
1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

Chronos: DDoS Attack Detection using Time-based
Autoencoder

Mohammad A. Salahuddin∗, Vahid Pourahmadi∗†, Hyame Assem Alameddine∗‡,
Md. Faizul Bari∗§, and Raouf Boutaba∗

∗David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
†Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

‡Ericsson Security Research, Montreal, Quebec, Canada
§Spectrum Software and Consulting, Dhaka, Bangladesh

Abstract—Cognitive network management is becoming
quintessential to realize autonomic networking. However, the
wide spread adoption of the Internet of Things (IoT) devices,
increases the risk of cyber attacks. Adversaries can exploit
vulnerabilities in IoT devices, which can be harnessed to launch
massive Distributed Denial of Service (DDoS) attacks. Therefore,
intelligent security mechanisms are needed to harden network
security against these threats. In this paper, we propose Chronos,
a novel time-based anomaly detection system. The anomaly
detector, primarily an Autoencoder, leverages time-based features
over multiple time windows to efficiently detect anomalous DDoS
traffic. We develop a threshold selection heuristic that maximizes
the F1-score across various DDoS attacks. Further, we compare
the performance of Chronos against state-of-the-art approaches.
We show that Chronos marginally outperforms another time-
based system using a less complex anomaly detection pipeline,
while out classing flow-based approaches with superior precision.
In addition, We showcase the robustness of Chronos in the face
of zero-day attacks, noise in training data, and a small number of
training packets, asserting its suitability for online deployment.

Index Terms—Security management, distributed denial of
service, anomaly detection, autoencoder

I. INTRODUCTION

Cybercrime is expected to cause $10.5 trillion USD in
global losses by 2025 [1]. In fact, cybercriminals are taking
advantage of the wide spread adoption of the Internet of
Things (IoT) devices. These IoT devices often lack sophis-
ticated security mechanisms, and can be compromised to
launch Distributed Denial of Service (DDoS) attacks. A recent
study estimated an average of 5,200 attacks per month on
IoT devices [2]. Indeed, this necessitates intelligent security
mechanisms [3] to protect networks against cyber threats.

DDoS attacks can deplete network resources by increasing
the network traffic, and thus, prevent legitimate users from
accessing the network. Therefore, detecting DDoS attacks
is quintessential to protect the network from severe revenue
losses [4], [5]. Anomaly detection is widely used to identify
DDoS attacks. It pertains to profiling the normal network
traffic, and identifying any deviation from the norm as an
anomaly [6]. Therefore, anomaly detection not only identifies
known DDoS attacks but also zero-day attacks, which cannot
be identified by using an already known attack signature [7].
However, detecting deviations is challenging, as the boundary

between anomalous and normal traffic is often non-precise and
malicious actions can be tailored to appear benign [6].

Machine Learning (ML) is an ideal tool to establish the
normal behavior of a protected network [8], and facilitate
cognitive security management. ML techniques are primarily
supervised, or unsupervised. Supervised ML techniques [9],
[10] provide high precision [11], but require labels that clearly
identify all benign and anomalous traffic. As labels are usually
hard to obtain [6], [12], unsupervised ML techniques are most
typically used for outlier detection [11]–[15]. They overcome
the need for labels by assuming that the behavior of the benign
traffic is different from that of the anomalous traffic [6], [12],
[16]. The properties of the anomalous traffic are then used to
detect the deviating (i.e., outlier) class.

Neural networks learn complex, non-linear relationships in
data. This facilitates superior performance in comparison to
classic ML algorithms, which suffer from high false alarms
on large datasets [5], [15]. Autoencoder, a neural network, has
been widely adopted for unsupervised anomaly detection. It is
composed of: (i) an encoder that compresses the input data
into a latent low-dimensional space, and (ii) a decoder that
decompresses the compressed data to reconstruct the original
input [12], [13]. Hence, the Autoencoder reconstructs the
input, while minimizing the reconstruction error. In anomaly
detection, the Autoencoder is trained on traffic that is assumed
to be benign, at least in majority. This allows the Autoencoder
to successfully reconstruct benign traffic with low error, while
associating larger reconstruction error with anomalous traffic.

This paper is an extension of our work in [17]. We leverage
an Autoencoder to develop Chronos. Chronos is a novel
time-based anomaly detection system, which is trained on
aggregated time-based features that are extracted from packets
observed over varying time-windows. We extensively evaluate
the impact of time-windows in characterizing different DDoS
attacks by leveraging time-based features. We show that time-
based features outperform flow-based statistical features that
have been extensively used in the literature for anomaly
detection, and discuss the shortcomings of the latter. We
perform extensive evaluations on the CICDDoS2019 dataset
[18]. Our main contributions are:
• We develop Chronos, a novel time-based anomaly detection

system that leverages an Autoencoder, trained using time-

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

based features, for DDoS attack detection. The time-based
features depict statistical information for a subset of packets
collected over a specific period or time-window.

