducing γ to change the number of TAs. Further adjust-
ing the number of synthetic TAs can potentially improve the
performance of our model. Besides, adding synthetic TAs gen-
erated by increasing the frequency may also further mitigate
the impact of the perturbation. However, improvement in the
latter case would be marginal, since our model is not designed
for noisier attack patterns.

V. CONCLUSION

We propose a novel approach for detecting TAs during the
LM phase of an APT attack. We explore graph-based features
extracted from host authentication logs in the LANL dataset.
Among all the baseline features, we filter less impactful and
correlated features to select the ideal feature set for TA detec-
tion, and reduce computational overhead. To cope with the
highly imbalanced nature of the dataset, different sampling
algorithms are explored to improve classifier performance.
The result shows that our approach is robust against imbal-
anced dataset. Our approach outperforms the other state-of-
the-art approaches in TA detection on the LANL dataset.
Furthermore, in situations where attackers evade detection by

adding variation in their probing behaviour, we show that
our model can be robust by adding synthetic TAs in the
training data.

Due to the poor quality of flow data in the LANL dataset,
we are unable to exploit data from multiple sources for TA
detection. Furthermore, the employed graph-based features are
generated in SF with parameters that must be further explored
with different benign activity patterns. An adaptive SF that
accommodates to benign behavior can also improve the robust-
ness of TA detection. Though in our approach we focus on
maximizing recall, high false alarms can result in an over-
head for security experts. Therefore, we will work on further
improving the F1 score of our model in the future. Lastly,
as the data grows rapidly in an enterprise network, the use
of online learning would be valuable, both in terms of com-
putation overhead and performance. This will facilitate the
adjustment of ML decision boundary after deployment.

REFERENCES

[1] S. Gatlan. (Mar. 2019). Asus Live Update Infected With Backdoor
in Supply Chain Attack. Accessed: Apr. 5, 2019. [Online].
Available: https://www.bleepingcomputer.com/news/security/asus-live-
update-infected-with-backdoor-in-supply-chain-attack/

[2] Crypto Exchange Dragonex Lost $7m in Hack, Announces
Compensation Plan, TokenPost, Apr. 2019. Accessed: Apr. 5,
2019. [Online]. Available: https://tokenpost.com/Crypto-exchange-
DragonEx-lost-7M-in-hack-announces-compensation-plan-1568

[3] S. Sinclair, S. W. Smith, S. Trudeau, M. E. Johnson, and A. Portera,
“Information risk in financial institutions: Field study and research
roadmap,” in Enterprise Applications and Services in the Finance
Industry. Heidelberg, Germany: Springer, 2008.

[4] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proc. IEEE, vol. 63, no. 9, pp. 1278–1308,
Sep. 1975.

[5] S. Ayoubi et al., “Machine learning for cognitive network management,”
IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165, Jan. 2018.

[6] R. Boutaba et al., “A comprehensive survey on machine learning
for networking: Evolution, applications and research opportunities,” J.
Internet Serv. Appl., vol. 9, no. 1, p. 16, 2018.

[7] A. A. Daya, M. A. Salahuddin, N. Limam, and R. Boutaba, “BotChase:
Graph-based bot detection using machine learning,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 1, pp. 15–29, Mar. 2020.

[8] G. Kaiafas et al., “Detecting malicious authentication events trustfully,”
in Proc. IEEE/IFIP Netw. Oper. Manag. Symp. (NOMS), Taipei, Taiwan,
2018, pp. 1–6.

[9] A. D. Kent, Comprehensive, Multi-Source Cyber-Security Events, Los
Alamos Nat. Lab., Los Alamos, NM, USA, 2015.

[10] H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. A. Daya, and
R. Boutaba, “Host in danger? detecting network intrusions from authen-
tication logs,” in Proc. 15th Int. Conf. Netw. Serv. Manag. (CNSM),
2019, pp. 1–9.

