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A B S T R A C T

Software Defined Networking (SDN) is gaining momentum not only in research but also in IT industry
representing the drivers of 5G networks, due to its capabilities of increasing the flexibility of a network and
address a variety of network challenges, by logically centralizing the intelligence in software-based controllers.
Thanks to Machine Learning (ML) techniques, the network performances and utilization can be optimized
and enhanced. Neural Networks (NN) and Reinforcement Learning (RL), in particular, have demonstrated
great success in cooperating with complex problems arising in network operation and management. To this
end, we exploit in this paper, an SDN-based rules placement approach that aims to dynamically predict
the traffic congestion by using mainly NN and learn optimal paths and reroute traffic to improve network
utilization by deploying a Deep Q-Network (DQN) agent. To this end, we first formulate the Quality-of-Service
(QoS)-aware routing problem as a Linear Program (LP), whose objective is to minimize the end-to-end (E2E)
delay and link utilization. Then, we propose a simple yet efficient heuristic algorithm to solve it. Numerical
results through emulation using ONOS controller and Mininet demonstrate that the proposed approach can
significantly improve network performances in terms of decreasing the link utilization, the packet loss and the
E2E delay.
1. Introduction

With the development of new technologies such as (5G), network
traffic is expected to grow at an exponential rate, due to the wide range
of applications with stringent and heterogeneous requirements, such
as massive machine-type communications, ultra-reliable low-latency,
enhanced mobile broadband communications, big data and cloud ap-
plications. Hence, to meet Quality-of-Service (QoS) and Service Level
Agreement (SLA) requirements, it is essential to develop innovative
ways in which traffic flows can be managed in real-time. Software
Defined Networking (SDN) (ONF, 2012) is one of the key emerging
technologies for the 5G vision, capable of increasing the flexibility of a
network and reduce its costs.

SDN aims at decoupling the network intelligence from the net-
work devices, enabling thus a centralization of network intelligence,
a flexibility in traffic control and a simplicity in network management
and operation. However, as the size of the network and the number
of flows increase, the computational complexity of the control plane
increases exponentially. Adapting traditional network policies to the
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continually changing network behavior is a challenging task. Indeed,
to effectively avoid congestion and overloading links, both latency and
throughput must be monitored continually and proactively, in order to
quickly route packets to less used links. One of the first SDN protocol
standards is OpenFlow (McKeown et al., 2008) that enables direct
interaction with the forwarding plane of network devices. Although
OpenFlow provides a mechanism to request throughput statistics, latest
specifications of this protocol do not provide mechanisms to measure
latency.

Moreover, existing routing algorithms are not suitable for SDN
due to their convergence limit and the absence of a future vision
on the evolution of network traffic. Several approaches have been
proposed to cope with this challenge. Hyun and Hong (2017) proposed
the Self-driving network concept, in which the routing decision is
automatic and based on the analyzed telemetry collected from the
network data plane, where analyzing collected statistics can be done
by Artificial intelligence (AI) and Machine Learning (ML) techniques.
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Pham Tran Anh et al. (2019) proposed Knowledge-Defined Networking
(KDN), by introducing the Knowledge plane (KP) to the conventional
SDN paradigm, that is responsible for learning the behavior of the
network by applying ML on the collected data plane statistics.

Incorporating intelligence via ML to the SDN control plane is crucial
to guarantee the requested QoS and optimize routing in SDN-based
networks (Boutaba et al., 2018). Indeed, Feng and Shu (2005) used the
linear prediction method Auto-Regressive Integrated Moving Average
(ARIMA) to predict the future evolution of network traffic. However,
such ML methods are not suitable to handle 5G networks and beyond
due to their limits to efficiently cope with the large volume data. To
this end, the deep learning techniques are well placed to intelligently
make decisions on scheduling, bandwidth reservation, etc.

Reinforcement Learning (RL) techniques (Boyan and Littman, 1999)
as well are gaining momentum in routing optimization. The principal
idea behind it is to deploy an agent that periodically makes decision
and automatically adjusts its strategy by learning a state-to-action
mapping while maximizing a numerical reward. Khodayari and Yazdan-
panah (2005) proposed a 𝑄-routing algorithm looking for minimizing
the average delivery time. The main drawback of RL techniques is the
slowness to reach the best policy when exploring the entire system,
making it unsuitable and inapplicable to large-scale networks with
almost countless state number. By taking advantage of Deep Learning to
speed up the learning process, combining RL techniques to Deep Learn-
ing is well placed to overcome limitations of RL, which referred to as
Deep Reinforcement Learning (DRL). Consequently, using NNs instead
of 𝑄-tables in DRL makes it possible to achieve new network states,
save the time processing and storage of 𝑄-tables. Several methods of
DRL have been used where the basic one is DQN (Mnih et al., 2013,
2015), that combines a DNN with 𝑄-learning.

To this end, we propose, in this paper, a dynamic and efficient traffic
engineering scheme, called Deep Q-Network and Traffic Prediction
based Routing Optimization (DTPRO), which extends our previous
work in Bouzidi et al. (2019) by adding a DQN agent as well as a
traffic prediction module in order to optimize the network flow rout-
ing. Specifically, our proposed solution consists of three main phases.
Firstly, we dynamically optimize the flow routing in the network by
training a DQN agent. Secondly, we predict congestion and adjust the
DQN reward function to provide better routing configurations. Finally,
we route the network traffic based on a set of link weights given by the
trained DQN agent, and at the same time reroute the existing traffic
away from the congested paths by resolving a Linear Program (LP).
The formulated LP represents the flow rules placement problem, where
the objective is to minimize the total network delay, packet loss and
link utilization. Note that, during the third phase, we have proposed an
heuristic that interacts with the DQN agent and the traffic prediction in
order to solve the formulated LP and optimize network performances.
Experimental results, using the ONOS controller and Mininet, show
that the proposed approach provides a promising enhancement against
traditional routing algorithms.

The main contributions of our paper can be summarized as follows:

• First, we train a DQN agent with appropriate states and actions,
in order to optimize the flow routing in the network.

• Second, we predict congestion and adjust the DQN reward func-
tion to provide better routing configurations.

• Third, we mathematically model the QoS-aware routing problem
as a LP, which takes as inputs routing strategy given by the
trained DQN agent and the predicted traffic. Our objective is to
minimize the E2E delay, E2E link utilization and E2E packet loss.
Then, we propose a simple yet efficient heuristic algorithm called
DTPRO to solve the LP.

• Fourth, we implement the DTPRO approach using ONOS con-
troller and Mininet.
2

The remainder of this paper is organized as follows. Section 2
presents related works. In Section 3, we discuss the architecture of
the proposed framework and the rules placement algorithm. Section 4
evaluates the proposed method. We finally conclude this paper in
Section 5.

2. Related works

In the following, we first survey the literature on traffic monitor-
ing approaches for collecting data plane statistics in SDN. Then, we
focus on the ML techniques used for traffic prediction and routing
optimization.

2.1. Traffic monitoring

Recently, SDN (ONF, 2012) with OpenFlow protocol (McKeown
et al., 2008) implementation is getting a lot of attention. There are
many OpenFlow software implementing the SDN architecture, where
the most used in the control plane are ONOS (Berde et al., 2014),
POX (Kaur et al., 2014) and Ryu (SDN Controller Ryu, 2021), and
OpenvSwitch (Pfaff et al., 2009) in the data plane. In traditional
networks, many monitoring tools are available, such as, SNMP (Affandi
et al., 2015), Cisco NetFlow (Cisco NetFlow, 2004), sFlow (Phaal et al.,
2001). However, these monitoring tools are not compatible with the
OpenFlow network. Several works have been proposed in OpenFlow
monitoring. Chowdhury et al. (2014) proposed PayLess, a network
monitoring framework for SDN, which is built on top of an OpenFlow
controller’s northbound API and provides a high-level RESTful API,
and offers an adaptive scheduling algorithm for polling, that achieves
the same level of accuracy as continuous switch polling with much
less communication overhead. van Adrichem et al. (2014) proposed
OpenNetMon, a network monitoring tool based on OpenFlow, that
collects statistics such as throughput and packet loss from the edge
devices in order to improve the measurement accuracy and reduce the
computation overhead. PathMon (Wang et al., 2016) provides a way
to collect per-flow statistics such as throughput and packet loss by
inserting a separate set of flow entries called monitoring entries into
every switch along a path to be monitored. In these works, statistics
can be collected proactively by using 𝐹 𝑙𝑜𝑤𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝑡 message or
reactively by using the 𝐹 𝑙𝑜𝑤𝑅𝑒𝑚𝑜𝑣𝑒𝑑 notification message. However,
they did not provide mechanisms to measure latency by using only the
OpenFlow protocol.

