
1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

1

Content Delivery Network Security: A Survey
Milad Ghaznavi∗, Elaheh Jalalpour∗, Mohammad A. Salahuddin∗, Raouf Boutaba∗, Daniel Migault†, Stere Preda†

∗University of Waterloo, Waterloo, ON, Canada †Ericsson Research, Montreal, QC, Canada
∗{eghaznav, ejalalpo, mohammad.salahuddin, rboutaba}@uwaterloo.ca

†{daniel.migault, stere.preda}@ericsson.com

Abstract—A content delivery network (CDN) is a distributed
infrastructure to deliver digital contents to end users with high
performance. CDNs are critical to provide and protect the
availability of Internet contents. However, adversaries can not
only evade the CDN protection but also weaponize CDN resources
to mount more sophisticated attacks.

In this paper, we provide the first survey on CDN security.
We categorize CDN security challenges per CDN infrastructure
components, discuss possible countermeasures and their effective-
ness, and delineate future research directions. This paper aims
to highlight the state of CDN security and identify important
research challenges in this area.

I. INTRODUCTION

A content delivery network (CDN) consists of geographi-
cally distributed servers to cache and efficiently deliver Inter-
net contents, such as HTML pages, images, and videos. CDNs
are extremely popular and serve the majority of web traffic.
CDNs will deliver 72% of Internet traffic by 2022 [1], [2], and
the CDN market value is expected to rise from $11.76 billion
in 2019 to $49.61 billion in 2025 [3].

A CDN is also subject to security attacks, such as denial of
service, that affect CDN services and end user experience [4],
[5]. Protecting CDNs against security attacks is critically
important because these attacks cause a CDN to operate
poorly and get negative public media coverage [6]–[9], which
can diminish the reputation of the CDN provider resulting
in significant revenue losses. A CDN must protect content
from theft and loss, while preserving content availability by
mitigating security attacks.

Unfortunately, adversaries not only compromise the CDN
protection, but weaponize its infrastructures against end users
and websites that use CDN services. For example, adversaries
trick CDN caching mechanisms to generate high traffic vol-
umes against these websites [10]. They even exploit a CDN
to publicly cache end user sensitive information and then steal
this information from the CDN caches [11].

Considering the critical role of CDNs in content delivery,
providing an understanding of the state of CDN security is
essential. In this paper, we provide a comprehensive survey
on security challenges facing CDNs, along with their attack
detection and mitigation approaches. The main contributions
of this survey are:
• CDN security challenges: We discuss security vulnerabilities

that a CDN face. We categorize CDN security challenges
based on the CDN infrastructure components.

• CDN countermeasures: We discuss potential detection and
mitigation approaches to counter CDN security challenges.

We cover both academic and commercial approaches and
argue their effectiveness and limitations.

• Research directions: We discuss opportunities to improve
CDN security, as well as security challenges that confront
future CDNs. Specifically, we describe the research chal-
lenges due to user-generated content, and discuss oppor-
tunities using software defined security and collaborative
security among parties involved in content delivery.
To the best of our knowledge, this survey is the first to

focus on CDN security. Other surveys in the literature focus on
CDN architecture and infrastructure [12]–[16], collaboration
in content delivery [17], [18], CDN performance [19], [20],
and CDN operational algorithms [21], [22]. These surveys are
oblivious to the inherent security challenges in CDNs.

We proceed as follows. In Section II, we describe CDN
infrastructure and the content delivery process, and categorize
CDN security challenges. This categorization facilitates the
discussion of security challenges in the subsequent sections.
Section III, Section IV, and Section V are dedicated to security
challenges in each CDN component, i.e., edge server, request
routing, and origin server, respectively. Finally, we highlight
current vulnerabilities, discuss opportunities and future re-
search directions in Section VI, and conclude this survey in
Section VII.

II. CONTENT DELIVERY NETWORKS: A PRIMER

A CDN aims at enhancing the quality of experience in
delivering digital contents to end users, while utilizing network
resources more efficiently. A CDN caches contents in locations
nearby end users, routes content requests to these locations,
and transfers the contents to the end users [13], [23], [24].

CDN providers, content owners, and end users are the
main parties involved in the content delivery process. A CDN
provider manages and operates the CDN infrastructure. A
content owner owns digital contents and is a customer of a
CDN. Content owners delegate the delivery of their contents to
CDNs. An end user consumes content using its digital devices,
such as TVs, tablets, and smart phones.

A. Content Delivery Process Overview

A content owner places digital contents in origin servers.
The CDN distributes and replicates content from origin servers
into numerous edge servers (e.g., hundreds to thousands of
servers). These edge servers are distributed across the Internet
to provide high-capacity storage capability to cache contents
in vicinity of end users [25].

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

2

Content Delivery Network

Edge Servers

(Cache Contents)

Request Routing

End Users

(Consume

Contents)

1 ‘videos.domain.com’?1

2 IP Address of an Edge Server2

3 34
Origin Servers

(Host Contents)

Figure 1: Content Delivery Network Infrastructure. The request routing component redirects end user requests to edge servers
that cache and serve contents. On cache misses, edge servers forward requests to origin servers that host contents. Origin
servers are operated by either CDN providers or content owners.

Figure 1 shows content delivery through a CDN. A CDN
receives and serves end user requests on behalf of distant
content owners (step 1). Using a request routing mechanism,
the CDN selects and redirects a legitimate request to one of
its edge servers (step 2). The selected edge server performs
an admission control, and if the request is accepted, the edge
server delivers the content from its cache (step 3) [26]. On
cache misses, an edge server retrieves and caches the content
from either another edge server or an origin server (step 4).

B. Content Delivery Network Infrastructure

All CDN components, including edge servers, request rout-
ing, and origin servers, are involved in content delivery [25],
[27], [28]. Next we discuss each component in more details.

1) Edge servers: Edge servers act as a protective shield to
cache contents to keep down the load on origin servers. Edge
servers are strategically placed in CDN points of presence, at
the edge nearby end users, e.g., one or two hops away. Internet
exchange points, internet service provider networks, and data
centers are examples of points of presence. A point of presence
can contain several edge servers.

Edge servers can also cooperate by serving each other’s con-
tent requests [26]. This collaboration creates a second caching
layer as the latter edge server caches responses from origin
servers. Moreover, edge servers use a hierarchical caching
based on popularity. They store popular contents in memory,
while keeping others on disks [29], [30]. A replacement
algorithm (e.g., least recently used or least frequently used)
manages contents remaining in the cache [31].

There are three main models to distribute contents from
origin servers to edge servers [13], [22], [28], [32]. First, a
push model distributes content if its request is anticipated at
an edge server [33], [34]. Second, in a pull model, an edge
server fetches contents upon receiving end user requests [35],
[36]. Finally, a hybrid push-pull model dynamically adapts
to changing end user requests by pushing some contents
proactively and pulling others reactively [37].

Edge servers run web cache proxies to implement caching.
Cache proxies can easily store static contents to serve future
requests, because the static contents do not change over time.
In contrast, caching dynamic contents is more complicated.
For example, Edge Side Includes [38] is a markup language
to specify dynamic parts of a web content, allowing a cache
proxy to retrieve only dynamic parts (e.g., the latest news in a
company webpage) while caching static parts (e.g., the image
of a company’s brand). Edge servers can also run scripts to
generate a set of dynamic contents based on events and inputs,
such as time of day, device types, and end user locations.

2) Request routing: The request routing component moni-
tors network condition, load on edge servers, and distributes
requests among edge servers based on monitored data [25],
[32], [39]–[41]. Routing a request is based on a variety of
metrics, such as proximity to end users, logical distance (e.g.,
the number of hops), latency, jitter, and server load [27].

Request routing techniques are mostly classified into do-
main name system (DNS)-based routing, anycast routing,
application layer routing, and combinations of these [40], [42].
DNS-based request routing utilizes the existing ubiquitous

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

3

Edge Servers Request Routing Origin Servers

CDN Security
Challenges

Application Layer

Prevalent threats

Hidden in encrypted traffic

Caching

Cache pollution

Cache poisoning

Web cache deception

Denial of Service

Random string

Cache poisoned

Covert Channels

CDN covert channel

Reconnaissance

Ingress harvest

Egress harvest

Redirection Exploits

HTTP smuggling

Multiple host ambiguities

Denial of Service

Caching

Forwarding loop

HTTP/2 amplification

Redirection hijacking

Egress blocking

Application Layer

SSL/TLS MitM

Origin Exposure

Static origin addresses

Services by origin servers

Leakage in contents

Residual name resolution

Origin Abuse

Origin address abuse

Origin port abuse

Figure 2: Categorization of CDN security challenges.

DNS services. CDNs commonly run their own name servers
and maintain dynamic DNS records to balance the load among
edge servers [42]–[44].

With a DNS-based routing, an end user sends a DNS request
for a content’s domain name (e.g., ‘youtube.com’) to its local
name server. This name server forwards the request to a CDN’s
authoritative name server that responds with the IP address of
an edge server. CDN authoritative name servers also perform
load balancing, e.g., they resolve requests for the same domain
name to the IP addresses of different edge servers.

Anycast simplifies request routing by delegating routing to
the Internet. In anycast routing, the CDN authoritative name
server also returns an IP address. The difference with DNS-
based routing is that multiple edge servers use the same IP
address, and the border gateway protocol (BGP) routes a
request to its nearest edge server. Specifically, multiple edge
servers in a particular geographical location announce the
same IP address, and BGP selects the shortest autonomous
system path to reach the nearest edge server.

For example, Open Connect [45], Netflix’s CDN, uses BGP
routing. Open Connect contains a suite of purpose-built phys-
ical edge servers, called Open Connect Appliances (OCAs)
to deliver video contents. Open Connect deploys OCAs in
ISP networks and internet exchange points, and uses Multi
Exit Discriminator (MED) to prioritize OCAs over alternative
BGP paths. This allows Netflix to localize its traffic as close as
possible to its end users, minimizing network and geographical
distances for content delivery.

An application layer request routing is based on HTTP
protocol and can route requests in the granularity of content
objects. Using URL rewriting, website URLs are substituted
with CDN subdomains that are resolved to CDN edge servers.
For example, the owner of a domain name “www.great.com”
publishes associated contents with “www.great.com.cdn.net”
belonging to a CDN.

CDNs may combine the above techniques to improve the
accuracy and performance of request routing. For example,
YouTube [46], Google [47], Akamai [48], and Microsoft

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

4

use DNS-based and application-layer redirection. Bing and
LinkedIn combine DNS-based and anycast routing [49], [50].

3) Origin servers: Origin servers host original contents, e.g.,
webpages of a website. An origin server is managed by either a
content owner or a CDN provider [25], [51]. A content owner
may place contents either on-site or on a cloud [52]. NOKIA
Velocix [51] is a CDN that operates origin servers that are
optimized for streaming, download, and caching.

Origin servers normally run web servers, e.g., NGINX and
Microsoft IIS, to host and serve web contents. Even with
using CDN services, origin servers still serve most requests
for dynamic web contents (e.g., online social network and
personal web pages). This is because dynamic contents are
generated per request and based on data that a content owner
cannot share with a CDN (e.g., end user information).

C. Comparison to Information Centric Networks

Information Centric Networking (ICN) [53] shifts network-
ing from a point-to-point communication to a content centric
paradigm. In this paradigm, network nodes (e.g., routers) cache
contents using their names. Moreover, the network provides
two primitives, similar to those of a publish/subscribe system.
A content owner uses a ‘publish’ primitive to make contents
available, and an end user requests contents using a ‘subscribe’
primitive [53].

ICNs and CDNs originate from different networking
paradigms, although they have similarities in content caching.
The ICN paradigm eliminates content addresses, where con-
tents are published and subscribed to only by name. Further-
more, network nodes cache and deliver contents instead of
edge servers. Consuming a content is no longer an end-to-end
connection with a server (e.g., ‘cdn.youtube.com/best-video-
ever’), but rather the delivery of a named content (e.g., ‘best-
video-ever’).

ICNs deal with unique security challenges relevant to con-
tents rather than communication channels, and these chal-
lenges are not necessarily applicable to CDNs [54]. For exam-
ple, caching contents in network nodes makes an ICN vulner-
able to bogus announcements and time analysis attacks [54].
Using bogus announcements, an adversary can announce many
content updates that leads to erroneous content state. Time
analysis allows an adversary to violate end users privacy by
deducing their request patterns.

D. Security Challenges Organization

CDNs are massive networking infrastructure across the In-
ternet with a multi-billion dollar market [1]–[3]. This motivates
us to survey CDN security challenges.

Figure 2 categorizes CDN security challenges, i.e., security
attacks and vulnerabilities. We categorize the security chal-
lenges per CDN component, as discussed in Section II-B.
We also use a subcategory similar to that of [55], which are
representative of known attacks. We do not claim that our
categorization exclusively divides security challenges; a secu-
rity challenge and its countermeasures are possibly relevant to
multiple CDN components.

Table I and Table II facilitate reading by listing the CDN
terminology and acronyms used in this survey. In Table I,
the first column shows the terms used throughout this survey,
and the second column lists other equivalent terms from
the literature. Table II provides the expanded forms of the
acronyms used in this survey.

III. EDGE SERVERS SECURITY CHALLENGES

In this section, we review the security challenges and
countermeasures related to edge servers. CDNs serve web
requests making edge servers vulnerable to application layer
attacks (cf., Section III-A). CDNs are also vulnerable to
caching threats (cf., Section III-B). Moreover, adversaries send
malicious requests that exploit vulnerabilities of edge servers
to launch denial of service attacks (cf., Section III-C). Edge
servers are also exploited as a covert communication channel
to transmit sensitive information (cf., Section III-D).

A. Application Layer

Most CDNs serve web traffic, and cache web contents
on edge servers. This makes edge servers prone to web
application layer attacks [56]–[61].

1) Prevalent threats: Web application threats include SQL
injection, cross site scripting, file inclusion, remote command
execution, illegal resource access, dictionary attacks, band-
width abuse, to name a few. They can lead to varying implica-
tions for victim organizations, such as data leakage (e.g., data
exfiltration using SQL injection and cross site scripting), fraud
or business malfunctioning (e.g., screen scrapping, spamming
and fake accounts), and disruption due to denial of service.

Static or dynamic analyses of web application’s source
code can reveal security vulnerabilities [62], [63]. However,
these analyses do not deter all possible threats. CoDeen [60]
employs limiting and blacklisting particular requests to counter
threats. It restricts HTTP POST requests due to their inherent
security risks. However, this limits the flexibility of a CDN
to support HTTP requests. CoDeen also enforces higher re-
striction on requests that match specific threat signatures. For
example, it bans an end user for a day for conducting fre-
quent HTTP login attempts. Furthermore, CoDeeN blacklists
end users that are suspicious of launching vulnerability tests
and dictionary attacks.

Web application firewalls (WAFs) can also defend edge
servers against common web application attacks, extensively
used by commercial CDNs [64]–[68]. WAFs are installed on or
in front of edge servers. They perform deep inspection of web
requests and responses to detect and block these attacks [69].
They configure WAFs to filter traffic based on the open web
application security project (OWASP) identified threats [70],
CDN specific services, and security requirements of content
owners. For example, the Alibaba WAF [65] protects web
applications against top ten security risks of OWASP [71].
Other WAFs, such as the Incapsula WAF [66], are designed
for compliance with standards, including the “payment card
industry data security standard” or “health insurance portabil-
ity and accountability act standards.”

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

5

Term Equivalent terms Description

Content Digital content Digital assets, e.g., web pages and images

End user User, consumer, client, content consumer,
content visitor

The party consuming content

Content Delivery Network (CDN) Content distribution system, content
distribution network

An infrastructure of servers delivering
content to end users

Content owner Content provider, CDN customer The party (e.g., Netflix, Amazon,
YouTube) owning content

CDN provider Content distribution service provider,
content service provider, CDN service
provider

The party owning a CDN infrastructure
(e.g., Akamai, Limelight)

Origin server Backend server, content library server,
original server, origin cache, origin

Servers containing the original content

Edge server Surrogate, cache, proxy, replica, edge
node, edge cache, content agent

The CDN servers in the proximity of end
users

Content distribution Content outsourcing, distribution system,
content management subsystem

The CDN component replicat-
ing/distributing content from origin
servers to edge servers

Request routing Request redirection, content redirection,
content routing, traffic routing, mapping
system, rerouting

The CDN component assigning content
requests to edge servers

Request Content request An end user’s request to retrieve a content

Table I: Terminology. We use the terms listed in the first column throughout the survey. We also list the equivalent terms from
the literature.