[11] P. Chen, L. Desmet, and C. Huygens, “A study on advanced persistent
threats,” in Proc. IFIP Int. Conf. Commun. Multimedia Security, 2014,
pp. 63–72.

[12] Detecting Lateral Movement Through Tracking Event Logs,
JPCERT/CC, Tokyo, Japan, May 2017. [Online]. Available:
https://www.jpcert.or.jp/english/pub/sr/ir_research.html

[13] (2018). The MITRE Corporation. [Online]. Available: https:
//attack.mitre.org/

[14] P. Garcia-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and
E. Vázquez, “Anomaly-based network intrusion detection: Techniques,
systems and challenges,” Comput. Security, vol. 28, nos. 1–2, pp. 18–28,
2009.

[15] Q. Liu et al., “Latte: Large-scale lateral movement detection,” in Proc.
IEEE Mil. Commun. Conf., Los Angeles, CA, USA, 2018, pp. 1–6.

[16] M. Chen, Y. Yao, J. Liu, B. Jiang, L. Su, and Z. Lu, “A novel approach
for identifying lateral movement attacks based on network embedding,”
in Proc. IEEE Int. Conf. Parallel Distrib. Process. Appl. Ubiquitous
Comput. Commun. Big Data Cloud Comput. Soc. Comput. Netw. Sustain.
Comput. Commun. (ISPA/IUCC/BDCloud/SocialCom/SustainCom),
2018, pp. 708–715.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

BIAN et al.: UNCOVERING LM USING AUTHENTICATION LOGS 1063

[17] A. Bohara, M. A. Noureddine, A. Fawaz, and W. H. Sanders, “An
unsupervised multi-detector approach for identifying malicious lateral
movement,” in Proc. IEEE 36th Symp. Rel. Distrib. Syst. (SRDS),
Hong Kong, China, 2017, pp. 224–233.

[18] P. Van Mieghem, “The N-intertwined SIS epidemic network model,”
Computing, vol. 93, pp. 147–169, Oct. 2011.

[19] A. Chawla, B. Lee, S. Fallon, and P. Jacob, “Host based intrusion detec-
tion system with combined CNN/RNN model,” in Proc. Joint Eur. Conf.
Mach. Learn. Knowl. Discov. Databases Workshops, 2019, pp. 149–158.

[20] G. Creech and J. Hu, “Generation of a new IDS test dataset: Time to
retire the KDD collection,” in Proc. IEEE Wireless Commun. Netw. Conf.
(WCNC), Shanghai, China, 2013, pp. 4487–4492.

[21] A. R. Tuor, R. Baerwolf, N. Knowles, B. Hutchinson, N. Nichols, and
R. Jasper, “Recurrent neural network language models for open vocab-
ulary event-level cyber anomaly detection,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 285–293.

[22] A. Brown, A. Tuor, B. Hutchinson, and N. Nichols, “Recurrent neu-
ral network attention mechanisms for interpretable system log anomaly
detection,” in Proc. Workshop Mach. Learn. Comput. Syst., 2018,
pp. 1–8.

[23] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in
Proc. EEE Eur. Symp. Security Privacy (EuroS&P), 2016, pp. 372–387.

[24] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards the
science of security and privacy in machine learning,” 2016. [Online].
Available: arXiv:1611.03814.

[25] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828–841, Oct. 2019.

[26] W. Xu, Y. Qi, and D. Evans “Automatically evading classifiers,” in
Proc. 23rd Annu. Netw. Distrib. Syst. Security Symp. (NDSS), 2016,
pp. 21–24.

[27] B. Biggio et al., “Evasion attacks against machine learning at test time,”
in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discov. Databases, 2013,
pp. 387–402.

[28] H. S. Anderson, J. Woodbridge, and B. Filar, “DeepDGA: Adversarially-
tuned domain generation and detection,” in Proc. ACM Workshop AI
Security, 2016, pp. 13–21.

[29] P. Baldi, “Autoencoders, unsupervised learning and deep architectures,”
in Proc. Int. Conf. Unsupervised Transfer Learn., 2011, pp. 37–50.