There have been many studies on latency measurement in SDN
using OpenFlow protocol (Azizi et al., 2015; Yu et al., 2015). The most
relevant work is described in Yu et al. (2015) in which the authors
present SLAM, a framework for Software-defined Latency Monitoring
between any two network switches. The delay is measured inside the
network by capturing directly path information from network devices.
Different from these works where the latency is measured for a specific
path, we propose in this paper to measure metrics, such as latency,
throughput and per-flow size, for all critical links in the network, where
the probability of congestion is important. In this way, an important
number of paths can be covered without affecting performances.

2.2. Machine learning based QoS-aware routing

Optimizing flow routing in SDN-based networks is crucial to meet
the needs for efficient resource allocation. For that reason, a wide range
of solutions have been proposed in the literature.

Reza Parsaei et al. (2017) proposed approaches based on genetic
and ant-colony algorithms to optimize the flow rule placement. How-
ever, these approaches are limited to certain situations and do not
cover more complicated routing problems. Several research works have
been made to install flow rules across pre-computed optimal paths,
by exploiting the SDN controller's global visibility. Han et al. (2014)
proposed an approach to reduce power consumption and network
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congestion, where they compute the optimal topology that can accom-
modate the expected traffic demands, then a traffic load balancing
by distributing flows across k-shortest paths of optimal topology, by
resolving an Integer Linear Program (ILP) Problem.

Holt–Winters (HW), ARMA/ARIMA models (Cortez et al., 2006) are
traditional linear prediction methods, that are widely used for network
traffic forecasting. Works in Barabas et al. (2011) and Azzouni and
Pujolle (2017) both deploy NNs based on SDN for network Traffic
Matrix (TM) prediction. Barabas et al. (2011) presented an approach
to predict aggregated Ethernet traffic with NNs employing multireso-
lution learning (MRL). They consider the problem of forecasting the
transfer rate, by predicting future values, given a set of transfer rates
observed on a specific link. Experimental results show that nonlinear
traffic prediction based on NNs outperforms linear forecasting models
(e.g. ARIMA, Auto-Regressive Auto-Regressive (ARAR), HW) which
cannot meet the accuracy requirements. Azzouni and Pujolle (2017)
presented a Long Short Term Memory (LSTM) based Recurrent Neural
Network (RNN) framework, which makes use of model parameters
to train prediction models for large scale TM prediction, by training
and comparing LSTM models at various numbers of parameters and
configurations. Simulations show that the proposed LSTM models con-
verge quickly and achieve high prediction accuracy in a few seconds of
computation.

Khodayari and Yazdanpanah (2005) used RL techniques in the
context of routing optimization, where they present a 𝑄-Routing al-
gorithm discovering efficient routing policies in dynamically changing
networks, without having to know in advance the network topology
and traffic patterns. As in 𝑄-Routing algorithms, the 𝑄-Value is stored
in a packet traversing the network. Even solutions proposed in this
work can achieve low latency, high throughput, and adaptive routing,
it can be inefficient when it comes to the 𝑄-Table storage space and
the time to reach the best policy.

DRL addresses this challenge by taking advantage of Deep Neural
Networks (DNNs) to train the learning process of RL algorithms. Most
relevant works are described in Yu et al. (2018) and Pham Tran Anh
et al. (2019), where the DRL agent interacts with the network through
three signals: state (Traffic Matrix), action (link-weight vector), and
reward (improving network performances). DQN (Mnih et al., 2013,
2015) is one of the most used DRL methods in network routing opti-
mization. Su et al. (2019) presented an adaptive DQN based energy and
latency-aware routing protocol (DQELR) that adopts a DQN algorithm
with both off-policy and on-policy methods to make routing decisions
adaptively in different network conditions. Liu (2019) presented DRL-R
(Deep Reinforcement Learning-based Routing) to cope with the prob-
lem of coexistence of Elephant flow/Mice flow/Coflow and multiple
resources (bandwidth, cache and computing). The proposed approach
is based on DQN and Deep Deterministic Policy Gradient (DDPG).
Experimental results demonstrated the effectiveness of this solution in
improving network performances. However, these works did not take
into account the traffic prediction, since the DRL agent is triggered only
once the first packet in a traffic flow is detected by the controller.
Moreover, actions depend only on link weights modification not on
flow rules installation.

To sum up, the aforementioned works present the following short-
comings: (i) the non-consideration of the mapping history between the
network state and the corresponding action when predicting conges-
tion, and (ii) the non-consideration of current and predicted congestion
when rewarding actions. Based on these observations, we propose
in this paper to train a DQN agent capable of optimizing routing
by dynamically choosing the optimal path according to a rewarding
function, while taking into account latency, throughput, and packet
loss. In addition, we propose to deploy a traffic Prediction module to
predict network congestion.
3

Fig. 1. DTPRO Architecture.

3. Proposed Deep Q-Network and Traffic Prediction based routing
optimization (DTPRO) approach

Combining ML techniques with SDN is crucial to improve network
performances. In this section, we first present our DTPRO approach. We
start by explaining the global architecture. Thereafter, we describe the
Network Measurement modules (i.e., Latency Measurement, Statistics),
the DQN and Traffic Prediction modules. Finally, the mathematical
model and the proposed heuristic will be described in the Proactive
Forwarding module.

3.1. DTPRO architecture

Although SDN provides the centralization of network intelligence,
a flexibility in traffic control and simplicity in network management
and operation is still needed. KDN has been introduced as a new
paradigm to bring the intelligence to the network management, using
the telemetry data, which suggests to add the Knowledge plane (KP) to
the conventional SDN paradigm, by adopting AI and cognitive system
to build the network model.

In this context, we propose to design our framework according to
the KDN paradigm, in which we exploit the control plane to have a
global view of the network (cf. Fig. 1).

As depicted in Fig. 1, our proposed architecture consists of four
planes: Data plane, Control plane, Management plane and Knowledge
plane.

The Data plane consists of programmable forwarding devices in
charge of data packet processing and forwarding. These devices have no
embedded intelligence to take decisions and rely on the control plane to
populate their forwarding tables and update their configurations based
on the OpenFlow protocol.

The Control plane is considered as the brain of the SDN network,
which incorporates the whole intelligence by centralizing the manage-
ment and global view of the network in a specialized central controller,
in which we deploy two main modules: Network Measurement and
Proactive Forwarding modules. The Network Measurement module
consists of two sub-modules: Statistics which continuously collects
metrics such as the number of packets and bytes per flow to measure
the throughput, and Latency Measurement. This latter sub-module mea-
sures continuously the network latency by periodically sending a packet
probe to the data plane. On the other hand, the Proactive Forwarding
module is responsible for determining the optimal routing strategy as
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Fig. 2. Latency computation mechanism.

well as the predicted traffic from the KP by resolving an optimization
problem as will be explained later in Section 3.5.

The Management plane ensures the correct operation and perfor-
mance of the network by collecting the network measurement from
the control plane, specifically from the Network Measurement module,
in order to provide network analytic. The collected statistics will be
analyzed and sent to the KP.

Finally, the KP exploits the control and the management planes by
taking the data from the Management plane as input to be fed to ML
algorithms, which convert them to the form of knowledge. Precisely,
they learn the behavior of the network, by processing the collected
statistics, then extract the optimal paths, representing the knowledge,
to route flows by deploying a DQN agent, and finally, predict network
congestion using prediction methods (i.e., LSTM, ARIMA, Linear Re-
gression (LR)) in the Traffic Prediction module. Note that the routing
strategy is determined by the DQN agent by exploiting the historical
data of routing configurations.

In what follows, we detail further these modules.