The detection of application layer threats require deep
packet inspection (DPI), which comes with a high resource
overhead. Some CDNs [64], [67], [68] deploy a WAF per edge
server, sharing the same resources used by content delivery
services. Furthermore, DPI comes with privacy concerns. If a
CDN has sufficient resources to perform DPI on traffic, it can
potentially surveil and discriminate traffic to its edge servers,
which goes against net neutrality. Moreover, they can share
information with marketing firms [72]–[74].

2) Hidden in encrypted traffic: Attackers can camouflage
application layer attacks inside encrypted traffic to bypass
the CDN security mechanisms and edge servers, and directly
target origin servers [74]. Encrypted traffic is becoming a
de facto in today’s CDN ecosystem. This is excerbated by
the adoption of next-generation web protocols, e.g., HTTP/2.
Traffic encryption is mostly achieved via Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) protocol. Using
SSL/TLS, end users establish an end-to-end secure connection
to origin servers to access contents provided by content own-
ers [75]. Without private keys from content owners, a CDN has
limited ability to analyze encrypted traffic between end users
and origin servers. In this case, a CDN must redirect traffic
towards origin servers, without inspecting traffic payload.

A CDN can still analyze non-encrypted portions of en-
crypted traffic (e.g., the negotiation phase of SSL/TLS
communication) and perform behavioral analysis on traffic

statistics (e.g., flow-based features) [76]. Intrusion detection
systems can detect attacks using these statistical features,
and enforce mitigation workflows. For example, Amoli and
Hamalainen [77] use unsupervised machine learning on real-
time metrics, such as number of network flows, packets, and
bytes, to detect scanning and denial of service attacks.

DPI for detection of application layer threats entail in-
specting either decrypted or encrypted traffic [78]. In both
scenarios, content owners must trust a CDN and share their
private keys to enable traffic inspection at the edge. However,
with access to the private keys, a CDN can essentially be-
come a man-in-the-middle, making content owners vulnerable
to eavesdropping, and even impersonation. We discuss this
dilemma further in Section V-A.

It is difficult for a CDN to provide both effective content
delivery and security services. Intercepting traffic for DPI
sacrifices a degree of privacy and trust. Although there are
approaches, such as fully homomorphic or functional en-
cryption [79], [80] that allow inspection of encrypted traffic
without decryption, they are impractical due to their pro-
hibitively low performance. Indeed, it is a challenge for a
CDN to provide effective security services, while preserving
the privacy of content owners and end users.

B. Caching Threats
Content popularity is an important characteristic that allows

for its efficient replacement on edge servers. The content

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

6

Acronym Expanded form

BGP Border Gateway Protocol
CCPA California Consumer Privacy Act
CDN Content Delivery Network
DNS Domain Name System
DONA Data Oriented Network Architecture
DoS Denial of Service
DPI Deep Packet Inspection
FTP File Transfer Protocol
GDPR General Data Privacy Regulation
HPACK Header Compression for HTTP/2
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
ICN Information Centric Networking
IP Internet Protocol
ISP Internet Service Provider
MitM Man-in-the-Middle
NDN Named Data Networking
NFV Network Functions Virtualization
OWASP Open Web Application Security Project
PII Personally Identifiable Information
QoE Quality of Experience
QoP Quality of Protection
QoS Quality of Service
SDN Software Defined Networking
SGX Software Guard Extension
SSH Secure Shell
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
URL Uniform Resource Locator
WAF Web Application Firewall

Table II: Acronyms and their expanded forms

popularity follows a Zipf distribution with long-tail, such that
there is a small set of popular contents, while most contents
are seldom requested [22], [55]. Edge servers cache popular
content to take advantage of the locality reference principle,
i.e., a recently requested content is likely to be requested again.

Attackers target the locality of reference principle to degrade
the caching performance with unpopular content [81], [82].
They also target the cache integrity of edge servers by conduct-
ing cache poisoning that replaces a legitimate cached response
with a spoofed content. Until cache expiry, subsequent requests
for the same content will receive the spoofed content instead
of the original one [83]. Using similar techniques to cache
poisoning, adversaries steal sensitive information by tricking
edge servers to cache end user information [11], [84]–[86].

1) Cache pollution: Edge servers are vulnerable to cache
pollution [10], [87], which results in degraded caching ser-
vice with frequent cache misses. To successfully pollute an
edge server’s cache, an attacker must generate requests for
unpopular contents, which is comparable in numbers to the
requests from legitimate end users for popular contents. These
attacks can deteriorate the overall network performance with-

out flooding the network, while impacting legitimate end users
and edge servers. Moreover, the detection of cache pollution is
challenging, because unpopular contents that occupy the cache
are inherently non-malicious.

Attackers target cache locality to degrade the CDN’s quality
of service (QoS). Locality refers to the tendency of an edge
server to serve the same content. High locality allows an edge
server to cache popular contents and serve several requests for
the same content from its local cache.

Attackers affect the cache locality using two approaches.
First, using a false locality strategy, an attacker continuously
generates requests for the same set of unpopular contents,
which deteriorates the cache hit ratio for popular contents.
These attacks can quickly repopulate the cache with unpopular
contents. Second, an attacker frequently requests a new set of
unpopular contents, consequently degrading cache efficiency
and impacting legitimate end users.

Cache pollution attacks entail content access patterns that
are in stark difference to legitimate requests. Thus, counter-
measures capitalize on metrics capturing this difference, and
perform threshold based analyses to counter these attacks.

In a false locality attack, malicious end users request
the same unpopular contents frequently, while a legitimate
end user rarely requests the same content repeatedly in a
short period of time [88]. This difference has been leveraged
to develop two detection approaches, namely attacker-based
detection and object-based detection [81]. In the attacker-based
detection, if the number and percentage of repeated requests
exceed predefined thresholds, the end user is classified as
malicious. In the object-based detection, if the number of
requests for a content is relatively larger compared to the
number of end users requesting it, the content is deemed a
false popular content and evicted from the cache. All these
mitigation approaches require adjusting appropriate detection
thresholds. However, finding threshold values is non-trivial.

Manivel et al. [89] detect malicious end users by tracking
their recent history of cache hits and misses. To track the
activities of end users, a mapping between end users and their
content requests is maintained. If the recent cache hit ratio of
an end user is below a predefined threshold, the end user is
classified as an attacker. This approach emphasizes on recent
behavior of an end user and avoids a permanent classification.
Indeed, an end user with poor locality may have a low hit
ratio, while being legitimate. Therefore, with a classification
that changes over time, an end user is only subjected to a
temporary misclassification.

Park et al. [90] consider the randomness of requests
to identify a locality disruption attack, i.e., the lower the
randomness, the higher the probability of locality disruption.
This approach maintains a matrix of request statistics. An
attack is detected, if the entropy of the matrix falls below
a predefined threshold.

In contrast, Dang et al. [88] propose a two step approach
to detect both false locality and locality disruption attacks.
Firstly, the authors leverage attacker-based or object-based
detection approaches to detect false locality. This allows
for excluding unpopular contents from the following step.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

7

Secondly, the locality disruption attacks are detected separately
using the periodic average life time metric.

2) Cache poisoning: Kettle [91] discover an attack that
misuses “unkeyed inputs” and the concept of “cache keys”
to poison web caches at edge servers.

Web proxies use key value stores to track their caches. To
associate a HTTP request to cached responses, they combine
the values of certain HTTP headers (e.g., HOST and GET) in
the request, as a cache key. However, web proxies exclude
some HTTP headers (e.g., User-Agent and Cookie) from
cache keys, as they can be very specific to a particular
request, making them impractical for caching. These are called
unkeyed inputs, which are amendable to web cache poisoning.
An adversary can craft a HTTP request with arbitrary values
(potentially malicious) for these headers, while the request
cache key remains general enough to match future requests.

Figure 3 depicts a cache poisoning attack. First, an
adversary crafts and sends a HTTP request, including harmful
values for unkeyed inputs (e.g., X-Host: badguy.com).
Second, an edge server forwards this request to an origin
server. Third, the origin server replies with a poisoned
response including the harmful values from the HTTP request.
Specifically, origin web servers may include some HTTP
request header values into their responses. An origin web
server generates a poisoned response that includes the harmful
values of the unkeyed inputs (e.g., an HTML page including
<script src="badguy.com/foo.js"></script>).
Fourth, the edge server caches this response for legitimate
HTTP requests. Fifth, an end user sends a request that maps
to the poisoned cache record. Finally, the edge server replies
with a response from its poisoned cache.

This attack can be mitigated at the origin and the edge
servers. Origin servers can prevent it by excluding the val-
ues of HTTP headers in responses. However, this limits the
flexibility of web applications that make use of HTTP headers.

Edge servers can alleviate the impact of this attack by
including more HTTP headers in cache keys. For instance,
Cloudflare includes further HTTP headers, such as X-Host,
X-Forwarded-Host, and X-Forwarded-Scheme, as
part of their cache keys [92]. However, this can impact the
cache performance, as including more HTTP headers increases
the cache key space.

3) Web cache deception: This attack aims at stealing
end user’s sensitive information. An attacker tricks an end user
to request a dynamic content containing sensitive information
(e.g., the details of a private payment account), which is served
from the origin server and cached in an edge server. The
attacker later accesses this information directly from the edge
server’s cache [11], [84]–[86]. Akamai, Cloudflare, Cloud-
Front, and Fastly were reported vulnerable to this attack [11].

This attack involved five steps. First, an adversary deceives
an end user into requesting a non-existing URL that ends with
a static content, such as ‘http://www.bank.com/profile/foo.jpg’
(i.e., ‘foo.jpg’ is a non-existing static content). Second, an
edge server receives and redirects this request to an origin
server. Third, the origin server generates and responds with

a dynamic content as follows. The web server on the origin
can be configured to be flexible in serving different paths
and serves this non-existing URL by invoking a script lo-
cated at ‘http://www.bank.com/profile’. The script generates
dynamic contents with sensitive end user information (e.g., an
end user’s profile information). Forth, the edge server caches
the response, because the request is apparently for a static
content (e.g., a ‘jpg’ image). Fifth, the adversary can then
request the same URL, and the edge server responds with the
cached content.

To overcome this attack, origin servers can be configured
to appropriately respond to unexpected URLs, or force edge
servers to exclude sensitive contents from caching [86]. For
example, an origin web server responds with HTTP 404
for non-existing URLs. An origin server can also set the
Cache-Control header to No-Cache, ensuring the edge
server does not cache responses with sensitive information.

The edge servers can also avoid caching sensitive contents,
by matching the response type with the requested URLs. For
example, an edge server should not cache an HTML response
for an an image request with a ‘jpg’ extension [85], [93].

C. Denial of Service

In a denial of service attack, adversaries aim to prevent
legitimate end users from accessing CDN services [94]. A
distributed denial of service attack employs multiple attacking
entities to achieve the same goal. For example, an adversary
can flood an edge server, consume its resources and prevent
legitimate end users from accessing contents. These attacks
disrupt CDN services causing CDN businesses to lose consid-
erable revenue.

By taking advantage of the vulnerability of edge servers in
serving dynamic contents, adversaries use a CDN to amplify
their denial of service attacks against origin servers [10].
Moreover, they exploit vulnerabilities of HTTP request headers
to cache poisoned contents at edge servers making original
contents unavailable to legitimate end users [95]–[97].

1) Random string denial of service: Typically, edge servers
forward requests for dynamic contents to origin servers, since
serving these requests from the local cache is non-trivial. How-
ever, forwarding these requests to origin servers introduces a
vulnerability that attackers can exploit to launch amplification
denial of service attacks.

Triukose et al. [10] craft random string URLs to flood
origin servers and consume the resources of a CDN. Append-
ing a random string to a user request URL (e.g., append-
ing ‘?q=rand’ to ‘http://www.domain.com/image.jpg’) forces
a cache miss on the edge server, even when the appended
string might not correspond to actual dynamic contents. Conse-
quently, over two decoupled TCP connections, the edge server
fetches and delivers the missed content (e.g., ‘image.jpg’) from
the origin server.

The content is fetched from an origin server to the edge
server over the first connection, while the content is deliv-
ered from the edge server to the attacker over the second
connection. The first connection is high throughput, while the
throughput of the second connection is low (i.e., adjusted to

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

8

1

Edge Server
Host: www.example.com

X-Host: badguy.com
2

Host: www.example.com

X-Host: badguy.com

…

<script src="badguy.com

/foo.js"></script>
3

…

<script src="badguy.com/

foo.js"></script>

Cache

4

6

5 Host: www.example.com

…

<script src="badguy.com

/foo.js"></script>

Origin Server

End User

Adversary

Figure 3: Cache poisoning attack. Black and red arrows show legitimate and malicious HTTP messages, respectively.

the attacker’s connection). Since the attack consumes an order
of magnitude more bandwidth at the origin server connection,
the attacker can force edge servers to amplify the traffic to the
origin servers. Although the main target of this attack are the
origin servers, an attacker can also pollute caches and reduce
the performance of the edge servers.

Triukose et al. [10] explore a list of mitigation techniques.
In a “no string attached” defense, a dynamic content is served
only by origin servers, while edge servers only serve static
contents. In this case, requests for dynamic contents can either
be dropped by edge servers or origin servers (i.e., requests for
dynamic contents forwarded by an edge server). However, this
decreases the effectiveness and flexibility of a CDN in serving
dynamic requests.

Edge servers and origin servers can also collaborate to serve
dynamic content. The edge servers append certain information
(e.g., IP addresses of end users) to requests that are forwarded
to the origin servers. The origin servers can leverage this
information for threat detection and mitigation. For example,
the origin servers can limit the rate of requests coming from
the same IP address. This approach is effective if the CDN
also manages the origin servers. Otherwise, content owners
must protect their origin servers against the random string
attack, without sufficient support from the CDN. Alternatively,
a CDN can leverage anomaly detection mechanisms to detect
abnormal rate of requests to the origin servers. However, this
comes at a high performance cost.

The attack’s amplification factor depends on the through-
put difference between the two TCP connections. Therefore,
controlling the throughput of these connections can decrease
the impact of an amplification attack. A CDN can apply
connection throttling, where content transfer between origin
servers and edge servers is slowed down, based on the delivery
progress between an edge server and an end user. The CDN
can also leverage abort forwarding to stop transferring contents
between an origin server and an edge server, as soon as an
end user closes its connection.

2) Cache poisoned denial of service: Using a web cache
poisoning attack, adversaries can cause an edge server to cache
and serve error pages instead of original contents [95]–[97].
This makes contents unavailable to upcoming legitimate re-
quests. Akamai, Azure, CDN77, Cloudflare, CloudFront, and
Fastly were reported vulnerable to this attack [95].

Cache poisoning attack has four steps. First, an adversary
crafts and sends an HTTP request including a malicious header
that targets a victim content. Second, an edge server forwards
the request to an origin server, while the malicious header
remains undetected at the edge server. Third, processing the
malicious header at the origin server provokes an error, and
the origin server generates and replies with an error page to
the edge server. Fourth, the edge server caches this error page
instead of the original content. The edge server replies with
this error page to recurring requests for the victim content.

There are three headers in HTTP requests that can be
exploited for this attack [95], [96]. Using an oversized HTTP
header, an adversary crafts a request header, which although
supported by an edge server, is too large for the origin server
to handle due to its configuration.

Using HTTP meta character, an adversary crafts a request
header with a harmful meta character, e.g., \n, \r, and \a.
An edge server forwards this request to an origin server, where
the meta character causes an error.

Using HTTP method override, an adversary crafts PUT
and DELETE requests to bypass edge servers and cause
an error at an origin server. Web proxies and firewalls at
edge servers commonly support only HTTP GET and POST
methods, and block requests with DELETE and PUT. Some
web frameworks at origin servers, e.g., Play Framework
1, circumvent this limitation by supporting override head-
ers, such as X-HTTP-Method-Override. These head-
ers enable tunnelling blocked HTTP methods. At an origin
server, the web framework replaces the HTTP method of
a request with the value of the override header. To con-
duct this attack, an adversary sends a GET request with an
X-HTTP-Method-Override header set to POST. An edge
server interprets this request as a benign GET, while an origin
server interprets it as a POST after overriding the HTTP
method. If the web application logic does not implement POST
for the requested content, the origin server returns the HTTP
404 error message. Based on RFC 7231 [98], the edge server
is allowed to cache this error page to serve recurring requests.

Excluding error pages from caching can completely prevent
this attack. However, this can impact the performance and
scalability of CDNs. An origin server can also generate re-
sponse messages with Cache-Control: no-store, and
edge servers must honor this header. Another approach is to

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

9

disable caching at edge servers. Akamai, CDN77, CloudFront,
CloudFront, and Fastly can be configured with this option.