[30] P. Hart, “The condensed nearest neighbor rule (corresp.),” IEEE Trans.
Inf. Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[31] D. L. Wilson, “Asymptotic of nearest neighbor rules using edited data,”
IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3, pp. 408–421,
Jul. 1972.

[32] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” J. AI Res.,
vol. 16, pp. 321–357, Jun. 2002.

[33] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proc. IEEE Int. Joint
Conf. Neural Netw. World Congr. Comput. Intell. (IJCNN), Hong Kong,
China, 2008, pp. 1322–1328.

[34] H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. A. Daya,
and R. Boutaba. (2020). Technical Report. [Online]. Available:
http://bit.ly/tech_report_2020

[35] T. E. Oliphant, Guide to NumPy, 2nd ed., North Charleston, SC, USA:
CreateSpace Independent Publ. Platform, 2015.

[36] E. Jones et al.. (2001). SciPy: Open Source Scientific Tools for Python.
Accessed: Mar. 2019. [Online]. Available: http://www.scipy.org/

[37] W. McKinney, “Data structures for statistical computing in python,” in
Proc. Python Sci. Conf., 2010, pp. 51–56.

[38] G. Lemaître, F. Nogueira, C. K. Aridas, “Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets in machine learning,”
J. Mech. Learn. Res., vol. 18, no. 17, pp. 1–5, 2017.

[39] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” J. Mech.
Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011.

[40] L. Tolosi and T. Lengauer, “Classification with correlated features:
Unreliability of feature ranking and solutions,” Bioinformatics, vol. 27,
no. 14, pp. 1986–1994, 2011.

[41] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Hoboken, NJ, USA: Wiley, 2004.

[42] T. G. Dietterich, “Ensemble methods in machine learning,” in Proc. Int.
Workshop Multiple Classifier Syst. (MCS), 2000, pp. 1–15.

Haibo Bian received the B.S.E. degree from
Zhejiang University in 2016, and the M.Math. degree
in computer science from the University of Waterloo
in 2019. His current research interests include the
network functions virtualization, cybersecurity, and
machine learning.

Tim Bai received the B.C.S. degree and the M.Math.
degree in computer science from the University of
Waterloo in 2017 and 2019, respectively. His current
research interests include the network softwariza-
tion, cybersecurity, and machine learning.

Mohammad A. Salahuddin (Member, IEEE)
received the Ph.D. degree in computer science from
Western Michigan University in 2014. He is a
Research Assistant Professor with the David R.
Cheriton School of Computer Science, University
of Waterloo. His current research interests include
the Internet of Things, content delivery networks,
network softwarization, cloud computing, and cog-
nitive network management. He serves as a TPC
member for international conferences and a reviewer
for various journals and magazines.

Noura Limam received the M.Sc. and Ph.D. degrees
in computer science from the University Pierre
and Marie Curie (Sorbonne University) in 2002
and 2007, respectively. She is currently a Research
Assistant Professor of Computer Science with the
University of Waterloo. Her contributions are in the
area of network and service management. Her cur-
rent research interests are in network softwarization
and cognitive network management.

Abbas Abou Daya received the B.Eng. degree
in electrical and computer engineering from
the American University of Beirut, and the
M.Math. degree in computer science from the
University of Waterloo in 2019. His current research
interests involve machine learning, cybersecurity,
and networks and systems.

Raouf Boutaba (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from
Sorbonne University in 1990 and 1994, respectively.
He is currently a University Chair Professor and
the Director of the David R. Cheriton School of
Computer Science, University of Waterloo, Canada.
He also holds an INRIA International Chair in
France. He was the Founding Editor-in-Chief of
the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT from 2007 to 2010. He is
currently the Editor-in-Chief of the IEEE JOURNAL

ON SELECTED AREAS IN COMMUNICATIONS. He is a fellow of the
Engineering Institute of Canada, the Canadian Academy of Engineering, and
the Royal Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on June 09,2021 at 14:57:51 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