3.2. Network Measurement

The Network Measurement module ensures the data plane moni-
toring based on the OpenFlow protocol, which is crucial in network
management, and helps Operators to make decisions about Load Bal-
ancing, Routing, QoS, SLA and so on. The collection of statistics from
the data plane can be either active or passive. In the active mode,
the Controller sends and receives probe packets to the entire data
plane network to measure statistics such as the Round-Trip-Time (RTT),
Latency, Packet Loss. On the other hand, the passive mode corresponds
to querying the statistics information from switches by using standard
OpenFlow messages.

As stated earlier, the Network Measurement module consists of
two sub-modules: Statistics and Latency Measurement. The Statistics
module monitors the data plane according to the passive mode using
the OpenFlow standard messages to read the information from the
control plane. Specifically, it uses the OFPStatsReply message type,
in which, the switch periodically reports its statistics through two
types of messages: PortStatsReply and FlowStatsReply, to
respectively measure the throughput and the per-flow size. Note that,
the throughput can be measured based on the number of sent/received
packet or bit reported in the PortStatsReply message.

The Latency Measurement module, on the other hand, uses the
active monitoring mode by sending periodically a packet probe to the
data plane to measure the latency based on the notifications’ arrival
times at the control plane. Specifically, it consists in firstly, measuring
the time that takes a packet probe from the controller and traverse
the path and return back to the controller (𝑇 𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦). Secondly, it
measures the time that takes the packet probe to go from the controller
to the first switch (i.e., 𝑡1) and the last switch on the path (i.e., 𝑡2), as
shown in Fig. 2. (Tajiki et al., 2016; Barabas et al., 2011).

Some specific monitoring rules must be installed at the first and last
switches (𝑠𝑟𝑐, 𝑑𝑠𝑡) respectively on the path that contains ‘‘Send to
4

Fig. 3. Latency Measurement Design.

Controller’’, in order to measure the delay between the controller
and the switches (i.e., 𝑡1, 𝑡2, as shown in Fig. 2 and to send the packet
probe back to the controller at the last switch of the path. The switches
between the first and the last switches in the path forward the packet
probe by a pre-installed forwarding flow rules corresponding to the
packet probe. The delay needed corresponds to the time 𝑡3, and can
be determined as follows:

𝑡3 = 𝑇 𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦 − (𝑡1 + 𝑡2 + 𝑑𝑠𝑟𝑐 + 𝑑𝑑𝑠𝑡 + 𝑐) (1)

Where 𝑑𝑠𝑟𝑐 , 𝑑𝑑𝑠𝑡 are the processing times in the devices (𝑠𝑟𝑐, 𝑑𝑠𝑡)
respectively, and 𝑐 is the processing time in the controller. In order to
accurately estimate the 𝑇 𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑎𝑦, 𝑡1 and 𝑡2 delays, the time is encap-
sulated in nanoseconds in the packet probe. Moreover, the monitoring
rules installed to guide the packet probe do not interfere with the
normal traffic.

It is worth noting that the Latency Measurement module is designed
according to the Open Services Gateway Initiative (OSGI) standard
that implements an application as a complete and dynamic component
model. It is indeed composed of four components: Monitoring Flow
Rules Installation, Probe Packet Generator, Packet Processing and La-
tency Measurement, as shown in Fig. 3. When activating the Latency
Measurement module we start by installing the probe packet flow rules
to guide the probe packet along the path to be monitored. The Probe
Packet Generator will then send periodically a specific probe packet to
the data plane, that matches the monitoring flow rules already installed
by the previous component. Thereafter, the Packet Processing compo-
nent listens to the incoming PacketIn, then, if the latter corresponds
to the probe packet, the Packet Processing component extracts the times
between the controller and switches and sends them to the Latency
Measurement component that measures the latency as explained above
and stores the latency in a centralized database.

3.3. Traffic prediction models

In order to avoid congestion and improve network performances, it
is important to predict the future evolution of network traffic.

To do so, we propose here to use the well-known LSTM model to
predict the network latency and compare it with two other prediction
models: ARIMA, and LR. In what follows, we detail these three models
and show how we adapt them to predict the E2E network latency.
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Fig. 4. Linear Regression.

3.3.1. Linear regression (LR)
it is a statistical prediction method that attempts to model the

relationship between an explanatory variable and a dependent variable,
by fitting a linear equation to observed data, where the objective
is to predict the outcome of the dependent variables from the ex-
planatory variables (Kavitha et al., 2016). Identifying the dependency
among a single variable refers to the uni-variate regression as shown
in the Eq. (2), where 𝑥 is the explanatory variable, 𝑦 is the dependent
variable, 𝜆 and 𝜇 are constants and 𝜀 is the error:

𝑦 = 𝜆.𝑥 + 𝜇 + 𝜀 (2)

As described in Fig. 4, a valuable way of modeling the relationship
between the measuring time of delays (i.e., the explanatory variable t)
and estimated ones (i.e., the dependent variable 𝐷𝑒𝑙𝑎𝑦) is by using a
correlation coefficient, which indicates the strength of the association
of the observed data for the two variables. We can build the regression
equation between the time of sampling and the delay, by using the
equation in (3):

𝐷𝑒𝑙𝑎𝑦 = 𝜆.𝑡 + 𝜇 + 𝜀 (3)

Where 𝑡 is the sampling time, 𝜆 and 𝜇 are obtained from a set
of measurements 𝑆: (i.e., Delay, Measurement time) so that the gap
between the measurement and the model in (3) is minimized. Note
that the regression quality is determined by the size of previous values
(i.e., training data).

3.3.2. ARIMA model
Using this model, the latency can be considered as a stochastic

process, expressed as a linear combination of 𝑝 past observations
(i.e., Latency Measurement): 𝐷𝑡−1, 𝐷𝑡−2,… , 𝐷𝑡−𝑝, and 𝑞 past white
noises: 𝑒𝑡−1, 𝑒𝑡−2,… , 𝑒𝑡−𝑞 , together with a random error in the same time
series, as shown in the following equation (Brockwell and A. Davis,
2002):

𝐷𝑡 = 𝑐 + 𝜙1𝐷𝑡−1 +⋯ + 𝜙𝑝𝐷𝑡−𝑝 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 +⋯ + 𝜃𝑞𝑒𝑡−𝑞 (4)

Where, 𝑝, the number of past observations represents the Auto-
Regressive (AR) degree, 𝑞 represents the number of Moving Average
(MA) order and 𝑑 is the degree of differentiation (Brockwell and
A. Davis, 2002). It is worth noting that 𝐷𝑡 is the latency to be predicted
using previous samples of the latency time series.

Recall that the identification of the ARIMA model involves several
steps where the mains are: (i) checking the stationarity to be able to use
correctly the ARIMA model, (ii) order (𝑝, 𝑑, 𝑞) must be estimated, we
refer to Auto-Correlation Function (ACF) and Partial Auto-Correlation
Function (PACF) to estimate these orders (Brockwell and A. Davis,
2002).
5

Fig. 5. LSTM based network Latency prediction.

3.3.3. Long Short-Term Memory (LSTM)
with the continuous development of network services, the network

traffic is constantly expanding showing more burst and more com-
plexity. Consequently, the traffic evolution shows non-linearity. This
makes the RNN, in particular its LSTM variant model, well placed to
learn complex non-linear patterns. One of the advantages of LSTM is
that several models can be used based on each type of time series
forecasting such as the shape of the input/output of the NN. In this
way, we propose to model the traffic latency prediction using LSTM
model (Hochreiter and Schmidhuber, 1997) for multi-step time series
forecasting as follows:

• LSTM Inputs:

– Sample: 𝑆
– Time Steps: 𝑇
– Features: 𝑛
– Learning Window: 𝑤
– Units: 𝑛𝑏𝑟_𝑢𝑛𝑖𝑡𝑠
– Delay Vector: �̂� = {𝑑(𝑢,𝑣)}

• LSTM Output:

– Predicted Delay Vector: �̂� = {𝑑(𝑢,𝑣)}

Where the samples 𝑆 represents the number of training examples,
the Timesteps 𝑇 refers to the LSTM memory capacity and the Feature 𝑛
is the amount of features in every time step. These three elements con-
struct the three-dimensional structure [𝑆𝑎𝑚𝑝𝑙𝑒𝑠, 𝑇 𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝐹 𝑒𝑎𝑡𝑢𝑟𝑒𝑠]
expected by the LSTM model. The Learning Window 𝑤 refers to
the number of previous time-slots to learn from in order to predict
the future Delay vector. This parameter is used to avoid learning in
long sequences that can result in high computational complexity. The
𝑛𝑏𝑟_𝑢𝑛𝑖𝑡 parameter represents the number of neurons and finally the
𝐷𝑒𝑙𝑎𝑦 𝑣𝑒𝑐𝑡𝑜𝑟 refers to the previous latency Measurements to be fed to
the LSTM Model. The output of the LSTM model is the predicted vector
of link delays. Fig. 5 shows the overall architecture of the proposed
LSTM model.