WAFs deployed in front of web proxies at edge servers
can also filter malicious request headers. However, WAFs in
front of origin servers do not mitigate this attack, as they can
still generate error pages that will be cached at edge servers.
Furthermore, DPI at WAFs can also impact CDN performance.

D. Covert Channels

Covert channels allow adversaries to communicate infor-
mation, while the communication remains undetected. This
allows adversaries to bypass security mechanisms and misuse
a CDN as a medium to secretly transmit and steal sensitive
information [100].

The CDN infrastructure can be used as a covert channel.
Public access to CDN services enable adversaries to recruit
and exploit the communication between edge servers and
origin servers to encode and transmit secret messages.

CDN covert channel: Wang et al. [99] exploit CDN edge
servers and origin servers to create a covert communication
channel between malicious end users and a malicious content
owner using CDN services. As a proof of concept, the authors
conduct the attack on CloudFront.

Figure 4 illustrates the CDN covert channel unfolding in five
steps as follow. First, a malicious end user or malicious content
owner collects the IP addresses of edge servers (we will
discuss vulnerabilities that lead to harvesting IP addresses of
edge servers in Section IV-A). Second, the malicious end user
or the malicious content owner devise an information encoding
scheme. Third, the collected IP addresses and the encoding
scheme are broadcast to malicious end users and the malicious
content owner. Fourth, the malicious end user selects an edge
server and encodes a secret message into a series of penetration
requests, i.e., content requests forcing an edge server to fetch
from the origin server (e.g., URL ‘http://malicious.org?q=dnar’
ending with a random string dnar [10]). Finally, the malicious
origin server receives and decodes the requests to reconstruct
the messages.

The information encoding scheme used to encode and
decode messages is based on the sending edge server. For
example, as shown in Figure 4, the same request received from
edge servers 1 and 2 are respectively decoded to alphabets i
and j in the malicious origin server.

The information scheme used in the fifth and sixth steps
require the malicious origin server to receive a penetration
request from the same edge server that receives the malicious
end user request. However, this may not always be the case,
as a request may pass through multiple edge servers before
reaching the origin server. For example, an edge server A that
receives an end user request (i.e., first hop edge server) may
forward the request to edge server B that forwards it to edge
server C (i.e., last hop edge server), from which the origin
server receives the request.

Moreover, in some CDNs (e.g., CloudFront and CoralCDN),
an edge server A, in most cases, will forward a non-cached
request to an edge server B. This static forwarding between
edge servers on a cache miss, allows an attacker to devise a

stable mapping between the first and last hop edge servers by
sending and tracking unique requests.

A successful covert channel communication attack requires
the following. First, a malicious end user is able to select and
forward a penetration request to an edge server. Second, the
penetration request bypasses the edge server cache. Third, a
malicious end user is able to infer the mapping between the
first and last hop edge servers.

If any of the above requirements fail, the attack is unsuc-
cessful [10]. To deny the first requirement, an edge server
accepts only certified requests. Therefore, an end user must
first contact an intermediate server to receive a certificate token
and the IP address of the selected edge server. The intermediate
server also sends the certificate to the selected edge server. The
end user must then provide the token with a request to the edge
server, which only serves a request with an authorized token.
Hence, end users cannot connect to arbitrary edge servers.
However, this increases the latency of serving requests and
introduces an overhead of generating and validating tokens.

To tackle the second requirement, query strings in HTTP
requests can be disabled. This prevents edge servers from for-
warding dynamic requests to the origin servers, thus avoiding
the bypass of edge servers. This also prevents a CDN from
caching dynamic content in its edge servers.

Similarly, to thwart the third requirement, a CDN can
randomize the mapping between first and last hop edge servers.
This undermines the information encoding scheme for the
covert channel, since the mapping between the sending edge
server and alphabets are no longer stable.

E. Summary

Table III summarizes the security challenges and counter-
measures discussed in this section. As shown, in addition
to the application layer attacks, adversaries mostly target the
caching and performance of edge servers. This undermines the
CDN’s primary functionality to quickly and efficiently deliver
contents.

There are open problems for CDNs to counter edge server
security challenges due to two opposing reasons. First, these
security challenges exploit the application layer, thus their
detection requires DPI, which comes with a high performance
overhead. The growth in traffic encryption also requires CDNs
to spend more resources for DPI. Second, inspecting en-
crypted traffic raises privacy and confidentiality concerns. The
application layer contains personally identifiable information
(PII), and DPI may expose content owners and end users
PII. From another perspective, if a CDN owns sufficient
resources for DPI, the CDN can also surveil and discriminate
traffic [72]–[74].

When inspecting traffic, CDNs must comply with pri-
vacy preserving regulations, such as General Data Privacy
Regulation (GDPR) [101] and California Consumer Privacy
Act (CCPA) [102]. These regulations require stricter privacy
protections. They grant consumers the right to control which
PII can be collected, and how this information is used. To com-
ply with these regulations, a CDN must employ appropriate
controls and measures to protect the privacy of end users and

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

10

Security challenge Goal Vulnerability Countermeasures

Prevalent threats
[56], [60], [61] - -

Source code analysis [62], [63], web traffic
inspection [64]–[68]

Hidden in encrypted
traffic [74], [75]

Bypass security using
encrypted traffic

Limited ability to inspect
end-to-end encrypted traffic

Behavioral and statistical analysis [76], [77],
expressive cryptographic schemes [79], [80]

Cache pollution [87] Reduce cache
performance Locality of reference

Attacker-based and object-based
detection [81], cache miss ratio history [89],
randomness check [90], and two-step
detection [88]

Cache poisoning [91] Target cache integrity Cache keys and HTTP
unkeyed inputs

Exclude HTTP request headers from
responses, include more HTTP request
headers in cache keys [92]

Web cache deception
[11], [84]–[86]

Stealing end user
information Caching control

Appropriate response to unexpected URLs,
not force caching sensitive content [86],
matching response type with requested
content [85], [93]

Random string denial of
service [10] Denial of service Supporting query strings

in HTTP requests
Blocking requests with query strings,
connection throttling, abort forwarding [10]

Cache poisoned denial
of service [95]–[97] Denial of service HTTP headers Exclude error pages from caching, WAF

in front of edge servers [95]–[97]

CDN covert channel
[99]

Hiding information
transmission Static request routing

Certified requests, blocking requests with
query strings randomize mapping between
first and last hop edge servers

[99]

Table III: Edge Server Security Challenges

1

Broadcast Collected IP Addresses and the Encoding Scheme

Edge Server 1 to i, Edge Server 2 to j, …

4

2

5

Devise an Encoding Scheme

Edge Server 1 to i,

Edge Server 2 to j,

 …

 Receive and Decode Request

 of Edge Server 1 to i

Edge Servers

Malicious Origin Server
Malicious End User

Harvest IP Addresses of Edge Servers

http://malicious.org/?q=dnar

3

4 http://malicious.org/?q=dnar1

2

Figure 4: Covert channel attack

content owners. For example, DPI must not expose end user
identities, inadvertently or otherwise. Non-compliance can
lead to serious repercussions for CDN providers, including
financial penalty and reputation loss.

IV. REQUEST ROUTING SECURITY CHALLENGES

In this section, we discuss security challenges and defense
mechanisms pertaining to the request routing component. DNS
is an integral part of CDN’s request routing. Although we
acknowledge that security challenges of DNS and anycast
routing, e.g., DNS cache threats [103]–[105] and the BGP
hijacking [9], [106], [107] are also applicable to CDNs,

we refer readers to earlier research on these attacks [106],
[108]–[113]. Instead, we focus on security challenges specific
to CDNs.

We discuss how adversaries exploit the request routing
component to collect sensitive information regarding a CDN,
e.g., the IP addresses of edge servers, and use this information
to launch sophisticated attacks against other CDN compo-
nents (cf., Section IV-A). Adversaries tamper with the request
routing component to redirect end user requests to their own
desired addresses (cf., Section IV-B). They also overwhelm
this component to prevent end users from accessing services
provided by the CDN and content owners (cf., Section IV-C).

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

11

A. Reconnaissance

Adversaries engage with the request routing component
using reconnaissance attacks to gather information about con-
tents, content owners, and CDNs. They exploit the collected
information for further active attacks, e.g., denial of service
attacks, phishing, and cache poisoning.

Adversaries are particularly interested in collecting CDN
IP addresses using reliable approaches [114]–[116]. CDNs
own IP address ranges and distribute them among their edge
servers. CDNs arrange their edge servers in two cache layers
using the IP addresses as ingress and egress addresses. Edge
servers at the first cache layer use the ingress IP addresses for
their communications with end users, and edge servers at the
second cache layer use egress IP addresses to communicate
with origin servers [116].

Adversaries are interested in reliable approaches to collect
the IP addresses of edge servers. A corollary is that some
CDNs publish their IP ranges [117]–[119], allowing adver-
saries to target these addresses directly. However, there are
CDNs that do not publish their IP addresses. Another approach
is to query WHOIS for the history of IP addresses of a CDN.
However, WHOIS can be incomplete or stale, because GDPR
has prevented collection and storage of IP addresses [101].

1) Ingress harvest: A harvesting attack aims to collect the
ingress IP addresses that edge servers use to communicate with
end users. By knowing the IP address of an edge server, an
adversary can launch denial of service against this edge server.
This attack exploits randomness of assigning end user requests
to edge servers to collect more ingress IP addresses [114]. This
attack is not an effective reconnaissance mission for a CDN
that routes requests based on anycast, because an adversary is
unable to collect specific IP addresses as all edge servers have
the same IP address.

In this attack, multiple insiders cooperate to collect the IP
addresses of edge servers. They send content requests and
process the request routing responses to collect and share the
IP addresses of edge servers.

The success rate of this attack depends on the number of
discovered IP addresses. Theoretically, the number of requests
to harvest n edge servers is O(n log(n)) [114]. However, the
number of edge servers is unknown in practice, preventing
an attacker from estimating a reasonable number of requests.
Therefore, an attacker must carefully try a range of IP ad-
dresses without being detected by intrusion detection systems
that monitor and track requests.

Venkatesan et al. [114] propose two countermeasures to
combat harvesting attacks, namely bind-split and proactive
proxy migration. The bind-split strategy maintains a mapping
of end users to edge servers. An end user is bound to an edge
server, to limit the number of edge servers that an insider
can harvest [114]. This binding holds, unless the edge server
is under attack. In this case, the edge server under attack is
shutdown and its end users are equally split among two new
spawned edge servers. If the edge server under attack was
serving only a single end user, this end user is a malicious
insider. However, this approach may lead to an unbalanced

load distribution among edge servers, since each end user is
tightly bound to an edge server.

To improve load distribution among the edge servers, proac-
tive proxy migration strategy periodically shuffles the end user-
edge server bindings, even when no edge server is under
attack [114]. However, this strategy may also suffer from
performance overhead, due to periodic proxy migrations.

2) Egress harvest: Another type of request routing harvesting
collects egress IP addresses that edge servers use to communi-
cate with origin servers [115], [116]. Using this information,
an adversary can disrupt a CDN’s communication with the
origin. For example, the adversary achieves this goal using a
crossfire attack [120], i.e., a link flood denial of service attack
that uses thousands of bots to send traffic flows that together
flood network links connected to the discovered egress IP
address.

To collect egress IP addresses, an adversary must cause
cache misses at edge servers. The reason is that edge servers
communicate through egress IP addresses to fetch contents
from origin servers only when cache misses happen.

An adversary conducts this attack by acting as a malicious
end user and a malicious content owner. The adversary runs
an origin server and registers it to receive delivery services
from a target CDN. Controlling the origin server allows an
adversary to collect CDN egress IP addresses by monitoring
connections coming from edge servers. The adversary crafts
HTTP requests with random strings resulting in cache misses
at edge servers (cf., Section III-C1). The edge servers forward
requests to the malicious origin server where the malicious
origin server collects the egress IP addresses.

Mitigating this attack is non-trivial because all the attack ac-
tivities are considered legitimate. A CDN alleviates the attack
severity by limiting requests with query strings, as discussed in
the random string denial of service in Section III-C1. However,
as also mentioned before, doing so reduces the flexibility of a
CDN to support dynamic requests and cache their responses
for legitimate websites.

B. Redirection Exploits

Adversaries exploit the vulnerabilities of request routing
based HTTP, to bypass CDN security mechanisms and redirect
end user requests to their intended destinations.

The discrepancy in HTTP implementations to interpret a
request is at the heart of a series of threats in HTTP request
routing. A CDN uses multiple HTTP entities, e.g., WAFs,
reverse proxies, and web servers to process HTTP requests.
When these entities are on a data stream path, they may
have different interpretations of the same HTTP request.
Adversaries exploit these discrepancies to launch HTTP smug-
gling, multiple hosts ambiguities [121], and denial of service
attacks [122]. Alibaba, Cloudflare, Cloudfront, and Level3 are
among CDNs reported to be vulnerable to these attacks [121].
We discuss the denial of service attacks in Section IV-C.

1) HTTP smuggling: Adversaries use HTTP smug-
gling [121] to bypass traffic filtering and launch cross site
scripting and session hijacking attacks. To conduct a HTTP

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

12

End User

Adversary

Edge ServerWAF

6

5

foo.js

index.html

4

Host: www.example.com

GET / HTTP/1.1

Host: www.example.com

Content-Length: 0

Content-Length: 45

GET /foo.js HTTP/1.1

Host: www.malicious.com

2

3

r1

r2

Host: www.example.com

GET / HTTP/1.1

Host: www.example.com

Content-Length: 0

Content-Length: 45

GET /foo.js HTTP/1.1

Host: www.malicious.com

1

3

r1

r2

Figure 5: HTTP smuggling attack

smuggling, an adversary sends multiple HTTP requests that
pass through multiple HTTP entities. These requests are
crafted such that the HTTP entities, due to inconsistency,
observe different sets of requests. In this way, the attacker
“smuggles” an HTTP request to an entity, while the other
entities are unaware of this request.

Figure 5 shows an example of HTTP smuggling at-
tack, where a WAF intercepts requests going to CDN edge
servers. First, an adversary crafts and sends a malicious
HTTP request that actually consists of two requests, r1 for
‘www.example.com’, and r2 pointing to a malicious script
‘bad.js’ on ‘www.malicious.com’. The malicious request con-
tains two ‘Content-Length’ headers that causes inconsistent
interpretations at the WAF and the edge server. Second, the
WAF prioritizes ‘Content-Length: 45’ leading to interpreting
r2 as the body of r1, and forwards them as a single request
to the edge server. This allows the attacker to bypass the
WAF filter even when ‘www.malicious.com’ is in the WAF’s
blacklist. Third, an end user requests ‘www.example.com’, and
the WAF forwards this request to the edge server. Fourth, the
edge server prioritizes ‘Content-Length: 0’, and interprets the
malicious request as two separate requests. Fifth, the edge
server replies with ‘index.html’ to the adversary in response
to r1. Sixth, the edge server replies to the end user with ‘foo.js’
from ‘malicious.com’ in response to r2.

To counter the above challenge, HTTP entities must use
stricter parsing semantics for requests. Intercepting requests
with a WAF that correctly applies strict parsing rules is a
useful defense mechanism. Other solutions include HTTPS
communication and requiring the termination client sessions
after each request.

HTTP entities can avoid the threat by complying with RFC
7230 [123]. However, it is unrealistic to expect that all existing
implementations will change and comply with the standard.

Another approach with lesser implementation changes is
to use a firewall that enforces the RFC specifications. This
firewall can be placed before any HTTP entity that does not
comply with the standard. The firewall will intercept traffic
before it reaches other HTTP entities, and either reject or raise
an alert about invalid HTTP requests.

2) Multiple host ambiguities: Adversaries exploit the incon-
sistencies in interpreting the Host header field of HTTP 1.1
requests to conduct multiple host ambiguities attack, which
allows an adversary to bypass security mechanisms and launch
other attacks, such as cache poisoning. Host header is used
for virtual hosting that allow multiple domain names to be
hosted on a single IP address. It identifies the domain name
and optionally a TCP port on the web server (e.g., Host:
www.domain1.com:8080).

There are three types of adversely crafted requests [121].
The first is an HTTP request with multiple Host headers.
Although RFC 7230 [123] dictates that a request with multiple
Host headers must be rejected, existing implementations still
process the request by selecting one of the Host headers.
Different implementations may have varying preferences in
selecting a host among multiple Host headers of a single
HTTP request.