It is worth noting that, before applying an LSTM model on the
dataset, we need to transform the data as follows: (i) the Time series
data must be stationary, ii) the Time series must be transformed into a
supervised learning problem. More specifically, the previous observa-
tions are used to predict the current observation, and (iii) It is necessary
to have a specific scale responding to the default tangent hyperbolic
activation function 𝑇 𝑎𝑛ℎ of the LSTM model.

3.4. Routing optimization model based on DQN

To meet the requested QoS, flows must be routed following the best
routing strategy. As the traffic state (stream) depends on the type of
data transported in the network, choosing the best routing path to that
stream improves its QoS. To this end, we propose here to deploy a
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Fig. 6. Proactive Forwarding Design.

DQN agent that dynamically determines the optimal path. We model
this DQN as follows:

Given a network topology represented as a non-oriented graph
𝐺(𝑉 ,𝐸, 𝐶) where 𝑉 , 𝐸 and 𝐶 are, respectively, the vertex, the edge and
the link capacity sets, and |𝑉 | = 𝑛 represents the number of network
nodes, the DQN agent interacts with the environment through three
signals: State, Action, and Reward. ‘‘State’’ is the (𝑛 × 𝑛) Traffic Matrix
representing the current network load. The ‘‘Action’’ taken by the agent
is the link-weight vector, and the ‘‘Reward’’ 𝑟 of the agent is related to
the QoS parameters, which are mainly: the average of Network latency
(𝐿), the average of Data rate (𝑊 ) and the average of Packet Loss (𝑃𝐿).
In this case, the Reward 𝑟 can be determined as follows:

𝑟 = 𝛼.𝑊 − 𝛽.𝐿 − 𝛾.𝑃𝐿 (5)

Where 𝛼, 𝛽, 𝛾 ∈ [0, 1] are the adjustable weights determined by the
routing strategy. Our objective here is to determine the optimal policy
𝜋 mapping the set of states to the set of actions in order to maximize
the reward 𝑟. Note that the routing strategy is determined by a set of
weights and periodically updated at the beginning of each time epoch
𝑇𝐷𝑄𝑁 , which is initialized to 1 h in this work.

3.5. Proactive forwarding formulation and resolution

The Proactive Forwarding module is responsible for routing flows
according to the optimal routing strategy, by using the current and
predicted Traffic Matrix. It is designed according to the OSGI model
and combines four components: (i) Load Predicted Traffic, (ii) Load
Weights, (iii) Packet Processing and (iv) Flow Rules Generator, as
shown in Fig. 6. The two sub-modules Load Predicted Traffic and Load
Weights are respectively responsible for collecting the predicted traffic
and the set of link weights from the KP layer. The Packet Processing
listens to the PacketIn coming from the data plane and finally
the Flow Rules Generator is responsible for flow routing. Two events
automatically trigger the latter: the first one corresponds to generating
flow rules for new incoming flows by using the collected weights by
Load Weights sub-modules, to calculate their corresponding paths, and
the second one happens when a congestion is detected, where the
action is to reroute the current traffic to the less used paths.

The idea here is to give more accuracy to the routing strategy
selected by the DQN agent as explained in the previous Section 3.4, by
incorporating the prediction aspect, where the objective is to determine
which link to route which flow in order to minimize the E2E network
latency and balance the network load by minimizing link utilization.
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In this context, the physical infrastructure can be represented by
a capacitated graph 𝐺(𝑉 ,𝐸, 𝐶), where 𝑉 denotes the set of nodes or
switches and 𝐸 the set of edges representing the physical or virtual
links in the network. Each link is characterized by its current and
predicted propagation delay 𝑑(𝑢,𝑣), 𝑑(𝑢,𝑣), bandwidth capacity 𝐶(𝑢,𝑣) and
threshold 𝑇𝑆(𝑢,𝑣). We assume the network has 𝑚 nodes (|𝑉 | = 𝑚), 𝑛𝑒
links (|𝐸| = 𝑛𝑒) and 𝑙 flows. The current and predicted Traffic Matrix
𝑇𝑀, 𝑇𝑀 representing, respectively, the current and predicted volume
of traffic flows between all pairs of origin and destination nodes in the
network. Each flow 𝑓𝑖 is characterized by its size 𝐹𝑆(𝑓𝑖 ,𝑢,𝑣) and the path
to which is affected 𝑃𝑓𝑖 .

The network may have the capacity limitation constraint. To this
end, we define three variables 𝐸(𝑓𝑖 ,𝑢,𝑣), 𝐿𝑈 (𝑢,𝑣), 𝑀𝐿𝑈 (𝑢,𝑣) as follows:

𝐸(𝑓𝑖 ,𝑢,𝑣) =

{

1, if 𝑓𝑖 ∈ (𝑢, 𝑣)
0, otherwise

(6)

𝐿𝑈 (𝑢,𝑣) =
∑

𝑓𝑖∈𝐹
(𝐸(𝑓𝑖 ,𝑢,𝑣) × 𝐹𝑆(𝑓𝑖 ,𝑢,𝑣)) (7)

𝑀𝐿𝑈 (𝑢,𝑣) = 𝐶(𝑢,𝑣) ∗ 𝜆(𝑢,𝑣) (8)

Where the symmetric Binary matrix 𝐸 = 𝐸(𝑓𝑖 ,𝑢,𝑣) denotes whether
the flow rule 𝑓 is allocated to the link (𝑢, 𝑣) or not. Also 𝐿𝑈(𝑢,𝑣) denotes
the current link utilization and 𝑀𝐿𝑈(𝑢,𝑣) represents the Maximum Link
Utilization of link (𝑢, 𝑣). In the Eq. (8), 𝜆 depends on link characteristics
and 𝐶(𝑢,𝑣) is the link capacity.

As the network traffic may have several classes based on latency
sensitivity, it will be necessary to give more priority to those latency
sensitive applications. To this end, we also define two variables: 𝛿 and
𝑠𝑡𝑓𝑖 ,𝑠𝑗 . We assume each switch has 𝑞 priority, the variable 𝛿 represents
the priority of flow 𝑓𝑖 in switch 𝑠𝑗 and the decision variable 𝑠𝑡𝑓𝑖 ,𝑠𝑗
denotes whether the flow 𝑓𝑖 is being routed or waiting in the queue.

𝛿 =

{

𝛿𝑓𝑖 ,𝑠𝑗 , 𝛿𝑓𝑖 ,𝑠𝑗 ∈ [1, 𝑞], if 𝑓𝑖 ∈ 𝑠𝑗
0, otherwise

(9)

𝑠𝑡𝑓𝑖 ,𝑠𝑗 =

{

1, if 𝑓𝑖 is routed
0, if 𝑓𝑖 is waited

(10)

Hence, our problem can be formulated mathematically as a LP as
follows:

• Objective:

– Minimize 𝜏.𝐷 + 𝜈.𝐿𝑈 + 𝜁.𝑃𝐿

• Subject to:

– Delay limitation: ∀(𝑢, 𝑣) ∈ 𝐸 ∶
𝑀𝑎𝑥(𝑑(𝑢,𝑣), 𝑑(𝑢,𝑣)) < 𝑇𝑆(𝑢,𝑣)

– Link capacity limitation:
∀(𝑢, 𝑣) ∈ 𝐸 ∶ 𝐿𝑈(𝑢,𝑣) < 𝑀𝐿𝑈(𝑢,𝑣)

– Path capacity limitation:
∀(𝑢, 𝑣) ∈ 𝐹𝑃 ∶ 𝑀𝐿𝑈(𝑢,𝑣) − 𝐿𝑈(𝑢,𝑣)
≤ 𝐶𝑎𝑝_𝐴𝑣_𝑃𝑎𝑡ℎ(𝐹𝑃 )

– Path Flow priority:
∀𝑠𝑘 ∈ 𝑃𝑎𝑡ℎ 𝑃 ,∀𝑓𝑖, 𝑓𝑗 ∈ 𝑠2𝑘 ∶
𝛿𝑓𝑖 ,𝑃 > 𝛿𝑓𝑗 ,𝑃 ⇒

∑

𝑠𝑘∈𝑃 𝑠𝑡𝑓𝑖 ,𝑠𝑘 ≥
∑

𝑠𝑘∈𝑃 𝑠𝑡𝑓𝑗 ,𝑠𝑘
– Demand satisfaction:

∀(𝑢, 𝑣) ∈ 𝑃𝑎𝑡ℎ 𝑃 ,∀𝑓𝑖 ∈ 𝐹 ∶
∑

(𝑢,𝑣)∈𝑃𝑎𝑡ℎ,𝑓𝑖∈𝐹 𝐹𝑆(𝑓𝑖 ,𝑢,𝑣) = 𝑑𝑒𝑚𝑖

The delay and link capacity limitation constraints are specified so
that we force each link to not be delayed and overloaded. The Path
Flow priority constraint ensures that the flow with high priority must
be routed first and finally the Demand satisfaction constraint ensures
that the traffic demand 𝑑𝑒𝑚𝑖 sent through any path source 𝑠𝑟𝑐𝑖 must be
equal to that in the path destination 𝑑𝑠𝑡𝑖. Our objective is to minimize
the network delay 𝐷, the link utilization 𝐿𝑈 and the packet loss 𝑃𝐿,
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while the total demands are always satisfied. Note that 𝜏, 𝜈, 𝜁 are the
weighting factors related to the degree of importance of 𝐷,𝐿𝑈 and 𝑃𝐿,
respectively. These latters are defined as follows:

𝐷 = 1
𝑛𝑒

∑

(𝑢,𝑣)∈𝐸
𝑑(𝑢,𝑣) (11)

𝐿𝑈 = 1
𝑛𝑒

∑

(𝑢,𝑣)∈𝐸
𝐿𝑈(𝑢,𝑣) (12)

𝑃𝐿 = 1
𝑛𝑒

∑

𝑓𝑖∈𝐹
(𝑑𝑒𝑚𝑖 −

∑

(𝑢,𝑣)∈𝑃𝑓𝑖

𝐹𝑆(𝑓𝑖 ,𝑢,𝑣)) (13)

The formulated problem can be considered as a multi-commodity
flow problem, which are known to be 𝑁𝑃 -ℎ𝑎𝑟𝑑. Furthermore, it is
assumed to be solved by the SDN Controller for each incoming flow.
However, as the size of the network and the number of flows increase,
the computational complexity increases exponentially. Clearly, such
approach is not feasible in practice, since it generates high overhead
due to the frequent updates of the flow tables.

To cope with this problem, and reduce the computation time and
complexity, we propose here a simple yet efficient heuristic algorithm,
called DTPRO algorithm. DTPRO allows a high-quality traffic allo-
cation, while minimizing the total network latency and packet loss.
Algorithm 1 shows the detail of the proposed heuristic. It takes as inputs
the current and predicted Traffic Matrix (𝑇𝑀 and 𝑇𝑀 , respectively),
the current and predicted matrix of link delays (𝐷 and �̂�, respectively),
and the matrix of link delays threshold 𝑇𝑆 that defines the maximum
tolerable delays of each link (𝑢, 𝑣). It is worth noting that, the DT-
PRO is executed for each incoming flow as well as when detecting a
congestion.

Algorithm 1: DTPRO algorithm

1: procedure (𝐺(𝑉 ,𝐸, 𝐶),𝑇𝑀 ,𝑇𝑀)
2: schedule_every (𝑇𝐷𝑄𝑁 )
3: 𝐿𝑖𝑛𝑘𝑠_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑔𝑒𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑊 𝑒𝑖𝑔ℎ𝑡𝑠
4: 𝑓𝑟𝑜𝑚 𝐷𝑄𝑁 𝑎𝑔𝑒𝑛𝑡
5: 𝑈𝑝𝑑𝑎𝑡𝑒_𝑁𝑒𝑡_𝐶𝑜𝑛𝑓𝑖𝑔(𝐿𝑖𝑛𝑘𝑠_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠)
6: end schedule
7: 𝑡 ← 0
8: while (𝑑(𝑢, 𝑣) > 𝑇𝑆(𝑢, 𝑣) or �̂�(𝑢, 𝑣) > 𝑇𝑆(𝑢, 𝑣) or

𝐿𝑈 (𝑢, 𝑣) > 𝑀𝐿𝑈 (𝑢, 𝑣)) do
9: 𝐶𝑃 ← 𝐺𝑒𝑡_𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑_𝑃𝑎𝑡ℎ(𝑢, 𝑣)

10: 𝐹 ← 𝑆𝑜𝑟𝑡𝑒𝑑_𝐹 𝑙𝑜𝑤𝑠_𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐶𝑃 , 𝛿)
11: 𝑅 ← 𝐹 [𝑡].𝑓 𝑙𝑜𝑤
12: 𝑆𝑃 ← 𝑆𝑜𝑟𝑡𝑒𝑑_𝐵𝑎𝑐𝑘𝑢𝑝_𝑃𝑎𝑡ℎ𝑠(𝑅)
13: for 𝑒𝑎𝑐ℎ 𝑝𝑎𝑡ℎ 𝑝 ∈ 𝑆𝑃 do
14: if 𝑝 𝑐𝑎𝑛 𝑟𝑜𝑢𝑡𝑒 𝑅 then
15: 𝐼𝑛𝑠𝑡𝑎𝑙𝑙_𝑅𝑢𝑙𝑒(𝑝, 𝑅)
16: 𝑅𝑒𝑚𝑜𝑣𝑒_𝑅𝑢𝑙𝑒(𝐶𝑃 ,𝑅)
17: 𝐵𝑟𝑒𝑎𝑘
18: end if
19: end for
20: 𝑡 ← 𝑡 + 1
21: end while
22: 𝐴𝑑𝑗𝑢𝑠𝑡_𝑅𝑒𝑤𝑎𝑟𝑑(𝛼, 𝛽, 𝛾)
23: end procedure
24: 𝜔 ← 10−2, 𝛼, 𝛽, 𝛾 ← 10−1

25: procedure Adjust_Reward(𝛼, 𝛽, 𝛾)
26: if 𝑑(𝑢, 𝑣) > 𝑇𝑆(𝑢, 𝑣) or �̂�(𝑢, 𝑣) > 𝑇𝑆(𝑢, 𝑣) then
27: 𝛽 ← 𝛽 + 𝜔
28: if 𝐿𝑈 (𝑢, 𝑣) > 𝑀𝐿𝑈 (𝑢, 𝑣) then
29: 𝛼 ← 𝛼 + 𝜔
30: 𝛾 ← 𝛾 + 𝜔
31: end procedure

Our algorithm works as follows. At the beginning of each time
epoch 𝑇𝐷𝑄𝑁 , it requests the DQN agent to get the optimal link weights
𝐿𝑖𝑛𝑘𝑠_𝑊 𝑒𝑖𝑔ℎ𝑡𝑠, then it updates the network configuration (lines 2–6).
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Fig. 7. Emulated Topology.

It is worth noting that, the 𝑇𝐷𝑄𝑁 corresponds to the time interval to
apply a new routing strategy obtained from the DQN agent. Moreover,
to show the impact of using different network configurations or routing
strategies, this parameter is initialized to 1 h. However, this parameter
can be modified by the network administrator in the order of days or
weeks.