The second type misuses space characters inside a Host
header to cause inconsistencies. HTTP entities interpret a
Host header with space characters as multiple Host headers.
For example, if an entity prefers the first host, this entity might
consider the space preceding the first header as an unknown
Host header. On the other hand, if an entity prefers the last
host, the preceding space does not affect its Host header
selection.

The third type of crafted HTTP requests include absolute
URIs. RFC 7230 [123] instructs web servers to accept an
absolute URI, and to favor the hostname with an absolute
URI over a Host header. The RFC also specifies that the
hostname in the absolute URI and Host header must be
unique. However, some entities do not identify the hostname
of an absolute URI, while others do not check the identity of
an absolute URI domain name and Host header.

The countermeasures used for HTTP smuggling are also
applicable for multiple host ambiguities.

C. Denial of Service

Adversaries take advantage of vulnerabilities in HTTP and
DNS, to reduce the performance of request routing and launch
application layer denial of service attacks. In this section, we

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

13

discuss five attacks that exploit HTTP and DNS vulnerabilities
to conduct denial of service.

1) Forwarding loop: This attack misuses the Host header
field, similar to the multiple host ambiguities attack, to exhaust
resources of one or more CDNs [122], [124]. An edge server
can be configured to forward a request based on the Host
header field. An attacker can exploit this request redirection
to force CDNs to process a request repetitively, and even
indefinitely, leading to a denial of service.

An adversary conducts a HTTP forwarding loop attack as
follows. The adversary rents and configures edge servers with
forwarding rules based on HOST headers. Then, the adversary
crafts HTTP requests with malicious HOST headers that trigger
the forwarding rules on edge servers and cause indefinite
forwarding loops across the edge servers.

Chen et al. [122] identify four kinds of forwarding loop
attacks: (i) self loop within an edge server (ii) intra CDN
loop between multiple edge servers within a CDN, (iii) inter
CDN loop across multiple CDNs, and (iv) CDN dam flooding
that can cause faster loops against CDNs supporting HTTP
streaming.

There are three countermeasures against the forwarding
loop attacks [122], [125]. First, a CDN can rate limit or
filter requests with HOST headers to mitigate a forwarding
loop attack. A CDN monitors HTTP headers and applies rate
limiting based on per source IP address or per end user.
If the monitored traffic exceeds a predefined threshold, the
CDN can reject or downgrade subsequent requests from the
same IP address or end user. Filtering can be applied on
forwarding destinations, e.g., a CDN filters a request if it must
be forwarded to another CDN [122].

Second, a loop can be detected by tracking the servers that
have already processed a HTTP request. HTTP 1.1 standard
specifies the Via header in a HTTP request to indicate web
proxies that have processed this HTTP request [123]. In a
CDN, each edge server that forwards a HTTP request, appends
its identifier (e.g., its host name). Thus, the Via header field
contains a list of recipient edge servers and an edge server
can detect a loop by observing its own identifier in this list.
To prevent long loops, a request is also rejected if the number
of servers listed in the Via header crosses a given threshold.
CDNs must prevent removing and forging Via headers to
ensure the effectiveness of this defense mechanism. However,
some web servers have traditionally used the Via header for
other purposes that conflict with loop detection. Particularly,
some web servers disable certain features in presence of
Via headers, which can cause performance degradation. For
example, NGINX does not compress responses to requests
with Via headers. In addition, Via header can expose internal
information of CDNs, e.g., the host names of edge servers.

Finally, Akamai, Fastly, and Cloudflare have collaborated
to standardize the HTTP CDN-Loop header [125] to remedy
the performance issues of using the Via header for loop
detection. Web servers can use the CDN-Loop header for the
purpose of loop detection, while applying Via headers for
traditional purposes without the above performance penalties.
This header works similar to Via header. Each edge server

appends its CDN identifier before forwarding a request, and
the edge server detects a loop if its CDN identifier is found in
a HTTP request. CDN-Loop header is effective only if used
by all CDNs. A CDN that does not implement this header
remains an attack vector against other CDNs, even if they
have implemented this standard [125].

2) HTTP/2 amplification: Guo et al. [115] exploit CDNs’
support of HTTP/2 to launch an amplification denial of service
attack against the origin. Some CDNs support only HTTP/2
for connections at the edge between end users and edge
servers, while all origin connections between edge servers
and origin servers are HTTP/1.1, even when origin servers
support HTTP/2 [115]. They convert HTTP/2 to HTTP/1.1
and back, for HTTP/2 connections at the edge. Adversaries
can abuse this HTTP/2-HTTP/1.1 conversion to conduct a
bandwidth amplification denial of service attack against origin
servers. Cloudfront, Cloudflare, CDNSun, Fastly, KeyCDN,
and MaxCDN are vulnerable to this attack.

HTTP/2 improves HTTP/1.1 bandwidth usage using con-
nection multiplexing and HPACK compression algorithm.
Specifically, HTTP/2 uses multiple concurrent bidirectional
streams within a single connection to reduce unnecessary
TCP handshakes, and full request and response multiplexing.
Moreover, HTTP/2 HPACK compresses HTTP messages to
serve a web page. Rendering a modern web page can generate
hundreds of HTTP requests with redundant HTTP headers.
HPACK maintains an index table to track HTTP headers and
substitutes redundant large headers in a HTTP message with
much smaller table indices.

Adversaries can also abuse this HTTP/2-HTTP/1.1 conver-
sion to conduct a bandwidth amplification denial of service
attack against origin servers. HTTP/1.1 connections consume
many times more bandwidth than their associated HTTP/2
connections. This allows adversaries to craft HTTP requests
resulting in an amplification factor of 166.

This threat arises since CDNs do not support HTTP/2 on the
CDN-origin side. CDNs can eliminate this threat by running
the same version of HTTP for both communication sides.

3) Slow pre-POST: Adversaries can abuse the approach
of some CDNs in forwarding POST requests to conduct a
slow HTTP denial of service attack against the origin [115].
CDNs including Cloudfront, Fastly, and MaxCDN have a pre-
post forwarding behavior where they forward a HTTP POST
request upon receiving the POST header before receiving the
entire POST body. They perform this behavior for POST
forwarding of both HTTP/1.1 and HTTP/2 to speed up serving
POST requests.

A slow HTTP attack exploits HTTP behavior in keeping
a TCP connection open until the data is entirely delivered.
HTTP behaves the same for different stages of a request flow
making these stages vulnerable to a attack. For example, a
slow POST attack sends POST body at a very slow rate. The
slow HTTP attack opens massive number of connections and
keeps them open as long as possible. This exhausts the number
of concurrent connections at the server side.

This attack involves two steps. First, an adversary crafts and

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

14

sends massive number of large POST requests, e.g., thousands
of requests. The adversary keeps the request connections open
by sending each request body very slowly, e.g., for 300
seconds. Second, an edge server opens a connection with an
origin server to forward a received POST request from the
adversary. It opens the connection before receiving the entire
POST body. The edge server also keeps its connections with
the origin server open during forwarding of the POST bodies.
Large number of connections from the edge server exhausts
the origin server resources.

This attack is stealthy and hard to detect, as crafted re-
quests are legitimate, and an origin server receives connections
from CDN edge servers that are considered non-malicious.
However, the attack can be mitigated at the origin and at
the edge. Origin servers can use a shorter timeout to receive
POST bodies, while the edge servers can mitigate the attack
by storing a request completely before forwarding it [115].
Cloudflare implements this countermeasure at its edge servers.

4) Egress blocking: Adversaries can threaten content avail-
ability by exploiting the low IP churning rate of CDNs for
their communications with the origin. Some CDNs assign
predictable egress IP addresses, for example MaxCDN uses
a single egress IP address for 96% of its traffic with an
origin server [115]. An adversary can collect these egress IP
addresses using harvesting attacks, discussed in Section IV-A2,
and make the contents of this origin server unavailable by
disrupting the CDN communications with the origin using
these egress IP addresses.

Caching at edge servers motivates this low egress IP churn-
ing rate, i.e., the frequency of a CDN using the same egress
IP address. Edge servers commonly have a heavier traffic load
at the ingress compared with that of the egress. They batch
incoming requests and forward them to origin servers using
few egress IP addresses.

The feasibility of disrupting CDN egress communication
depends on the geographical locations of edge servers. An
adversary can use crossfire attack [120], where the adversary
programs thousands of bots to flood network links connected
to discovered egress IP addresses. The bots must be within
close proximity of the egress IP addresses. The links can be
found using common tools, such as traceroute [120].

Another approach is to exploit on-path appliances, e.g.,
middleboxes and routers to block the CDN’s egress traffic.
For example, China’s great firewall inspects HTTP flows for
sensitive words, e.g., ultrasurf and blocks the source IP
address of TCP connections carrying these HTTP flows for
90 seconds [115], [126]. The adversary can exploit this to tem-
porary block egress IP addresses within China. The adversary
crafts and sends HTTP requests with sensitive words, and edge
servers use egress IP addresses to forward these requests to
the origin that is outside China. The great firewall will inspect
the request and block the egress IP addresses.

CDNs can mitigate this attack using a more unpredictable
assignment strategy of egress IP addresses, e.g., by assigning
more egress IP addresses to an origin server and churn them
more frequently. Doing so prevents this attack from exploiting
the CDN’s strategy that uses predictable egress IP address

assignment with a few IP addresses per origin server [115].
However, this countermeasure can reduce caching performance
because distributing request forwarding across more egress
edge servers reduces aggregation probabilities. Moreover, this
also allows adversaries to conduct more effective reconnais-
sance, i.e., they can collect more CDN IP addresses.

5) Redirection hijacking: Adversaries can insert crafted
DNS records on name servers using DNS cache poison-
ing [104], [127] to redirect end user requests to an edge server.
A flood of these requests overwhelms the victim edge server.
Sixteen popular CDNs, including Cloudflare, Akamai, and
Limelight were identified to be vulnerable to this attack [42].

An adversary can even nullify hijacked requests by sending
these requests to offline edge servers. To do so, the adversary
collects the IP addresses of edge servers (e.g., using harvesting
attacks discussed in Section IV-A1), tracks their liveliness
(e.g., using ping), and poisons name servers with records
pointing to the offline edge servers.

The DNS cache poisoning exploits the authentication vul-
nerability of the DNS name resolution to insert bogus DNS
records to a name server’s cache. Until poisoned records
expire, the adversaries can redirect end user requests to the
IP addresses. If a resolving name server receives a DNS
query and does not have a cached response, it asks another
name server. The former name server uses a 16 bit transaction
identifier to authenticate replies from the latter name server.
If an attacker guesses the value of this identifier and responds
faster than the former name server, the attacker can poison the
resolving name server’s cache.

There are two DNS cache poisoning attacks, Kaminsky
attack [128] and exploiting long DNS responses [127]. Kamin-
sky attack [128] increases the chance of correctly selecting
a transaction identifier, by forcing a victim name server
to resolve numerous random domain names. An attacker
launches a name server responsible to resolve a domain name
controlled by the attacker (e.g., bad.com). When a victim
name server queries the malicious name server to resolve
the domain name, the malicious name server replies with a
response that refers the victim to random names within a
popular domain name (e.g., 1.trump.com, 2.trump.com,
3.trump.com). The victim generates new DNS queries to
resolve these domain names, and the malicious name server
sends a flood of fake DNS replies with random transaction
identifiers. Each DNS reply is an opportunity for the attacker
to poison the victim’s cache.

The fragmentation of long DNS responses can be exploited
to poison a name server’s cache [127]. Adversaries craft DNS
queries that force a name server to return long responses that
are a few thousand bytes in length. With the typical 1500
bytes for the maximum transmission unit, these responses are
fragmented into two IP packets. The first fragment contains
authentication parameters, while the second contains the result
of name resolution. Hence, an adversary can inject malicious
IP addresses in the second fragment. On the receiving end, two
fragments are reassembled only if they contain matching IP
Identifiers. Therefore, the attacker must correctly guess
this 16-bit IP Identifier for the second fragment. The

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

15

authors show that on average around a 1000 guesses lead to
a successful attack.

DNS cache poisoning is the heart of the request redirection
hijacking threat. Preventing DNS cache poisoning remedies
this threat as well. To alleviate this threat, request remapping at
edge servers can be used [42]. Next we discuss three defense
mechanisms against DNS cache poisoning, then we discuss
request remapping.

Challenge-response is a widely used approach to harden
name servers against DNS cache poisoning [129]. The re-
solver randomizes the values of some fields in requests, and
corresponding responses must contain the same values for
these fields. These fields include transaction identifier, source
ports, and name server addresses [130], [131]. By matching
randomized fields, the resolver can validate the legitimacy of
received responses. However, this approach does not com-
pletely eliminate DNS cache poisoning, as these fields are
plaintext and attackers can easily craft bogus responses [132].

To protect name servers against cache poisoning, the IETF
standardized the DNS Security Extension (DNSSEC) proto-
col [133], [134]. DNSSEC establishes a chain of trust among
name servers, which allows them to authenticate the DNS
responses. Responses must be digitally signed (i.e., using
public key encryption) to guarantee that DNS responses are
from legitimate name servers. For example, when a name
server server resolves sub.domain.com, the top level
domain name servers responsible for .com help server
verify the responses from the domain.com name servers,
which in turn assists server in authenticating the responses
of sub.domain.com. Finally, the root name servers assist
server in authenticating the .com responses. A root signing
ceremony for DNSSEC [135] guarantees the authenticity and
integrity of the root name servers.

Although some CDNs [43], [44] support DNSSEC, CDNs
have not widely used DNSSEC due to its high performance
overhead [42]. A CDN must dynamically update DNS records
for load balancing based on real-time conditions of the net-
work and the edge servers. The high computational cost of
signing dynamic DNS records make DNSSEC an unpractical
solution to secure DNS-based request routing [42].

Wildcard secure DNS [136] utilizes wildcard domain names
to harden a name server against attacks, which is more compat-
ible with existing DNS services. A name server includes a ran-
dom string in its DNS query to increase the entropy of its DNS
queries, thus making valid DNS responses difficult to guess.
Specifically, a wildcard domain (e.g., *.www.dmn.com)
includes an ‘*’, which can be replaced with a combination
of characters. Before forwarding a DNS query, a name server
inserts a random string (e.g., rand) instead of ‘*’ to the
queries domain name (e.g., rand.www.dmn.com). A valid
response must include this random string, making it difficult to
craft fake responses. To poison a corresponding DNS record,
an attacker must guess the random string in addition to the
transaction identifier.

Edge servers also can perform request remapping to allevi-
ate request redirection hijacking threat [42]. In this approach,
edge servers only serve end users with acceptable round-trip
time. On receiving a request, an edge server measures the

round-trip time. If the measured round-trip time is high, the
edge server initiates a remapping of the request to another
edge server via a specific reply (e.g., HTTP status code 3xx).
On receiving this reply, the end user must query the request
routing component again, which assigns this request to another
edge server. This request remapping can protect edge servers
from being overwhelmed due to redirection hijacking. How-
ever, it results in additional latency in serving requests, due to
the overhead of measuring the round-trip time. Moreover, it
does not eliminate the threat of nullifying end users’ requests.

Another approach is to divert and absorb traffic [137].
CDNs, such as Akamai and Incapsula divert traffic to their
scrubbing centers, where over-provisioned resources absorb
the traffic load. Furthermore, the huge infrastructure of CDNs
at the edge can be used to absorb traffic close to its origin.
More information on defense mechanisms against reflection
attacks can be found in [137]–[139].

Limiting DNS responses in rate or size is another mitigation
approach. Paul Vixie [140] propose DNS response rate limit-
ing, where authoritative name servers limit the rate of DNS
responses for the same query to the same IP block. However,
this approach can also affect legitimate DNS queries [141].
By limiting the size, a DNS response cannot exceed a specific
size, which impacts the ability of responding to DNS ANY
queries. Nevertheless, some CDN providers are willing to
deprecate ANY queries, as they can be exploited to launch
DoS attacks [142].

D. Summary

Table IV summarizes the security challenges and counter-
measures discussed in this section. As shown in Table IV,
adversaries exploit the request routing for reconnaissance,
bypassing CDN security mechanisms, and launching denial of
service attacks. They exploit vulnerabilities of request routing
implementations based on DNS and HTTP.

Request routing mechanisms are easily exploitable, while
effective countermeasures are hard to implement. For example,
legitimate requests can be easily misused to harvest CDN
IP addresses, while a CDN must disable query strings for
mitigation, affecting its flexibility in serving dynamic requests.
Moreover, standardization can remedy several security chal-
lenges due to HTTP vulnerabilities if all involved entities im-
plement them. For example, all CDNs should collaboratively
implement one of Via or CDN-Loop headers to eliminate
forwarding loop attacks.