Thereafter, since we measure continuously current and predicted
Traffic Matrix, if a congestion occurs, in which the current or predicted
link delay is greater than a certain threshold or the link is overloaded
(line 8), our algorithm finds the flow rule 𝑅 corresponding to the flow
with maximum size in the congested path 𝐶𝑃 . Then, it sorts all other
paths (denoted by 𝑆𝑃 ) by the delay matching the flow rule 𝑅 (lines
9–12). In this case, the flow rule 𝑅 must be rerouted to a path in 𝑆𝑃
(lines 13–19). If no path in 𝑆𝑃 can accommodate the corresponding
flow size, the flow is discarded and our algorithm goes to the next
flow in the 𝐶𝑃 (line 20). Finally, it adjusts the parameters (𝛼, 𝛽, 𝛾) of
the DQN reward function 𝑟, so that the DQN agent avoids a similar
transition (line 22). The 𝐴𝑑𝑗𝑢𝑠𝑡_𝑅𝑒𝑤𝑎𝑟𝑑 function (lines 25–31) adjusts
the parameter 𝛽 (Eq. (5)) if a link is delayed or predicted to be delayed.
On the other hand, the 𝛼 and 𝛾 parameters are adjusted when a link is
overloaded or is predicted to be overloaded.

4. Performance evaluation

In this section, we evaluate the efficiency of our proposed approach.
We start by presenting our environmental setup. Then, we present the
experimental results.

4.1. Experimental setup

First, we implement the Network Measurement module (Latency
Measurement and Statistics) as well as the Proactive Forwarding mod-
ule as cooperating modules for the Java-based OpenFlow controller
ONOS (Berde et al., 2014), based on our previous framework developed
in Bouzidi et al. (2018). Then, the DQN agent and the Traffic Prediction
are implemented based on Python,1 which are dockerized on Docker2

Containers. Note that the DQN agent and the Traffic Prediction interact
with the Proactive Forwarding module based on the ONOS Northbound
API. We used the network emulation tool OpenvSwitch (Pfaff et al.,
2009) to implement the experimental topology illustrated in Fig. 7. To
generate traffic among hosts, we used Iperf,3 which consists of a set
of flows between a set of hosts (ℎ1,… , ℎ8). The Network Measurement
module collects statistics (network latency, throughput, and per-flow
size) from the devices and reports those time-series statistics to the
InfluxDB4 database each time interval 𝑇 𝑖 which is equals to 5 seconds.
The link-labels in Fig. 7 show the capacity 𝐶 for each link.

1 https://www.python.org/.
2 https://www.docker.com/.
3 https://iperf.fr/.
4 https://www.influxdata.com/time-series-platform/influxdb/.

https://www.python.org/
https://www.docker.com/
https://iperf.fr/
https://www.influxdata.com/time-series-platform/influxdb/
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Table 1
DQN parameters for DTPRO.

Name Values

Dense layers 2
State size 48
Action space size / Output shape 24,60,120
Q-target network update frequency 300
Learning rate 0.01
Discounted factor 0.95
Mini-batch size 32
Final exploration rate 0.2
Memory size 500 units
Number of episodes 120
Episode capacity 360000 steps

We built and trained the DQN model by using the Tensorflow5

library, by deploying separately two NNs, one for 𝑄-𝑁𝑒𝑡𝑤𝑜𝑟𝑘 and the
other for 𝑄-𝑡𝑎𝑟𝑔𝑒𝑡, which have the same architecture. The parameters
of the DQN are illustrated in Table 1. In particular, both the 𝑄-𝑁𝑒𝑡𝑤𝑜𝑟𝑘
and the 𝑄-𝑡𝑎𝑟𝑔𝑒𝑡 consists of 2 dense layers. In order to show the impact
of the action space size, which corresponds to the number of network
configurations for each input traffic matrix state, we trained separately
three DQN agents with 24, 60 and 120 network configuration, respec-
tively. The state vector size is 48, which corresponds to the input shape
of each NN, and the outputs of the NNs for each training correspond
to the actions space sizes 24, 60 and 120, respectively. Consequently,
the architectures corresponding to each training are (48, 24), (48, 60)
and (48, 120). During the training phase, we adopt 𝜖-greedy method as
action selection method and the final exploration rate is fixed at 0.2,
while the 𝑄-𝑡𝑎𝑟𝑔𝑒𝑡 parameters are copied from the 𝑄-𝑁𝑒𝑡𝑤𝑜𝑟𝑘 every
300 steps. The learning rate and discounted factor are, respectively,
0.01 and 0.95. Finally, as we trained three different DQN agents, each
training corresponds to 120 episodes.

On the other hand, we built and trained the LSTM model by
using Keras Library,6 where the number of dense layers is 2. We
used Adam (Kingma and Ba, 2014) for learning the NN parameters
with a learning rate 0.01. We used 𝑅𝑒𝑙𝑢 as activation function. The
LSTM method outputs a predicted vector. To this end, we referred
to the traffic matrices used for DQN, by dividing them into multiple
input/output samples and the size of the output sample corresponds to
the prediction interval 𝑃 𝑖.

Note that, in order to improve the performances, the training of
ARIMA, LSTM and DQN models is done offline. These trained models
are then saved in such a way that only one step is needed to get the
optimal path from the DQN agent or the predicted traffic from LSTM
or ARIMA. In parallel, these models continue to learn from these new
steps.

4.2. Prediction accuracy evaluation

To quantitatively evaluate the overall performance of our prediction
models, we use the Root Mean Square Error (RMSE), defined as the
difference between the predicted values and the actual values by com-
puting the root of the average sum of squared errors. It can be expressed
as follows:

𝑅𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥𝑖)2 (14)

where 𝑥𝑖 and 𝑥𝑖 are, respectively, the normalized predicted value and
the normalized actual value for the same time interval and 𝑁 corre-
sponds to the total number of predictions or the size of the prediction
interval 𝑃 𝑖, which is initialized to 5 s.

5 https://www.tensorflow.org/.
6 https://keras.io/.
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Fig. 8. Selecting ARIMA models while varying the 𝑝, 𝑑, 𝑞 parameters.

4.3. Experimental results

In order to evaluate the performance of our proposed DTPRO solu-
tion, we first select the best predictions models to the network traffic
evolution. Then, we evaluate the DQN model, while using different
parameters and configurations and finally, we compare the proposed
solution with different routing schemes, while taking into account the
obtained traffic predictions models.

First, we estimate the best ARIMA model to the proposed network
traffic evolution, which is done by estimating the ARIMA parame-
ters (Brockwell and A. Davis, 2002): the order of the AR term (𝑝), the
order of the MA term (𝑞) and the number of differencing needed to
make the time series stationary (𝑑). The time series should be stationary
by having values around a defined mean. However, the network traffic
could have non-stationary evolution over time. To this end, differencing
the time series is a one way to make it stationary and the right order
of differencing corresponds to (𝑑). In our experiments, we referred to
the ACF plot (Brockwell and A. Davis, 2002) for differencing and the
Augmented Dickey Fuller (ADF) (Mushtaq, 2011) to check if the series
is stationary. In this way, while the differenced series are not stationary,
we increment 𝑑. The order of the AR term 𝑝 corresponds to the number
of lags (𝑥𝑡−1, 𝑥𝑡−2,… , 𝑥𝑡−𝑝) that must be used as predictors. In this work,
we referred to the PACF (Brockwell and A. Davis, 2002) to estimate the
parameter 𝑝, by checking if there is a correlation between a specific lag
and the time series. Finally, the parameter 𝑞 corresponds to the number
of lagged prediction errors needed in the ARIMA model and similar to
PACF to estimate the parameter 𝑝, we used the ACF to estimate the
parameter 𝑞.

Fig. 8 compares the prediction and forecasting accuracy of a set of
best ARIMA models to our network traffic, using the RMSE metric. The
parameters are estimated based on methods presented above. In this
way, the forecasting term is used to indicate the prediction of future
values given past values of time series, while the prediction term is used
to do estimation whether in future, current or past. From this figure, we
can see that models with 𝑑 = 1 give a good prediction and forecasting
accuracy regarding the network traffic. The evolution can be repeated
over time. We hence refer to this model with best prediction accuracy
as the one with (𝑝 = 9, 𝑑 = 1, 𝑞 = 1). This model will be used in our
next experiments.