Finally, mitigating a security challenge may introduce vul-
nerability for another security threat. A CDN can mitigate
egress blocking with higher churn rates in assigning egress
IP addresses. However, this introduces reconnaissance oppor-
tunities for adversaries to harvest more CDN IP addresses.

V. ORIGIN SERVER SECURITY CHALLENGES

In this section, we discuss the origin server security chal-
lenges and countermeasures. We start with the application
layer threats (cf., Section V-A). Hiding or isolating the IP
addresses of origin servers is essential, since attackers can
directly target origin servers with exposed addresses. We focus

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

16

Security challenge Goal Vulnerability Countermeasures

Ingress harvest [114] Reconnaissance
The randomness of
request routing Bind-split, proactive proxy migration [114]

Egress harvest
[115], [116] Reconnaissance

Supporting query strings
in HTTP requests Blocking requests with query strings [10]

HTTP smuggling [121] Security bypassing
Discrepancy of HTTP entities
in request interpreting

Filtering invalid HTTP requests, using
HTTPS, terminating client sessions
after each request [121], modify HTTP
entities to comply with RFC 7230 [123]

Multiple host
ambiguities [121] Security bypassing

Discrepancy of HTTP entities
in interpreting Host headers

Filtering invalid HTTP requests, using
HTTPS, terminating client sessions
after each request [121], modify HTTP
entities to comply with RFC 7230 [123]

HTTP forwarding loop
[122], [124] Denial of service HTTP Host header

Filtering or rate limiting on requests
with HOST headers [122], using HTTP
Via header [123] or HTTP CDN-Loop
header [125]

HTTP/2 amplification
[115] Denial of service

HTTP/2-HTTP/1.1 conversion
in a CDN

Using the same HTTP version at both
end user and origin sides [115]

Slow pre-POST
[115] Denial of service

Pre-POST behavior and
HTTP slow connections

Using a shorter timeout to receive
POST bodies at origin servers, storing
a request completely before forwarding
at edge servers [115]

Egress blocking [115] Denial of service
Low churn rate in assigning
egress IP addresses

Unpredictable strategies for egress IP
address assignment [115]

Redirection hijacking
[42] Denial of service

DNS cache poisoning
vulnerability

Response field values must match
randomized request field values [129]–[131],
DNSSEC [133], [134], wildcard DNS [136],
request remapping [42]

Table IV: Request Routing Security Challenges

on vulnerabilities that can lead to the exposure of origin server
IP addresses (cf., Section V-B). Finally, we discuss how the
configuration options of origin servers can be exploited to
circumvent restrictions that content owners enforce for content
delivery (cf., Section V-C).

A. Application Layer Threats

Web authentication depends on SSL/TLS. SSL/TLS is cou-
pled with a public key infrastructure to provide a straightfor-
ward authentication semantic—Alice has a certificate binding
Bob to a public key, and the remote entity must be Bob with
proof of knowledge regarding Bob’s private key. SSL/TLS
use a similar semantic to ensure confidentiality of messages
exchanged between Alice and Bob. Both authentication and
confidentiality are provided based on the assumption that Bob
is the only entity with knowledge of Bob’s private key.

SSL/TLS man-in-the-middle: SSL/TLS and CDNs do not
blend well together. Having edge servers in the middle of
SSL/TLS connections between end users and origin servers,
break the end-to-end confidentiality. Nevertheless, for a CDN

to inspect and act as a proxy for SSL/TLS connections, content
owners often share their private keys with CDNs [143], [144].
However, sharing of private keys violate the fundamental
security principle of keeping them secret. Furthermore, with
access to private keys an edge server essentially becomes
a man-in-the-middle, making content owners vulnerable to
eavesdropping and tampering of SSL/TLS connections, or
even impersonation.

SSL/TLS protocols enable two parties to establish a secure
end-to-end connection. In SSL/TLS communication, the client
and server end points (e.g., end user’s browser and origin
server) perform a SSL/TLS handshake using asymmetric
encryption, authenticate each other and establish a session
key. The session key is symmetric and is used to encrypt
messages exchanged between the client and server endpoints.
The confidentiality is ensured assuming that no third party can
decrypt the encrypted messages, without access to the private
and session keys of the client and server.

Existing measures to counter this threat include approaches
that do not enforce the sharing of private keys for SSL/TLS
communication. Some of them require a content owner to

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

17

share an unencrypted content with a CDN. Others dictate spe-
cific application design, which comes at the cost of complex
application development.

Approaches that do not require sharing of private
keys [145]–[147], capitalize on the fact that a private key is
only required during the SSL/TLS handshake to establish a
session key. There onwards, the session key is used to encrypt
the rest of the communication. Thus, a CDN is still able to
intervene secure SSL/TLS connections without accessing the
private keys of content owners.

To implement this, Cloudflare Keyless SSL [145] involves
an additional key server at the origin. When an end user
connects to an edge server, it sends a secret to the key server.
This secret is encrypted using the content owner’s public key.
The edge server connects to the key server and authenticates
using its certificate, and forwards the secret over an encrypted
channel. Upon receiving the secret, the key server replies to
the edge server with the decrypted secret. Using this secret,
both the end user and the edge server derive the same session
key. In Cloudflare Keyless SSL, the end user can trust the
edge server, as the key server is the only party that has the
private key to decrypt the secret. While the edge server can
only obtain the decrypted secret, after it has been authenticated
by the key server.

Cloudflare Keyless SSL eliminates the need for sharing
private keys with a CDN. However, a CDN can still learn ses-
sion keys to eavesdrop SSL/TLS connections or impersonate
content owners. Phoenix [148] uses enclaves, private regions
of memory, in a trusted execution environment provided by
Intel software guard extension (SGX) [149]. This enables
a content owner to rely on an untrusted edge server for
establishing TLS connections, without exposing private and
session keys.

Phoenix establishes TLS connections from an enclave,
where both the running code and private keys are protected
from software attacks. The integrity and confidentiality of
the code and data are ensured, even if adversaries have full
control over an underlying platform. Another enclave, called
the provisioning enclave, on an edge server retrieves private
keys from an origin server over a TLS connection, using Let’s
Encrypt [150]. Since the private keys are stored in an enclave,
the CDN does not have access to them.

Phoenix relies on Intel SGX, which is vulnerable to side
channel attacks [149], i.e., an untrusted CDN can still obtain
private or session keys. However, a side channel attack requires
physical access to edge servers. Moreover, the content owner
must trust the manufacturer of the processor that have access
to the keys. Nevertheless, the consequences of sharing private
keys with a third party manufacturer in Phoenix, can be more
severe in comparison to sharing session keys in KeyLess SSL.

Another approach is to allow end users and edge servers
to establish a SSL/TLS connection for content transmission,
without involving the origin servers. Specifically, content
owners provide services that enable end users to authenticate
edge servers [144]. At the origin, content owners run DNSSEC
with DNS TLS authentication records to pin the certificates
of content owners and the CDN. An end user can query these
records to authenticate an edge server. Thus, content owners

do not need to share their private keys with a CDN. However,
they must share their unencrypted contents with the CDN.

For untrusted CDNs, Stickler [151] and CDN-on-
demand [152] facilitate content owners to store encrypted
content with CDNs. In this case, edge servers cache contents
that are signed by the content owner. Using a script that
is provided by a content owner, an end user can retrieve,
authenticate, and decrypt contents. For scalability, an origin
server provides only the script and does not take part in de-
livering contents. This solution addresses the issue of sharing
private keys and unencrypted contents. However, modifying
the application may require additional development effort to
accordingly update the script.

B. Origin Exposure

A CDN acts as a protection shield for origin servers by
absorbing many security threats against the origin. However,
adversaries can bypass this protection and directly target origin
servers using their IP addresses [153], [154]. In this section,
we discuss security challenges that lead to the leakage of origin
server IP addresses.

1) Static origin addresses: Using static IP addresses for
origin servers make them vulnerable to exposure. When origin
servers are temporary exposed to end users, e.g., while a CDN
pauses its service for maintenance [153], [154], an adversary
can collect and retain their IP addresses. Moreover, there are
organizations [155], [156] that maintain databases of DNS
records. Adversaries can search these databases for a history
of origin domain names and their IP addresses, and exploit
static IP addresses.

Changing the IP addresses of origin servers and DNS
records can mitigate this attack. When a CDN shields origin
servers, DNS records must be changed to CDN addresses, and
new DNS records must not expose the origin addresses [157].
Origin IP addresses should be changed to differ from the IP
history collected before being protected by a CDN or during
a CDN’s temporal inactivity.

2) Services by origin servers: The IP addresses of services
that are directly provided by origin servers can expose the
origin addresses. Typically, origin servers directly serve ser-
vices, such as mail, FTP, and SSH [154], without using a
CDN. Hence, adversaries can collect origin addresses from
DNS records of these services (e.g., MX records that refer to
mail services). Content owners also use hidden sub-domains
for some services, such as SSH (e.g., ssh.owner.com).
Using a dictionary attack, an adversary can guess and query
hidden sub-domains to collect origin IP addresses.

This vulnerability can be alleviated using port forward-
ing [158]. For services that are directly served by origin
servers, content owners can use edge servers as proxies that
receive and forward requests. The DNS records associated to
these services must also point to the edge servers. Conse-
quently, edge servers first receive requests for these services
and forward them to origin servers without exposing origin IP
addresses [154].

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

18

Another approach leveraged by origin servers is to only
serve requests coming from trusted addresses. To implement
this, content owners deploy firewalls to inspect and whitelist
incoming traffic to origin servers.

3) Leakage in contents: Web contents and Pingback services
can leak the origin addresses. Vulnerable web contents include
configuration files, verbose pages, and log files. Developers
may also unintentionally leave the IP addresses of content
owners in HTML files.

An attacker can exploit Pingback services to collect origin
addresses. Using pingback, content owners check the validity
of a third party link to their contents. Upon receiving the
notification of a third party link, an origin server initiates a
connection with the third party to check the validity of this
link [154]. An attacker can extract the IP address of the origin
server from this incoming connection.

To prevent such information leakage, sensitive and source-
code files must be inspected to ensure that they do not expose
the origin server’s information. Furthermore, the access to
sensitive files should be limited. To mitigate the Pingback
vulnerability, Pingback requests can be dropped at the edge,
e.g., using a WAF [159], or origin servers can disable the
Pingback service [160].

4) Residual name resolution: Origin addresses can be leaked
during dynamic changes, when content owners switch between
pausing or termination of their services with CDNs [153]. For
services that are active, name servers operated by a CDN
redirect content requests to the CDN’s edge servers. If the
content delivery service is paused or terminated, the name
servers still retain some relevant DNS records. These DNS
records resolve requests to the origin IP addresses, instead of
edge servers, because the CDN no longer serves the requests.

A CDN can eliminate this threat if its name servers stop
responding to content requests for paused or terminated de-
livery services. However, if content owners decide to serve
contents from their own origin servers, this mitigation can
cause temporary disruptions. This is because other name
servers across the Internet cache DNS records, with relatively
long time-to-live, that still point to the name servers of the old
CDN.

Some CDNs allow a content owner to configure origin
domain names [124], [161]. Before terminating a service, the
content owner configures the old CDN to redirect requests to
a domain name belonging to the new CDN. Thus, requests
are redirected to the new CDN, while no origin IP addresses
reside in the name servers of the old CDN.

C. Origin Abuse

CDNs support a convenient set of options that enable
content owners to configure the content delivery process. For
example, the content owners can specify the content origins
(e.g., the domain names, IP addresses, and port numbers of
origin servers), caching and forwarding policies. However,
several CDNs do not validate the specified configuration (e.g.,
content owner being the actual owner of the origin servers),

allowing content owners with malicious intent to configure and
abuse CDNs [124], [161].

1) Origin address abuse: An adversary can use configuration
options for domain names and IP addresses of origin servers,
to circumvent restrictions that content owners or certain geo-
graphical locations enforce for contents. For example, some
content owners (e.g., Pandora Media and Netflix) enforce
geographical restrictions in providing their services. These
include serving contents only in some countries and providing
unique sets of content in different geographical locations.
Moreover, in certain geographical locations, some sensitive
contents are restricted.

An adversary, acting as a malicious content owner, can
bypass these restrictions by exploiting configuration options
for domain names and IP addresses of origin servers. The
adversary can configure edge servers to query origin servers
with restricted contents. Despite enforced restrictions, edge
servers can serve restricted contents to end users as they have
access to these contents on origin servers.

CDNs can eliminate this vulnerability by validating the
ownership of origin servers. For example in origin pinning
mitigation [124], a CDN requires a content owner to provide
both the IP and domain name of the origin server, and upload
a special file to it. The CDN continuously monitors this IP-
domain pair and the existence of the uploaded file. It can
terminate the service and demand a new validation process
in case of an abnormality. However, the usability of origin
pinning for content owners require in-depth investigation.
Moreover, it may open up new vulnerabilities and security
threats, due to uploading of files to origin servers.

2) Origin port abuse: The configuration of port numbers for
origin servers allow an adversary to launch stealthy port scan
and denial of service attacks against legitimate origin servers.
An adversary can configure a CDN to scan ports of origin
servers. In case of errors, the CDN generates error responses
that disclose the status of the scanned ports. Moreover, the
CDN can be configured to conduct a denial of service using
edge servers that open concurrent connections to an origin
server. The origin server becomes unresponsive if the number
of connections exceed its limit.

The mitigation approaches for origin address abuse are also
applicable against port abuse. In addition, whitelisting of the
origin port numbers can alleviate this threat.

D. Summary

Table V highlights the security challenges and countermea-
sures of this section. From the origin side, CDNs can be
considered a man-in-the-middle that can break the end-to-
end confidentiality of content transmission. Adversaries also
collect origin IP addresses from different information sources
to bypass CDNs and directly target origin servers. Moreover,
malicious content owners exploit origin configuration options,
provided by CDN, to bypass geographical content restrictions,
conduct port scanning and denial of service attacks.

Delivering SSL/TLS traffic through CDNs is still a dilemma.
Content owners must trust CDNs and share their private

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

19

Security challenge Goal Vulnerability Countermeasures

SSL/TLS man-in-the-
middle [143], [144]

Impersonation, connection
tampering and eavesdropping

Content owners sharing
private keys with a CDN

Keyless SSL [145], SSL/TLS connection
enclaves [148], Stickler [151], and
CDN-on-demand [152]

Static origin addresses
[153], [154]

Collecting origin IP
addresses to bypass CDNs

IP history and exposures
during CDN maintenance

Changing origin IP addresses on-demand
[157]

Services by origin
servers [154]

Collecting origin IP
addresses to bypass CDNs

Serving services, such as
SSH and FTP at the origin

Port forwarding at the edge [154], [158],
connection whitelisting at the origin

Leakage in contents
[154]

Collecting origin IP
addresses to bypass CDNs

Explicit data in static web
files, open access to
sensitive web files, and
Pingback exposure

Inspection of sensitive files, restricting
access to sensitive files, blocking
Pingback service [159], [160]

Residual name
resolution [153]

Collecting origin IP
addresses to bypass CDNs

Residual origin IP addresses
in CDN name servers

No DNS response for paused or
terminated services, DNS resolution to
origin domain names instead of origin
IP addresses [124], [161]

Origin address abuse
[124]

Bypassing geographical
content restrictions

No validation of origin
configurations

Validating origin ownership using origin
pinning [124]

Origin port abuse
[124]

Stealthy port scan,
denial of service

No validation of origin
configurations

Validating origin ownership using origin
pinning [124], port whitelisting

Table V: Origin Server Security Challenges

keys, or rely on mechanisms, such as KeyLess SSL, which
still enable a CDN to impersonate and tamper end-to-end
encrypted traffic with end users. On the other hand, measures
to counter origin exposure and origin abuse are successful.
Good programming and design practices can eliminate or
effectively mitigate origin exposure and abuse.

VI. FUTURE RESEARCH DIRECTIONS

We discuss current obstacles and vulnerabilities, and outline
opportunities and future research directions in this section. We
begin with emerging contents that challenge the current CDN
operation in Section VI-A. In Section VI-B, we present op-
portunities and challenges of software defined security, a new
paradigm in CDN security. Finally, we discuss opportunities
and challenges of security collaboration between the parties
involved in content delivery in Section VI-C.

A. Securing Emerging User Generated Contents

The volume and diversity of contents are increasing, making
the protection of CDNs even more challenging. Live video
delivery and user generated live contents, e.g., Skype and video
recordings from mobile devices, are generated and consumed
at the edge [162], [163]. Mobile end users will grow to 13.1
billion by 2023, and this growth changes the volume and
diversity of video content in mobile networks [164].