Regarding the LSTM model, in order to ensure that its estimation
accuracy is good enough and to avoid the over-fitting problem when
the network is trained, it is required to find the best number of neurons
and the number of training epochs. To this end, we plot in Fig. 9 the
average of the Loss function and the average of RMSE under different
number of training epochs. In this way, we measure both the RMSE
and Loss function for each 500 epochs. For the sake of simplicity, we
fixed the number of nodes to 100 nodes. In this experiment, we decided

https://www.tensorflow.org/
https://keras.io/
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Fig. 9. LSTM Loss and RMSE under different number of training epochs.

Fig. 10. LSTM Loss and RMSE under different number of hidden nodes.

about the number of training epochs when the Loss function converges
and starts to be stable, which is ensured from this figure by both the
RMSE and Loss function. We can see also that both the RMSE and Loss
function start to be stable and achieve a good estimation accuracy when
the number of training epochs is 9000. The next experiment will focus
on identifying the number of hidden nodes.

As stated earlier, the number of hidden nodes of the LSTM network
is crucial to achieve a stable network configuration. To this end, we
plot in Fig. 10 the average of the Loss function and the average of RMSE
under different number of hidden nodes by increasing the number of
hidden nodes by 10 for each measurement. Similar to the previous
experiment, we decided about the number of hidden nodes when the
Loss function converges and starts to be stable. We can clearly see from
that figure that both the Loss function and the RMSE converge and start
to be stable and achieve a good estimation accuracy when the number
of hidden nodes is 150.

From the results obtained in the two previous experiments, we
decided about the best LSTM model, which corresponds to 9000 train-
ing epochs and 150 hidden nodes, alongside to the initial parameters
presented above in this section.

On the other hand, the LR parameters 𝜆 and 𝜇, as indicated in
Eq. (3), are estimated online, which means that when the prediction
is triggered, the Traffic Prediction based LR looks for the 𝑁 previous
measurement, to identify the parameters 𝜆 and 𝜇, then it predicts the
future evolution of network traffic by using the Eq. (3). In Fig. 11, we
plot the variation of 𝜆, 𝜇 parameters while training the LR prediction
model. We can see that these parameters are dynamically changed
while changing the data intervals.

Fig. 12 compares the prediction accuracy of the different methods
presented earlier (i.e., LSTM, ARIMA and LR) by measuring the impact
of the prediction interval 𝑃 𝑖 on the RMSE metric, which is increased by
3 s for each measurement. Recall that the ARIMA model used in this
experiment is (𝑝 = 9, 𝑑 = 1, 𝑞 = 1) and the used LSTM model is the one
with 9000 training steps and 150 hidden nodes and the LR model is
dynamically estimated.
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Fig. 11. LR parameters 𝜆, 𝜇 under different data intervals.

Fig. 12. RMSE of LSTM, ARIMA and LR prediction methods.

Fig. 13. Impact of varying the action space size while training the DQN agent.

From Fig. 12, we can see that the RMSE of LSTM is quasi-stable
when increasing the prediction interval 𝑃 𝑖. We can see also that ARIMA
achieves a clear stability when increasing the prediction interval 𝑃 𝑖,
due to the nature of the network traffic, which is periodic in a cer-
tain level. However, the increase in the LR RMSE is clearly visible,
which can be interpreted as the increasing of the distance between
the predicted points in the line 𝜆.𝑡 + 𝜇 and the dispersed traffic points.
Furthermore, we can see that ARIMA outperforms LR due to its capacity
to estimate the correlation with the previous lags of the time series.
Finally, it is clearly visible that LSTM outperforms all others prediction
methods due to its capacity to learn long term dependencies. In what
follows, we determine the best DQN model for the proposed network
traffic evolution.

Recall that, the principal idea of the proposed DQN model is to
learn the best policy mapping the set of states (i.e., traffic matrices)
to the set of actions (i.e., network configurations), while maximizing a
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Fig. 14. Impact of varying the reward function parameters 𝛼, 𝛽, 𝛾 while training the
DQN agent.

numerical reward defined in Eq. (5). In this way it is required to find
the best action structure, in order to ensure a good estimation accuracy
of the DQN model, while avoiding the over-fitting problem when the
DQN is trained. To this end, we plot in Fig. 13 the evolution of the
average of the Loss function and the average of the reward function
under different number of training episodes and the three action space
sizes (24, 60, 120). The DQN is trained based on the initial parameters
as stated earlier in this section. In the experiment, we decide about the
best action structure when the Loss function converges and the reward
function starts to be stable.

From Fig. 13 we can see that the Loss function for the three action
space configuration converge. However, we can observe from Fig. 13(b)
that the more we increase the action space capacity, the more the
reward function is increased. The increasing reflects the existence of
appropriate new network configurations (i.e., network paths), so the
queues of nodes could be unloaded and lead to decreasing both packet
loss and network latency. As a result from this experiment, we decide
to take the action space size as 120.

As mentioned in the Eq. (5), the reward function is related to Data
rate (𝑊 ), Network latency (𝐿) and Packet Loss (𝑃𝐿) with parameters
𝛼, 𝛽 and 𝛾, respectively. These parameters play an important role to
determine, in one side, the importance of each factor and on the other
side the convergence of the Loss function. To this end, we plot in Fig. 14
the evolution of the average of the Loss function under different number
of training episodes, while changing the reward function parameters.
From Fig. 14 we can see that, the less we give importance to both
packet loss and network latency, the more the Loss function converges
and gives small values. As a result, we decide that the best DQN model
corresponds to the one with action space size 120, and the reward
function parameters (𝛼 = 0.3, 𝛽 = 1, 𝛾 = 1). In the next experiments,
we assess the performance of our proposed heuristic while using the
aforementioned DQN model and prediction methods.

In order to evaluate the performance of our proposed solution
DTPRO, which corresponds to combining the best obtained DQN and
LSTM models, we compare it with the following baselines:

• Hop-count (HC) based routing, which is the default routing metric
used by ONOS.

• Reduced DTPRO by using the obtained DQN model for routing
optimization and at the same time disabling the Traffic Prediction
module.

• DTPROv1, which consists in using the obtained DQN model for
routing optimization and the obtained ARIMA model (instead of
LSTM) for Traffic Prediction.

• DTPROv2, which consists in using the obtained DQN model for
routing optimization and LR for Traffic Prediction.

Fig. 15 plots the packet loss, the delay and the link utilization for
all schemes (DTPRO, DTPROv1, DTPROv2, Reduced DTPRO, and HC).
We can see that the HC approach causes obviously considerable packet
loss and increases the link utilization, since all the flows are forwarded
10
Fig. 15. Packet Loss, Delay and Link utilization under rule placement algorithm based
on DQN with and without prediction.

Fig. 16. Number of predicted congestion while combining the DQN with different
traffic predictions methods.

to shortest paths that shares the same link with minimum capacity.
On the other hand, when using the DQN agent without prediction
(i.e., the Reduced DTPRO scheme), considerable packet loss is still
observed, increasing thus the link utilization, due to the incapacity of
DQN to predict the future evolution of network traffic. Finally, we can
see that DTPRO outperforms all other schemes, especially DTPROv1
and DTPROv2, where the packet loss, delay and link utilization are
decreased. This is related to the high accuracy of LSTM in predicting
network congestion, compared to ARIMA and LR prediction methods.

We plot in Fig. 16 the number of predicted congestion, while
combining the DQN with different traffic predictions methods. It is
worth noting that, the congestion happens when the network latency or
traffic load exceed a certain threshold which is fixed to 80% of each link
capacity. In the proposed network traffic evolution from 3000 states
defined above in this section, we force certain states to overload the
network for some specific network configurations. From this figure, we
can see that LSTM outperforms others methods due to its high accuracy
for predicting the future evolution compared to ARIMA and LR.

To improve the Quality of Experience (QoE), it is necessary to
provide wider varieties of services than just a single class of best-
effort service (Shenker, 1995). To this end, we propose to evaluate our
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Fig. 17. DTPRO with and without priority.

Fig. 18. Impact of varying the 𝑇𝐷𝑄𝑁 time interval on the network performance.