Delivering live video stream is challenging because it is
generated and consumed in real time. In the HTTP-based live
streaming, video is broken and encoded into multiple chunks
(e.g., 2 to 10 seconds long). The receiver end user fetches each
video chunk independently using a HTTP GET request. Live

video streams are latency sensitive, making them an attractive
target for denial of service attacks.

CDNs will serve a dynamic population of viewers, while
they are not typically optimized for such long tailed contents.
Social cascading and recommender promotions can lead to
sudden flash crowds [162]. It also makes distinguishing denial
of service attacks from flash crowds more difficult. Indeed,
unexpected flash crowds due to user generated contents are
hard to predict. The detection and mitigation of such events
demand for rich information about the network and geograph-
ical distribution of end users.

The unique characteristics of mobile networks, e.g., battery
usage of mobile devices and low bandwidth, make the pro-
tection of mobile content delivery more challenging, where
the resource efficiency of security mechanisms become a
compulsion.

B. Software Defined Security

Software Defined Networking (SDN) and Network Func-
tions Virtualization (NFV) are transforming computer net-
works. SDN decouples the network control and data planes,
where a logically centralized controller programs network
switches to route data packets. NFV decouples network func-
tions, e.g., firewalls and proxies, from underlying hardware
and implements them in software, e.g., containers and virtual
machines, that run on commodity hardware.

SDN and NFV enable more effective and flexible security
solutions compared to traditional approaches based on scrub-
bing centers (i.e., dedicated locations with physical scrubber
servers for traffic inspection) and hardware solutions. SDN and
NFV pave the way for low overhead network monitoring, more

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

20

flexible attack detection, and elastic deployment of security
functions, to name a few [165]–[171].

1) Secure edge computing: Software defined security is
more effective in securing CDNs. Edge servers are deployed
in points of presence that are typically collocation facilities
with limited power and expensive physical space [169], [172],
[173]. ISP providers deploy micro datacenters (i.e., racks
of commodity servers), radio access networks [174], and
edge clouds (i.e., cloud infrastructures in close proximity to
end users) in their networks to deliver contents and provide
infrastructure as a service to third parties [174]–[176]. High
capital expenditures for scarce physical space at the edge
incent minimizing hardware and promote softwarization. This
calls for lightweight, on-demand security functions, and their
management and orchestration at the CDN edge.

2) Quality of Protection vs. Quality of Service: Some
security mechanisms require high computational resources,
while security functions and delivery services can be co-
located, i.e., share the same physical edge server resources. For
example, DNSSEC has not been widely adopted due to high
computational costs, as discussed in Section IV-C5. Moreover,
Cloudflare deploys firewall to inspect traffic at the same server
running web proxies to serve content [177].

Sharing resources for content delivery and security purposes
entail an important tradeoff between the quality of protection
(QoP) [178] and QoS. Security configurations, such as the
number of rules in a firewall impact QoP. On the other hand,
QoS is impacted by the overhead on traffic, such as increased
delay due to security functions, making less resources avail-
able for content delivery.

In deploying security services, CDNs must balance QoP and
QoS requirements. For example, with on-demand deployment
of security services, more resources can be dedicated to
content delivery in the absence of threats [179]. Moreover,
applying heavyweight inspection on all traffic increases QoP,
while decreasing QoS by introducing high latency. To reduce
such overheads, heavyweight inspection can be applied only
to suspicious traffic [179].

C. Collaborative Security

With a lack of adequate collaboration among parties in-
volved in content delivery, vital intelligence to mitigate secu-
rity challenges is scattered across multiple parties that perform
solitary security actions. Attackers exploit this limitation to
use one party’s resources to amplify and reflect attack traffic
that overwhelm the resources of other parties (e.g., random
string denial of service and forwarding loop attacks discussed
in Section III-C1 and Section IV-C1, respectively).

1) Collaboration of CDNs and content owners: A CDN and
content owners can collaborate to more effectively detect and
mitigate attacks that exploit interactions between the CDN and
origin servers. This enables countermeasures that are jointly
performed at edge servers and origin servers.

For example, the detection of a random string attack is
easier at the origin than at the edge, while mitigation can be

performed more effectively at the edge. Origin servers can
detect this attack and inform edge servers to block malicious
IP addresses at the edge.

2) Collaboration of a CDN and ISP providers: With ISPs
collaboration, the CDN defense can be even pushed closer to
attack sources [180]. CDNs can inform an ISP network to filter
malicious traffic at its ingress points. This not only reduces
resource usages at the ISP premises, but also saves those of
the CDN and content owners. ISP networks also have access to
the edge information (e.g., real time network load information
and end user locations), which a CDN might not have access
to. A CDN can perform more effective protection by accessing
this information.

CDNs and ISPs have collaborated to improve content deliv-
ery. However, collaborative mechanisms are needed to improve
security. CDNs have deployed their servers in ISP networks
(e.g., Google Global Cache and Netflix OpenConnect [45],
[181]). Moreover, there are communication channels allowing
ISPs and CDNs to exchange request routing recommenda-
tions [182]–[185]. A CDN and network service providers can
also collaborate to jointly manage the network using SDN
abstractions [186].

3) Collaboration of CDNs: Multiple CDNs can collaborate
to bring together their scattered knowledge and resources
for more effective countermeasures against common security
threats. Smaller CDNs have collaborated to compete with
major CDNs, such as Akamai and Cloudflare [187], [188].
For example, a federated CDN, e.g., EdgeCast, combines
CDNs of multiple network service providers to deliver con-
tents through multiple ISP networks [189]–[191]. Moreover,
Content Delivery Interaction defines solutions to issues arising
in collaboration, e.g., in delivery pricing, consistent service
level agreements, and monitoring [187], [188].

Improving security requires collaboration in different lev-
els from standardization to operation. As discussed in Sec-
tion IV-C1, major CDNs have recently collaborated in a stan-
dardization effort to mitigate the common threat of forwarding
loop attacks [125]. However, it is the first step, and mitigation
is effective only if all CDNs implement this extension.

4) Collaboration incentivisation: A party involved in con-
tent delivery embraces collaboration that is in its benefit.
For example, protecting edge servers incentivise a CDN to
collaborate with another CDN in mitigating a forwarding loop
attack that targets both CDNs. However, another party may
have no obvious incentives to collaborate with a CDN, while
the collaboration is still in benefit of the CDN. For example, an
end user might not be interested to peer with another end user
to deliver content, while this could alleviate the load of a CDN
that is under denial of service attack.

Incentivisation strategies are required to motivate other
parties to collaborate with a CDN to improve CDN secu-
rity. Blockchain is promising to create secure incentivisation.
Blockchains have been used to create monetary incentives in
content delivery, where a peer proves delivery of content and
receives payment in cryptocurrency from content owners and
CDN providers [192].

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 21

VII. CONCLUSION

CDNs provide an infrastructure to deliver Internet contents
to end users and ensure content availability. However, CDNs
are vulnerable to security threats that affect CDN services and
end user experience. Adversaries can also weaponize CDN
resources to launch more sophisticated attacks against end
users and origin servers.

This paper provides a comprehensive survey of CDN se-
curity. Specifically, we categorized CDN security challenges
based on its infrastructure components, discussed their attack
detection and mitigation approaches, and presented our in-
sights and promising directions for future research. We hope
that this survey will provide a better understanding of CDN
security challenges and pave the way for future research in
this direction.

REFERENCES

[1] T. Barnett, S. Jain, U. Andra, and T. Khurana, Cisco
visual networking index (VNI) complete forecast up-
date, 2017–2022, https://bit.ly/2KvbhWL, 2018.

[2] Cisco Systems, Cisco visual networking index: Fore-
cast and trends, 2017–2022 – white paper, https : / /
davidellis.ca/wp-content/uploads/2019/05/cisco-vni-
feb2019.pdf, 2019.

[3] Mordor Intelligence, Content delivery network (cdn)
market - growth, trends, and forecast (2020 - 2025),
https://www.mordorintelligence.com/industry-reports/
content-delivery-market, 2019.

[4] Cloudflare, How cloud are’s architecture can scale to
stop the largest attacks, https://bit.ly/2VpvXpC, 2017.

[5] Akamai, Akamai’s [state of the internet] / security q3
2016 report, https://bit.ly/2Kn2N44.

[6] C. Cimpanu, Cpdos attack can poison cdns to deliver
error pages instead of legitimate sites, https://zd.net/
34Pturk, 2019.

[7] Cimpanu, Catalin, Web cache deception attacks still
impact websites with substantial user populations,
https://zd.net/2KlyydI, 2019.

[8] A. TECHNEWS, Cpdos attack can poison cdns to
deliver error pages instead of legitimate sites, https:
//bit.ly/2VmMhr1, 2019.

[9] Z. Doffman, Russia and china ‘hijack’ your internet
traffic: Here’s what you do, https : / / bit . ly / 3brjcAn,
2020.

[10] S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Con-
tent delivery networks: Protection or threat?”, in Eu-
ropean Symposium on Research in Computer Security,
Springer, 2009, pp. 371–389.

[11] O. Gil, Web cache deception attack, https : / / bit . ly /
3bvPb2s, 2017.

[12] A. Vakali and G. Pallis, “Content delivery networks:
Status and trends”, IEEE Internet Computing, vol. 7,
no. 6, pp. 68–74, Nov. 2003.

[13] M. PATHAN, “A taxonomy of cdns”, Content Delivery
Netowrks, LNEE, vol. 9, 2008.

[14] Z. Lu, Y. Wang, and Y. R. Yang, “An analysis and
comparison of cdn-p2p-hybrid content delivery sys-
tem and model”, JOURNAL OF COMMUNICATIONS
(JCM), 2012.

[15] N. Anjum, D. Karamshuk, M. Shikh-Bahaei, and N.
Sastry, “Survey on peer-assisted content delivery net-
works”, Comput. Netw., vol. 116, no. C, pp. 79–95,
Apr. 2017.

[16] B. Zolfaghari, G. Srivastava, S. Roy, H. R. Nemati,
F. Afghah, T. Koshiba, A. Razi, K. Bibak, P. Mitra,
and B. K. Rai, “Content delivery networks: State of
the art, trends, and future roadmap”, ACM Comput.
Surv., vol. 53, no. 2, Apr. 2020.

[17] B. Frank, I. Poese, G. Smaragdakis, A. Feldmann,
B. M. Maggs, S. Uhlig, V. Aggarwal, and F. Schneider,
“Collaboration opportunities for content delivery and
network infrastructures”, ACM SIGCOMM ebook on
Recent Advances in Networking, vol. 1, Aug. 2013.

[18] Q. Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, “The
collaboration for content delivery and network infras-
tructures: A survey”, IEEE Access, vol. 5, pp. 18 088–
18 106, 2017.

[19] A. Passarella, “A survey on content-centric technolo-
gies for the current internet: Cdn and p2p solutions”,
Computer Communications, vol. 35, no. 1, pp. 1–32,
2012.

[20] G. Peng, “CDN: content distribution network”, CoRR,
vol. cs.NI/0411069, 2004.

[21] J. Sahoo, M. A. Salahuddin, R. Glitho, H. Elbiaze,
and W. Ajib, “A survey on replica server place-
ment algorithms for content delivery networks”, IEEE
Communications Surveys & Tutorials, vol. 19, no. 2,
pp. 1002–1026, 2016.

[22] M. A. Salahuddin, J. Sahoo, R. Glitho, H. Elbiaze, and
W. Ajib, “A survey on content placement algorithms
for cloud-based content delivery networks”, IEEE Ac-
cess, vol. 6, pp. 91–114, 2018.

[23] G. Carofiglio, G. Morabito, L. Muscariello, I. Solis,
and M. Varvello, “From content delivery today to
information centric networking”, Computer Networks,
vol. 57, no. 16, pp. 3116–3127, 2013, Information
Centric Networking.

[24] I. Lazar and W. Terrill, “Exploring content delivery
networking”, IT Professional, vol. 3, no. 4, pp. 47–49,
Jul. 2001.

[25] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai
network: A platform for high-performance internet
applications”, SIGOPS Oper. Syst. Rev., vol. 44, no.
3, pp. 2–19, Aug. 2010.

[26] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson, “Cooperative caching: Using remote client
memory to improve file system performance”, in Pro-
ceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI ’94,
Monterey, California: USENIX Association, 1994.

[27] N. Bartolini, E. Casalicchio, and S. Tucci, “A walk
through content delivery networks”, in Performance
Tools and Applications to Networked Systems: Revised

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 22

Tutorial Lectures. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 1–25.

[28] E. Kosonen, “Video content delivery over the internet;
videosisällön jakelu internetin välityksellä”, en, G2
Pro gradu, diplomityö, Aalto University School of
Electrical Engineering, 2016, pp. 49+9.

[29] Apache, Traffic server components, https : / / bit . ly /
3boWbhf, 2020.

[30] NGINX, Cache placement strategies for nginx and
nginx plus, https://bit.ly/2VokoyH, 2016.

[31] S. Podlipnig and L. Böszörmenyi, “A survey of web
cache replacement strategies”, ACM Comput. Surv.,
vol. 35, no. 4, pp. 374–398, Dec. 2003.

[32] M. H. Kabir, E. G. Manning, and G. C. Shoja,
“Request-routing trends and techniques in content dis-
tribution network”, in Proceedings of the International
Conference on Computing and Information Technolo-
gies (ICCIT02), 2002.

[33] F. Wang, J. Liu, M. Chen, and H. Wang, “Migra-
tion towards cloud-assisted live media streaming”,
IEEE/ACM Transactions on networking, vol. 24, no.
1, pp. 272–282, 2014.

[34] M. A. Salahuddin, H. Elbiaze, W. Ajib, and R. Glitho,
“Social network analysis inspired content placement
with QoS in cloud based content delivery networks”,
in IEEE Global Communications Conference, 2015,
pp. 1–6.

[35] C. Papagianni, A. Leivadeas, and S. Papavassiliou,
“A cloud-oriented content delivery network paradigm:
Modeling and assessment”, IEEE Transactions on
Dependable and Secure Computing, vol. 10, no. 5,
pp. 287–300, 2013.

[36] N. Carlsson, D. Eager, A. Gopinathan, and Z. Li,
“Caching and optimized request routing in cloud-based
content delivery systems”, Performance Evaluation,
vol. 79, pp. 38–55, 2014.

[37] X. Guan and B.-Y. Choi, “Push or pull? toward opti-
mal content delivery using cloud storage”, Journal of
Network and Computer Applications, vol. 40, pp. 234–
243, 2014.

[38] M. Tsimelzon, B. Weihl, J. Chung, D. Frantz, J.
Brasso, C. Newton, M. Hale, L. Jacobs, and C.
O’Connell, Esi language specification 1.0. world wide
web consortium (w3c), https://www.w3.org/TR/esi-
lang, 2016.

[39] T. Li and R. Atkinson, “Intermediate system to inter-
mediate system (is-is) cryptographic authentication”,
RFC Editor, RFC 3567, Jul. 2003, pp. 1–6.

[40] A. Barbir, B. Cain, R. Nair, and O. Spatscheck,
“Known content network (cn) request-routing mech-
anisms”, RFC Editor, RFC 3568, Jul. 2003, pp. 1–19.

[41] C.-S. Yang and M.-Y. Luo, “Efficient support for
content-based routing in web server clusters”, in Pro-
ceedings of the 2Nd Conference on USENIX Sympo-
sium on Internet Technologies and Systems - Volume
2, ser. USITS’99, Boulder, Colorado: USENIX Asso-
ciation, 1999, pp. 20–20.

[42] S. Hao, Y. Zhang, H. Wang, and A. Stavrou, “End-
users get maneuvered: Empirical analysis of redi-
rection hijacking in content delivery networks”, in
27th USENIX Security Symposium (USENIX Secu-
rity 18), Baltimore, MD: USENIX Association, 2018,
pp. 1129–1145.

[43] Cloudflare, Universal dnssec: Secure your domain
against dns vulnerabilities, for free. https : / / bit . ly /
3aqV9QK,

[44] Akamai, What is dnssec?, https://bit.ly/34P9wx4,
[45] Netflix, Netflix open connect, https : / / openconnect .

netflix.com.
[46] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M.

Munafo, and S. Rao, “Dissecting video server selection
strategies in the youtube cdn”, in 2011 31st Interna-
tional Conference on Distributed Computing Systems,
Jun. 2011, pp. 248–257.