DTPRO approach with and without 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 according to the following
simulation scenario: we use initially specific paths for Latency Sensitive
Application (LSA), Throughput Sensitive Application (TSA) and Packet
Loss Sensitive Application (PLSA). Then, we force these paths to be
delayed and congested. Based on a specific set of priorities (𝑝1, 𝑝2, 𝑝3),
Fig. 17 compares the following baselines:

• DTPRO_Flow_Size corresponds to the proposed DTPRO heuristic
which sorts the traffic flows according to their size to reroute the
traffic once there is a congestion.

• DTPRO_Priority corresponds to the proposed DTPRO heuristic
which sorts the traffic flows according to their 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 to reroute
the traffic once there is a congestion.

The set of priorities are selected as follows:

• 𝑝1: 𝑝(𝐿𝑆𝐴) = 10, 𝑝(𝑇𝑆𝐴) = 5, 𝑝(𝑃𝐿𝑆𝐴) = 1
• 𝑝2: 𝑝(𝐿𝑆𝐴) = 5, 𝑝(𝑇𝑆𝐴) = 10, 𝑝(𝑃𝐿𝑆𝐴) = 1
• 𝑝3: 𝑝(𝐿𝑆𝐴) = 1, 𝑝(𝑇𝑆𝐴) = 5, 𝑝(𝑃𝐿𝑆𝐴) = 10

From Fig. 17(a) we can see that, when giving more priority to LSA in
𝑝1, DTPRO_Priority performs better than DTPRO_Flow_Size in decreas-
ing the E2E Delay. However, when giving more priority to TSA in 𝑝2
and PLSA in 𝑝3 the E2E Delay for both schemes is close to each other.
On the other hand, we can see from Fig. 17(b) that, when giving more
priority to TSA in 𝑝2 or PLSA in 𝑝3, DTPRO_Priority performs better than
DTPRO_Flow_Size in decreasing the E2E Throughput. However, when
giving more priority to LSA in 𝑝1, the performances for both schemes
are close with no improvement in the E2E Throughput. The reason of
improving the performances is that the flows corresponding to these
application types in the congested paths are routed first. This allows
the DTPRO approach to be used in a context of Network Slicing where
each slice is dedicated for specific traffic types.
11
Fig. 19. Comparative analysis between DTPRO, TOL, DRL-R and DQELR.

Fig. 18 plots the impact of varying the 𝑇𝐷𝑄𝑁 time interval on the
network performance (i.e., Number of Predicted Network Congestion,
the E2E Delay and the E2E Throughput or Rate). This parameter is
varied in the set of intervals: [1h, 2h, 4h, 6h, 8h, 12h, 24h]. Recall
that, the 𝑇𝐷𝑄𝑁 parameter corresponds to the time interval to apply a
new routing strategy obtained from the DQN agent.

From this figure we can observe that both the Network Congestion
and E2E throughput increase with the increase of the time interval
𝑇𝐷𝑄𝑁 . On the other hand, the E2E Delay decreases with the increase
of 𝑇𝐷𝑄𝑁 . The reason is that the DQN state space increases with the
increasing of the 𝑇𝐷𝑄𝑁 time interval, where new transitions and new
network configurations are detected. Moreover, the LSTM model in
the Traffic Prediction module is able to predict new traffic evolutions,
which leads to predict new network congestion and rerouting the traffic
more efficiently, decreasing thus the E2E Delay and increasing the E2E
Throughput.

Finally, Fig. 19 shows a comparative analysis between the proposed
approach DTPRO and three main approaches indicated in the related
works: (1) Deep Reinforcement Learning-based Routing (DRL-R) (Liu,
2019), which represents a traffic optimization solution based on DQN,
(2) Traffic Optimization based on LSTM (TOL) (Azzouni and Pujolle,
2017), which corresponds to the use of the LSTM RNN framework for
predicting the network traffic matrix, and (3) Deep Q-Network-based
Energy and Latency-aware Routing (DQELR) (Su et al., 2019), which is
a routing optimization solution based on DQN.

As the design of DTPRO is modular, in which the knowledge plane
consists of two separated modules: (i) routing optimization based on
DQN and (ii) Traffic Prediction based on LSTM, the comparison of our
proposed approach with DRL-R and DQELR is done by deactivating
the traffic prediction module and using only the routing optimization
module. On the other hand, for the TOL approach, we used only the
Traffic Prediction module.

We used the same experimental topology, shown in Fig. 7, for all
approaches. For DRL-R (Liu, 2019), the DQN 𝑄-Network and 𝑄-Target
consist of two hidden layers with 30 neurons. The Relu corresponds
to the activation function and the learning rate is fixed to 0.001, as
proposed in Liu (2019). For the DQELR model (Su et al., 2019), the
input layer consists of four nodes. Three hidden layers with 300, 150
and 15 nodes, respectively, are also used. Finally, the TOL approach
consists in using the LSTM model in Azzouni and Pujolle (2017). All
these models are trained based on the aforementioned parameters.
Then, we measured the E2E Delay, the E2E Throughput and the E2E
Packet Loss for each approach for a time interval of 24h, as shown in
Fig. 19.

From this figure, we can see that the TOL approach causes obviously
more packet loss and delay, and provides less network throughput
compared to all other approaches. This can be explained by the fact
that, this approach does not take into account the best routing strategy,
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increasing thus the number of congestion links and leading to a new
network behavior with low prediction accuracy. Second, we can see
that DRL-R and DQELR perform better than TOL since both approaches
consist in defining routing strategies by training DQN agents, while
maximizing certain rewards related specifically to network throughput
and delay. On the other hand, DRL-R performs slightly better than
DQELR, since adding DQN based routing decisions to packets in the
DQELR approach impacts the performances and decentralizes the rout-
ing decisions, which is contradictory to the SDN design. Finally, the
superiority of our proposed DTPRO method over all other approaches,
in terms of E2E Throughput, E2E Delay and E2E Packet Loss, is clearly
visible. The reasons are: i) different from DRL-R and DQELR, the action
of our proposed DQN model is to modify the links weights vector, which
is equivalent to defining all flow paths in one action instead of defining
the path for each incoming flow, as defined in DRL-R and DQELR, ii)
the TOL approach predicts only the traffic matrix without considering
the routing strategy, and (iii) combining the DQN agent with the traffic
prediction based on LSTM allows unseen transitions from the DQN
agent to be predicted by the traffic prediction module by considering
the previous experiences in the DQN agent and at the same time the
future behavior of network traffic in LSTM.

5. Conclusion

In this paper, we presented a method for rules placement in
Software-defined Networks based on real-time statistics measurement
and traffic prediction, which are implemented separately as a cooper-
ating modules on both the Control Plane and the KP layers. By taking
advantage of the KP, the network routing is dynamically optimized
by deploying a DQN agent that dynamically determines the optimal
policy mapping the set of states (Traffic Matrices) to the set of actions
(changing the vector of link weights). In addition, we proposed to
deploy a Traffic Prediction module based on the well known prediction
methods LSTM, in order to avoid congestion. To this end, we have
mathematically formulated the QoS-aware routing problem as a LP,
where the corresponding optimization problem is to minimize the total
network latency, packet loss and link utilization. To solve this optimiza-
tion problem, a simple yet efficient heuristic algorithm was proposed
and implemented, called Deep Q-Network and Traffic Prediction based
Routing Optimization (DTPRO) that dynamically interacts with the
external DQN agent module to get the set of link weights, and the
Traffic Prediction to avoid congestion. Experimental results using the
ONOS controller and OpenvSwitch, showed that the DQN agent is able
to learn a mapping between the Traffic Matrix state and the set of
link weights to route the traffic flows. However, DQN itself is not
well adapted for predicting the future evolution of the network traffic.
By combining DQN with Traffic Prediction, we showed that network
latency, packet loss and link utilization can be decreased. Moreover,
we showed that LSTM achieves a high estimation accuracy, which
outperforms traditional prediction methods, and decreases both E2E
delay and packet loss.

As future work, we plan to further exploit our solution in the context
of distributed SDN controllers, where their number, locations as well as
the associated set of data plane switches can be optimized by deploying
a DQN agent.
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