[47] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Hei-
demann, and R. Govindan, “Mapping the expansion
of google’s serving infrastructure”, in Proceedings of
the 2013 Conference on Internet Measurement Con-
ference, ser. IMC ’13, Barcelona, Spain: ACM, 2013,
pp. 313–326.

[48] Akamai, Request router: A software-based routing
and redirection service within a comprehensive cdn
solution, https://goo.gl/mMPV69, 2014.

[49] A. Flavel, P. Mani, D. Maltz, N. Holt, J. Liu, Y.
Chen, and O. Surmachev, “Fastroute: A scalable load-
aware anycast routing architecture for modern cdns”,
in 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), Oakland, CA:
USENIX Association, 2015, pp. 381–394.

[50] I. Bermudez, S. Traverso, M. Mellia, and M. Munafò,
“Exploring the cloud from passive measurements: The
amazon aws case”, in 2013 Proceedings IEEE INFO-
COM, Apr. 2013, pp. 230–234.

[51] Velocix, Velocix content delivery network, https : / /
velocix.com.

[52] L. Networks, Origin storage: The next level of delivery
optimization, https://bit.ly/2VLc8b1, 2014.

[53] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B.
Raghavan, and J. Wilcox, “Information-centric net-
working: Seeing the forest for the trees”, in Proceed-
ings of the 10th ACM Workshop on Hot Topics in
Networks, ser. HotNets-X, Cambridge, Massachusetts:
Association for Computing Machinery, 2011.

[54] E. G. AbdAllah, H. S. Hassanein, and M. Zulkernine,
“A survey of security attacks in information-centric
networking”, IEEE Communications Surveys & Tuto-
rials, vol. 17, no. 3, pp. 1441–1454, 2015.

[55] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Se-
curity, privacy, and access control in information-
centric networking: A survey”, IEEE Communications
Surveys Tutorials, vol. 20, no. 1, pp. 566–600, Jan.
2018.

[56] R. Johari and P. Sharma, “A survey on web ap-
plication vulnerabilities (sqlia, xss) exploitation and
security engine for sql injection”, in 2012 International

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 23

Conference on Communication Systems and Network
Technologies, May 2012, pp. 453–458.

[57] V. K. Malviya, S. Saurav, and A. Gupta, “On security
issues in web applications through cross site scripting
(xss)”, in 2013 20th Asia-Pacific Software Engineering
Conference (APSEC), vol. 1, Dec. 2013, pp. 583–588.

[58] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D.
Song, “Towards a formal foundation of web security”,
in 2010 23rd IEEE Computer Security Foundations
Symposium, Jul. 2010, pp. 290–304.

[59] J. Fonseca, N. Seixas, M. Vieira, and H. Madeira,
“Analysis of field data on web security vulnerabili-
ties”, IEEE Transactions on Dependable and Secure
Computing, vol. 11, no. 2, pp. 89–100, Mar. 2014.

[60] L. Wang, K. S. Park, R. Pang, V. Pai, and L. Peter-
son, “Reliability and security in the codeen content
distribution network”, in Proceedings of the Annual
Conference on USENIX Annual Technical Conference,
ser. ATEC ’04, Boston, MA: USENIX Association,
2004, p. 14.

[61] A. Cruz and A. Singh, Cloudflare’s protection against
a new remote code execution vulnerability (cve-2019-
16759) in vbulletin, https://bit.ly/3dBc6e8.

[62] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S.
Guarnieri, “Andromeda: Accurate and scalable secu-
rity analysis of web applications”, in Fundamental
Approaches to Software Engineering, V. Cortellessa
and D. Varró, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 210–225.

[63] IBM, Ibm security appscan standard: Scan and ana-
lyze results, https://ibm.co/2RTB1jI, 2020.

[64] Limelight, Limelight web application firewall, https :
//bit.ly/2VIzY7f.

[65] B. Cohen, Alibaba cloud mobile security service is
an online mobile application security service that
protects applications from potential risks, threats and
vulnerabilities. https://bit.ly/3ml8Oie.

[66] Imperva, Web application firewall (waf) — application
security — incapsula, https://bit.ly/3cD0GoT.

[67] Fastly, Ddos mitigation and protection, https://bit.ly/
2VITu3I.

[68] Imperva, Imperva incapsula ddos protection, https://
bit.ly/3brfcj8, 2020.

[69] S. Prandl, M. Lazarescu, and D.-S. Pham, “A study
of web application firewall solutions”, in Informa-
tion Systems Security, S. Jajoda and C. Mazumdar,
Eds., Cham: Springer International Publishing, 2015,
pp. 501–510.

[70] O. Foundation, Owasp, https://www.owasp.org/.
[71] OWASP, Owasp top ten, https : / / owasp . org / www -

project-top-ten/, Accessed: 2020-04-02.
[72] R. Bendrath and M. Mueller, “The end of the net

as we know it? deep packet inspection and internet
governance”, New Media & Society, vol. 13, no. 7,
pp. 1142–1160, 2011.

[73] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N.
Weaver, and V. Paxson, “Beyond the radio: Illuminat-
ing the higher layers of mobile networks”, in Proceed-

ings of the 13th Annual International Conference on
Mobile Systems, Applications, and Services, ser. Mo-
biSys ’15, Florence, Italy: Association for Computing
Machinery, 2015, pp. 375–387.

[74] J. Jarmoc and D. Unit, “Ssl/tls interception proxies and
transitive trust”, Black Hat Europe, 2012.

[75] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunen-
berger, M. Mellia, M. Munafò, K. Papagiannaki, and P.
Steenkiste, “The cost of the “s” in https”, in Proceed-
ings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies,
ser. CoNEXT ’14, Sydney, Australia: Association for
Computing Machinery, 2014, pp. 133–140.

[76] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A
survey of methods for encrypted traffic classification
and analysis”, Netw., vol. 25, no. 5, pp. 355–374, Sep.
2015.

[77] P. V. Amoli and T. Hämäläinen, “A real time unsu-
pervised nids for detecting unknown and encrypted
network attacks in high speed network”, in 2013 IEEE
International Workshop on Measurements Networking
(M N), Oct. 2013, pp. 149–154.

[78] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy,
“Blindbox: Deep packet inspection over encrypted
traffic”, SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 213–226, Aug. 2015.

[79] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikun-
tanathan, and N. Zeldovich, “Reusable garbled circuits
and succinct functional encryption”, in Proceedings of
the Forty-Fifth Annual ACM Symposium on Theory
of Computing, ser. STOC ’13, Palo Alto, California,
USA: Association for Computing Machinery, 2013,
pp. 555–564.

[80] C. Gentry, “Fully homomorphic encryption using ideal
lattices”, in Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, ser. STOC
’09, Bethesda, MD, USA: Association for Computing
Machinery, 2009, pp. 169–178.

[81] Y. Gao, L. Deng, A. Kuzmanovic, and Y. Chen, “In-
ternet cache pollution attacks and countermeasures”,
in Proceedings of the Proceedings of the 2006 IEEE
International Conference on Network Protocols, ser.
ICNP ’06, Washington, DC, USA: IEEE Computer
Society, 2006, pp. 54–64.

[82] M. Aiello, M. Mongelli, and G. Papaleo, “Basic classi-
fiers for dns tunneling detection”, in 2013 IEEE Sym-
posium on Computers and Communications (ISCC),
Jul. 2013, pp. 000 880–000 885.

[83] A. Klein, “Web cache poisoning attacks”, in Ency-
clopedia of Cryptography and Security. Boston, MA:
Springer US, 2011, pp. 1373–1373.

[84] S. A. Mirheidari, S. Arshad, K. Onarlioglu, B. Crispo,
E. Kirda, and W. Robertson, “Cached and confused:
Web cache deception in the wild”, in In Proceedings
of the 2020 Network and Distributed System Security
Symposium, NDSS, 2020.

[85] K.-H. Cheung, Web cache deception attack revisited,
https://goo.gl/KHdeaj, 2018.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 24

[86] B. Brown, On web cache deception attacks, https:/ /
goo.gl/HSeYNg, 2017.

[87] I. Mubarok, K. Lee, S. Lee, and H. Lee, “Lightweight
resource management for ddos traffic isolation in a
cloud environment”, in ICT Systems Security and
Privacy Protection: 29th IFIP TC 11 International
Conference, SEC 2014, Marrakech, Morocco, June
2-4, 2014. Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2014, pp. 44–51.

[88] L. Deng, Y. Gao, Y. Chen, and A. Kuzmanovic, “Pollu-
tion attacks and defenses for internet caching systems”,
Computer Networks, vol. 52, no. 5, pp. 935–956, 2008.

[89] V. Manivel, M. Ahamad, and H. Venkateswaran, “At-
tack resistant cache replacement for survivable ser-
vices”, in Proceedings of the 2003 ACM Workshop on
Survivable and Self-regenerative Systems: In Associ-
ation with 10th ACM Conference on Computer and
Communications Security, ser. SSRS ’03, Fairfax, VA:
ACM, 2003, pp. 64–71.

[90] H. Park, I. Widjaja, and H. Lee, “Detection of cache
pollution attacks using randomness checks”, in 2012
IEEE International Conference on Communications
(ICC), Jun. 2012, pp. 1096–1100.

[91] J. Kettle, Practical web cache poisoning, https://bit.
ly/39nCTab.

[92] J. Levine, How cloudflare protects customers from
cache poisoning, https://bit.ly/2JzopKd, 2018.

[93] J. Liebow-Feeser, Understanding our cache and the
web cache deception attack, https://bit.ly/3cbmw3n,
2017.

[94] M. McDowell, Understanding denial-of-service at-
tacks, https://goo.gl/WCfNMT, 2013.

[95] H. V. Nguyen, L. L. Iacono, and H. Federrath, “Your
cache has fallen: Cache-poisoned denial-of-service at-
tack”, in Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security,
ser. CCS ’19, London, United Kingdom: Association
for Computing Machinery, 2019, pp. 1915–1936.

[96] Akamai, Cpdos poisoning attack, https : / / bit . ly /
2vEqcu4, 2019.

[97] R. Lalkaka, Cloudflare response to cpdos exploits,
https://bit.ly/2U4Tnzy, 2019.

[98] R. Fielding and J. Reschke, “Hypertext transfer pro-
tocol (http/1.1): Semantics and content”, RFC Editor,
RFC 7231, Jun. 2014, pp. 1–101.

[99] Y. Wang, Y. Shen, X. Jiao, T. Zhang, X. Si, A. Salem,
and J. Liu, “Exploiting content delivery networks for
covert channel communications”, Computer Commu-
nications, vol. 99, pp. 84–92, 2017.

[100] Y. Desmedt, “Covert channels”, in Encyclopedia of
Cryptography and Security. Boston, MA: Springer US,
2011, pp. 265–266.

[101] E. Union, General data protection regulation, https :
//gdpr-info.eu, 2016.

[102] California Legislature, State of California, Ab-375 pri-
vacy: Personal information: Businesses (2017-2018),
https://leginfo.legislature.ca.gov/faces/billTextClient.
xhtml?bill id=201720180AB375, 2018.

[103] L. Grangeia, “Dns cache snooping”, Independent,
Tech. Rep., 2004.

[104] S. Son and V. Shmatikov, “The hitchhiker’s guide
to dns cache poisoning”, in Security and Privacy in
Communication Networks, S. Jajodia and J. Zhou,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 466–483.

[105] Imperva, Dns flood, https://bit.ly/2XS9Qtx.
[106] M. Lepinski and S. Kent, “An infrastructure to support

secure internet routing”, RFC Editor, RFC 6480, Feb.
2012, pp. 1–24.

[107] S. Kent, C. Lynn, and K. Seo, “Secure border gateway
protocol (s-bgp)”, IEEE Journal on Selected Areas in
Communications, vol. 18, no. 4, pp. 582–592, 2000.

[108] F. Zou, S. Zhang, B. Pei, L. Pan, L. Li, and J. Li,
“Survey on domain name system security”, in 2016
IEEE First International Conference on Data Science
in Cyberspace (DSC), Jun. 2016, pp. 602–607.

[109] H. Shulman and M. Waidner, “Towards security of
internet naming infrastructure”, in Computer Secu-
rity – ESORICS 2015: 20th European Symposium
on Research in Computer Security, Vienna, Austria,
September 21-25, 2015, Proceedings, Part I. Cham:
Springer International Publishing, 2015, pp. 3–22.

[110] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba,
and B. Mathieu, “A survey of naming and routing in
information-centric networks”, IEEE Communications
Magazine, vol. 50, no. 12, pp. 44–53, Dec. 2012.

[111] K. Butler, T. R. Farley, P. McDaniel, and J. Rexford,
“A survey of bgp security issues and solutions”, Pro-
ceedings of the IEEE, vol. 98, no. 1, pp. 100–122,
2010.

[112] G. Huston, M. Rossi, and G. Armitage, “Securing bgp
— a literature survey”, IEEE Communications Surveys
Tutorials, vol. 13, no. 2, pp. 199–222, 2011.

[113] A. Mitseva, A. Panchenko, and T. Engel, “The state
of affairs in bgp security: A survey of attacks and de-
fenses”, Computer Communications, vol. 124, pp. 45–
60, 2018.

[114] S. Venkatesan, M. Albanese, K. Amin, S. Jajodia, and
M. Wright, “A moving target defense approach to mit-
igate ddos attacks against proxy-based architectures”,
in 2016 IEEE Conference on Communications and
Network Security (CNS), 2016, pp. 198–206.

[115] R. Guo, W. Li, B. Liu, S. Hao, J. Zhang, H. Duan,
K. Sheng, J. Chen, and Y. Liu, “Cdn judo: Breaking the
cdn dos protection with itself”, in Proceedings of the
Network and Distributed System Security Symposium
(NDSS), Internet Society, 2020.

[116] L. Jin, S. Hao, H. Wang, and C. Cotton, “Unveil the
hidden presence: Characterizing the backend interface
of content delivery networks”, in 2019 IEEE 27th In-
ternational Conference on Network Protocols (ICNP),
2019, pp. 1–11.

[117] Fastly, Fastly ip address ranges, https://api.fastly.com/
public-ip-list, 2020.

[118] Cloudflare, Cloudflare ip ranges, https : / / www .
cloudflare.com/ips/, 2020.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 25

[119] Cloudfront, Cloudfront ip address ranges, https://ip-
ranges.amazonaws.com/ip-ranges.json, 2020.

[120] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire
attack”, in 2013 IEEE Symposium on Security and
Privacy, 2013, pp. 127–141.

[121] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and
V. Paxson, “Host of troubles: Multiple host ambiguities
in http implementations”, in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Com-
munications Security, ser. CCS ’16, Vienna, Austria:
ACM, 2016, pp. 1516–1527.

[122] J. Chen, J. Jiang, X. Zheng, H. Duan, J. Liang, K.
Lik, T. Wan, and V. Paxson, “Forwarding loop attacks
in content delivery networks”, in the 23st Annual
Network and Distributed System Security Symposium,
2016.

[123] R. Fielding and J. Reschke, “Hypertext transfer pro-
tocol (http/1.1): Message syntax and routing”, RFC
Editor, RFC 7230, Jun. 2014, http://www.rfc-editor.
org/rfc/rfc7230.txt.

[124] R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan,
T. Wan, J. Jiang, S. Hao, and Y. Jia, “Abusing cdns
for fun and profit: Security issues in cdns’ origin
validation”, in 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), Oct. 2018, pp. 1–10.

[125] S. Ludin, M. Nottingham, and N. Sullivan, “Loop
detection in content delivery networks (cdns)”, RFC
Editor, RFC 8586, Apr. 2019, pp. 1–6.

[126] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krish-
namurthy, “Your state is not mine: A closer look at
evading stateful internet censorship”, in Proceedings
of the 2017 Internet Measurement Conference, ser.
IMC ’17, London, United Kingdom: Association for
Computing Machinery, 2017, pp. 114–127.

[127] A. Herzberg and H. Shulman, “Fragmentation consid-
ered poisonous, or: One-domain-to-rule-them-all.org”,
in 2013 IEEE Conference on Communications and
Network Security (CNS), Oct. 2013, pp. 224–232.

[128] N. Alexiou, S. Basagiannis, P. Katsaros, T. Dashpande,
and S. A. Smolka, “Formal analysis of the kaminsky
dns cache-poisoning attack using probabilistic model
checking”, in 2010 IEEE 12th International Sympo-
sium on High Assurance Systems Engineering, Nov.
2010, pp. 94–103.

[129] A. Hubert and R. van Mook, “Measures for making
dns more resilient against forged answers”, RFC Edi-
tor, RFC 5452, Jan. 2009, pp. 1–18.

[130] R. Elz and R. Bush, “Clarifications to the dns specifi-
cation”, RFC Editor, RFC 2181, Jul. 1997.

[131] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W.
Lee, “Increased dns forgery resistance through 0x20-
bit encoding: Security via leet queries”, in Proceed-
ings of the 15th ACM Conference on Computer and
Communications Security, ser. CCS ’08, Alexandria,
Virginia, USA: ACM, 2008, pp. 211–222.

[132] H. Shulman and M. Waidner, “Fragmentation con-
sidered leaking: Port inference for dns poisoning”,
in Applied Cryptography and Network Security, I.

Boureanu, P. Owesarski, and S. Vaudenay, Eds., Cham:
Springer International Publishing, 2014, pp. 531–548.

[133] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose, “Dns security introduction and requirements”,
RFC Editor, RFC 4033, May 2005, http://www.rfc-
editor.org/rfc/rfc4033.txt.

[134] A. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose, “Protocol modifications for the dns security
extensions”, RFC Editor, RFC 4035, Mar. 2005, pp. 1–
53.

[135] I. A. N. Authority, Root ksk ceremonies, https://www.
iana.org/dnssec/ceremonies, 2020.

[136] R. Perdisci, M. Antonakakis, X. Luo, and W. Lee,
“Wsec dns: Protecting recursive dns resolvers from
poisoning attacks”, in 2009 IEEE/IFIP International
Conference on Dependable Systems Networks, Jun.
2009, pp. 3–12.

[137] M. Geva, A. Herzberg, and Y. Gev, “Bandwidth dis-
tributed denial of service: Attacks and defenses”, IEEE
Security Privacy, vol. 12, no. 1, pp. 54–61, Jan. 2014.

[138] F. J. Ryba, M. Orlinski, M. Wählisch, C. Rossow,
and T. C. Schmidt, “Amplification and drdos attack
defense - A survey and new perspectives”, CoRR, vol.
abs/1505.07892, 2015.

[139] M. Aiello, M. Mongelli, and G. Papaleo, “Dns tunnel-
ing detection through statistical fingerprints of protocol
messages and machine learning”, Int. J. Commun.
Syst., vol. 28, no. 14, pp. 1987–2002, Sep. 2015.

[140] E. Winstead, “DNS response rate limiting”, in LISA
2014, Seattle, WA: USENIX Association, Nov. 2014.

[141] R. van Rijswijk-Deij, A. Sperotto, and A. Pras,
“Dnssec and its potential for ddos attacks: A com-
prehensive measurement study”, in Proceedings of the
2014 Conference on Internet Measurement Confer-
ence, ser. IMC ’14, Vancouver, BC, Canada: ACM,
2014, pp. 449–460.

[142] M. Majkowski and O. Guomundsson, Deprecating the
dns any meta-query type, https : / / bit . ly / 2VmrdRn,
2015.

[143] F. Cangialosi, T. Chung, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, and C. Wilson, “Measurement and
analysis of private key sharing in the https ecosystem”,
in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS
’16, Vienna, Austria: Association for Computing Ma-
chinery, 2016, pp. 628–640.

[144] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J.
Wu, “When https meets cdn: A case of authentication
in delegated service”, in 2014 IEEE Symposium on
Security and Privacy, May 2014, pp. 67–82.

[145] N. Sullivan, Keyless ssl: The nitty gritty technical
details, https://bit.ly/2VJBvKl, 2014.

[146] D. Migault, “LURK Protocol for TLS/DTLS1.2 ver-
sion 1.0”, Internet Engineering Task Force, Internet-
Draft draft-mglt-lurk-tls-01, Mar. 2017, Work in
Progress, 30 pp.

[147] D. Migault, K. J. Ma, R. Salz, S. Mishra, and O. G. de
Dios, “LURK TLS/DTLS Use Cases”, Internet Engi-

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

REFERENCES 26

neering Task Force, Internet-Draft draft-mglt-lurk-tls-
use-cases-02, Jun. 2016, Work in Progress, 13 pp.

[148] S. Herwig, C. Garman, and D. Levin, “Achieving
keyless cdns with conclaves”, in 29th USENIX Secu-
rity Symposium (USENIX Security 20), Boston, MA:
USENIX Association, Aug. 2020.

[149] V. Costan and S. Devadas, “Intel sgx explained”, IACR
Cryptology ePrint Archive, vol. 2016, p. 86, 2016.

[150] LetsEncrypt, Let’s encrypt is a free, automated, and
open certificate authority. https://letsencrypt.org.

[151] A. Levy, H. Corrigan-Gibbs, and D. Boneh, “Stickler:
Defending Against Malicious CDNs in an Unmodified
Browser”, ArXiv e-prints, Jun. 2015. arXiv: 1506 .
04110 [cs.CR].

[152] Y. Gilad, A. Herzberg, M. Sudkovitch, and M. Gob-
erman, “Cdn-on-demand: An affordable ddos defense
via untrusted clouds”, in 2016 Network and Dis-
tributed Systems Symposium, 2016.

[153] L. Jin, S. Hao, H. Wang, and C. Cotton, “Your remnant
tells secret: Residual resolution in ddos protection ser-
vices”, in 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), Jun. 2018, pp. 362–373.

[154] T. Vissers, T. Van Goethem, W. Joosen, and N.
Nikiforakis, “Maneuvering around clouds: Bypassing
cloud-based security providers”, in Proceedings of
the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15, Denver,
Colorado, USA: ACM, 2015, pp. 1530–1541.

[155] SecurityTrails, The world’s largest repository of his-
torical dns data, https://securitytrails.com/dns-trails.

[156] C. DNS, Dns history - largest archive of dns records -
domain history, https://completedns.com/dns-history.

[157] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and
W. Powell, “Catch me if you can: A cloud-enabled
ddos defense”, in 2014 44th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and
Networks, Jun. 2014, pp. 264–275.

[158] T. Ylonen and C. Lonvick, “The secure shell (ssh)
connection protocol”, RFC Editor, RFC 4254, Jan.
2006, pp. 1–24.

[159] T. Butler, Analysis of a wordpress pingback ddos
attack, https://bit.ly/2VL9OAP, 2016.

[160] G. Shatz, Wordpress default leaves millions of sites
exploitable for ddos attacks, https://bit.ly/2VIRQz4,
2013.

[161] M. Prince, Introducing cname flattening: Rfc-
compliant cnames at a domain’s root, https :
//bit.ly/2XFiPz8, 2014.

[162] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S.
Seshan, and H. Zhang, “Practical, real-time centralized
control for cdn-based live video delivery”, in Proceed-
ings of the 2015 ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM ’15,
London, United Kingdom: ACM, 2015, pp. 311–324.

[163] Q. Fan, H. Yin, G. Min, P. Yang, Y. Luo, Y. Lyu,
H. Huang, and L. Jiao, “Video delivery networks:
Challenges, solutions and future directions”, Comput-

ers and Electrical Engineering, vol. 66, pp. 332–341,
2018.

[164] Cisco, Cisco annual internet report (2018–2023) white
paper, https://bit.ly/2VOW486, 2020.

[165] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi,
R. Ahmed, and R. Boutaba, “Elastic virtual network
function placement”, in 2015 IEEE 4th International
Conference on Cloud Networking (CloudNet), Oct.
2015, pp. 255–260.

[166] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl,
X. Gao, A. Anand, T. Benson, A. Akella, and V. Sekar,
“Stratos: A network-aware orchestration layer for mid-
dleboxes in the cloud”, CoRR, vol. abs/1305.0209,
2013. arXiv: 1305.0209.

[167] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bai-
ley, “Bohatei: Flexible and elastic ddos defense”, in
24th USENIX Security Symposium (USENIX Security
15), Washington, D.C.: USENIX Association, 2015,
pp. 817–832.

[168] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda, M.
Pourzandi, and R. Boutaba, “A security orchestration
system for cdn edge servers”, in 2018 IEEE Confer-
ence on Network Softwarization (NetSoft), Jun. 2018.

[169] B. Schlinker, H. Kim, T. Cui, E. Katz-Bassett, H. V.
Madhyastha, I. Cunha, J. Quinn, S. Hasan, P. La-
pukhov, and H. Zeng, “Engineering egress with edge
fabric: Steering oceans of content to the world”, in
Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIG-
COMM ’17, Los Angeles, CA, USA: ACM, 2017,
pp. 418–431.

[170] K.-K. Yap, M. Motiwala, J. Rahe, S. Padgett, M. Hol-
liman, G. Baldus, M. Hines, T. Kim, A. Narayanan, A.
Jain, V. Lin, C. Rice, B. Rogan, A. Singh, B. Tanaka,
M. Verma, P. Sood, M. Tariq, M. Tierney, D. Trumic,
V. Valancius, C. Ying, M. Kallahalla, B. Koley, and
A. Vahdat, “Taking the edge off with espresso: Scale,
reliability and programmability for global internet
peering”, in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, ser.
SIGCOMM ’17, Los Angeles, CA, USA: ACM, 2017,
pp. 432–445.

[171] R. Braga, E. Mota, and A. Passito, “Lightweight
ddos flooding attack detection using nox/openflow”,
in IEEE Local Computer Network Conference, Oct.
2010, pp. 408–415.

[172] J. T. Araujo, L. Saino, L. Buytenhek, and R. Landa,
“Balancing on the edge: Transport affinity with-
out network state”, in 15th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 18), Renton, WA: USENIX Association, 2018,
pp. 111–124.

[173] zayo, Datacenter and collocation, https : / / bit . ly /
34TCH1K, 2020.

[174] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V.
Young, “Mobile edge computing—a key technology
towards 5g”, ETSI White Paper, 2015.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

27

[175] S. Kuenzer, A. A. Ivanov, F. Manco, J. J. Mendes,
Y. Volchkov, F. Schmidt, K. Yasukata, M. Honda, and
F. Huici, “Unikernels everywhere: The case for elastic
cdns”, in VEE, 2017.

[176] L. Hardesty, At&t integrated cloud to include 105 data
centers by year’s end, https://bit.ly/2KksH8D, 2016.

[177] J. Graham-Cumming, No scrubs: The architecture that
made unmetered mitigation possible, https : / / bit . ly /
2W1Y5OF, 2017.

[178] Y. Sun and A. Kumar, “Quality-of-Protection (QoP):
A Quantitative Methodology to Grade Security Ser-
vices”, in International Conference on Distributed
Computing Systems Workshops, 2008, pp. 394–399.

[179] E. Jalalpour, M. Ghaznavi, D. Migault, S. Preda,
M. Pourzandi, and R. Boutaba, “Dynamic security
orchestration for cdn edge-servers”, in 2018 IEEE
Conference on Network Softwarization (NetSoft), Jun.
2018.

[180] J. François, I. Aib, and R. Boutaba, “Firecol: A collab-
orative protection network for the detection of flooding
ddos attacks”, IEEE/ACM Trans. Netw., vol. 20, no. 6,
pp. 1828–1841, Dec. 2012.

[181] Google, Google global cache program, http : / /
ggcadmin.google.com/ggc, 2020.

[182] I. Poese, B. Frank, B. Ager, G. Smaragdakis, and
A. Feldmann, “Improving content delivery using
provider-aided distance information”, in Proceedings
of the 10th ACM SIGCOMM Conference on Internet
Measurement, ser. IMC ’10, Melbourne, Australia:
ACM, 2010, pp. 22–34.

[183] R. Alimi, R. Penno, Y. Yang, S. Kiesel, S. Previdi, W.
Roome, S. Shalunov, and R. Woundy, “Application-
layer traffic optimization (alto) protocol”, RFC Editor,
RFC 7285, Sep. 2014, pp. 1–91.

[184] H. Xie, Y. R. Yang, A. Krishnamurthy, Y. G. Liu,
and A. Silberschatz, “P4p: Provider portal for appli-
cations”, in Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication, ser. SIGCOMM
’08, Seattle, WA, USA: Association for Computing
Machinery, 2008, pp. 351–362.

[185] E. Pujol, I. Poese, J. Zerwas, G. Smaragdakis, and
A. Feldmann, “Steering hyper-giants’ traffic at scale”,
in Proceedings of the 15th International Conference on
Emerging Networking Experiments And Technologies,
ser. CoNEXT ’19, Orlando, Florida: Association for
Computing Machinery, 2019, pp. 82–95.

[186] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan,
B. Schlinker, N. Feamster, J. Rexford, S. Shenker,
R. Clark, and E. Katz-Bassett, “Sdx: A software de-
fined internet exchange”, in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14,
Chicago, Illinois, USA: ACM, 2014, pp. 551–562.

[187] B. Niven-Jenkins, F. L. Faucheur, and N. Bitar, “Con-
tent distribution network interconnection (cdni) prob-
lem statement”, RFC Editor, RFC 6707, Sep. 2012,
pp. 1–32.

[188] J. Seedorf, J. Peterson, S. Previdi, R. van Brandenburg,
and K. Ma, “Content delivery network interconnection

(cdni) request routing: Footprint and capabilities se-
mantics”, RFC Editor, RFC 8008, Dec. 2016, pp. 1–31.

[189] J. Yao, H. Zhou, J. Luo, X. Liu, and H. Guan, “Comic:
Cost optimization for internet content multihoming”,
IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 26, no. 7, pp. 1851–1860, Jul. 2015.

[190] H. H. Liu, Y. Wang, Y. R. Yang, H. Wang, and C.
Tian, “Optimizing cost and performance for content
multihoming”, in Proceedings of the ACM SIGCOMM
2012 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communication,
ser. SIGCOMM ’12, Helsinki, Finland: ACM, 2012,
pp. 371–382.

[191] J. Broberg, R. Buyya, and Z. Tari, “Metacdn: Har-
nessing ‘storage clouds’ for high performance content
delivery”, Journal of Network and Computer Appli-
cations, vol. 32, no. 5, pp. 1012–1022, 2009, Next
Generation Content Networks.

[192] P. Goyal, R. Netravali, M. Alizadeh, and H. Balakrish-
nan, “Secure incentivization for decentralized content
delivery”, in 2nd USENIX Workshop on Hot Topics in
Edge Computing (HotEdge 19), Renton, WA: USENIX
Association, Jul. 2019.

Milad Ghaznavi received the PhD degree in com-
puter science from the University of Waterloo,
Canada in 2020. His research interests include dis-
tributed systems and computer networks. He is a
recipient of David R. Cheriton Graduate Scholarship
at the University of Waterloo.

Elaheh Jalalpour graduated from Master’s of Com-
puter Science at the University of Waterloo in 2018.
Her research interest includes applied machine learn-
ing. She received Microsoft Azure Champ Prize at
the University of Toronto in 2019. She was a finalist
as a member of the SafeTrip team in Microsoft
Imagine Cup in 2019.

Mohammad A. Salahuddin received the M.Sc. and
Ph.D. degrees in Computer Science from Western
Michigan University in 2003 and 2014, respectively.
He was a Postdoctoral Researcher with the Uni-
versité du Québec à Montréal and University of
Waterloo, and a Visiting Scientist with Concordia
University. He is currently a Research Assistant
Professor of Computer Science at the University of
Waterloo. His research interests include the Internet
of Things, content delivery networks, network soft-
warization, network security, machine learning, and

cognitive network management. He serves as a TPC member for international
conferences and is a reviewer for various journals and magazines.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

1553-877X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3093492, IEEE
Communications Surveys & Tutorials

28

Raouf Boutaba received the M.Sc. and Ph.D. de-
grees in computer science from Sorbonne University
in 1990 and 1994, respectively. He is currently a
University Chair Professor and the Director of the
David R. Cheriton School of Computer science at
the University of Waterloo (Canada). He also holds
an INRIA International Chair in France. He is the
founding Editor-in-Chief of the IEEE Transactions
on Network and Service Management (2007-2010)
and the current Editor-in-Chief of the IEEE Journal
on Selected Areas in Communications. He is a fel-

low of the IEEE, the Engineering Institute of Canada, the Canadian Academy
of Engineering, and the Royal Society of Canada.

Daniel Migault is a member of the Ericsson Re-
search Security team. He is actively involved in
standardizing security protocols at the IETF. He
received the PhD degree in Telecom and Security
from TELECOM SudParis, France in 2012.

Stere Preda is a Senior Researcher in Security at
Ericsson, Canada. He received his PhD in computer
science from TELECOM Bretagne, France. His cur-
rent research focus is Network Function Virtualiza-
tion (NFV) security. He is an active contributor to
ETSI NFV security standardization.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:50:17 UTC from IEEE Xplore. Restrictions apply.