• We propose a threshold selection heuristic that maximizes
F1-score. Though a threshold is required to differentiate
benign and anomalous traffic, it may undermine Autoen-
coder performance for some DDoS attacks, i.e., the selected
threshold may not be optimal for all DDoS attacks. There-
fore, we use the Receiver Operating Characteristic (ROC)
curves to highlight the efficacy of Chronos, independent of
a specific threshold.

• We explore the impact of multiple time-windows and their
aggregations on the performance of detecting anomalous
DDoS traffic. We show that a single time-window is insuf-
ficient to capture the holistic behavior of benign traffic. In
contrast, aggregating across only two window sizes result in
superior Autoencoder performance, marginally outperform-
ing the state-of-the-art in [15] using a rather simple, less
complex anomaly detection pipeline.

• We showcase the robustness of Chronos to zero-day attacks,
which we primarily attribute to the time-based features. We
reason the slightly inferior performance of PortMap against
other attacks by visualizing a lower order representation
of the time-based features for PortMap, which shows a
significant overlap with benign packets. This is in stark
contrast to other DDoS attacks.

• We evaluate the sensitivity of the Autoencoder to noisy
training data, i.e., benign training packets contaminated
with attack packets. Indeed, as the noise increases, the
Autoencoder performance deteriorates. We attribute this to
model overfitting, and leverage regularization techniques to
alleviate the impact of noise in training data. We also show
the effectiveness of the Autoencoder on partial training data
(i.e., a small number of packets) with corresponding time-
based features, making it suitable for deployment in an
online setting with limited data.

• We compare the time-based features against state-of-the art
flow-based features. We leverage flow-based features from
CICFlowMeter [19] and choose the feature subsets that are
inspired from [5] and [20]. Regardless of the flow-based
feature subset, the Autoencoder performance is impaired for
most attacks, with a lackluster precision. This undermines
the suitability of the Autoencoder using flow-based features
to detect anomalies with respect to various DDoS attacks.
The rest of the paper is organized as follows. Section II

provides a literature review and discusses the novelty of our
work in comparison to the state-of-the-art. In Section III, we
expose Chronos and its building blocks. The CICDDoS2019
dataset and data pre-processing is discussed in Section IV.
Our extensive experimental results and analysis are presented
in Section V. In Section VI, we conclude with a brief summary
and instigate future research direction.

II. LITERATURE REVIEW

Numerous works in the literature have explored ML tech-
niques for anomaly detection. In the following, we review

the closely related works and highlight the novelty of our
contributions.

A. Machine learning for intrusion detection

Doshi et al. [9] study DDoS attack detection in an IoT envi-
ronment. They evaluate 5 classification algorithms, including
K-nearest neighbors (KNN), Support Vector Machine with
linear kernel (L-SVM), Decision Tree (DT), Random Forest
(RF), and Neural Network (NN). The authors employ stateless
features that are derived from flow characteristics of individual
packets, along with stateful statistical features collected over
a time-window of 10 seconds. Their work is limited to only
detecting three types of DDoS attacks, i.e., TCP SYN, UDP
flood and HTTP GET flood attacks.

Sarraf et al. [10] use the CICIDS2017 dataset to train a
DT and a L-SVM for DDoS attack detection. Sharafaldin et
al. [18] generate the CICDDoS2019 dataset that encompasses
13 different DDoS attacks. They evaluate the performance of
4 classic ML techniques, including Iterative Dichotomiser 3
(ID3), RF, Naı̈ve Bayes, and logistic regression using flow-
based statistical features that are extracted using CICFlowMe-
ter. However, their results show poor detection performance
with respect to F1-score (cf., Section V-B).

Using the aforementioned CICDDoS2019 dataset and flow-
based features, Elsayed et al. [5] develop an intrusion detec-
tion system against DDoS attacks in an SDN environment,
which is based on Recurrent Neural Network (RNN) with
an autoencoder. Jia et al. [20] propose FlowGuard for the
detection, identification and mitigation of IoT DDoS attacks.
The authors employ a Long-Short Term Memory (LSTM)
model for DDoS attack detection using flow-based features.
They also develop a Convolutional Neural Network (CNN)
for DDoS attack classification. All the above works consider
supervised learning techniques, which require labeled network
traffic that is difficult to obtain [6], [12].

As the number of available labeled samples is usually small,
semi-supervised learning has been employed. Idhammad et
al. [21] develop a sequential semi-supervised ML approach
for DDoS attack detection. The authors leverage unsupervised
and time sliding window approach for detecting anomalous
traffic using co-clustering algorithm, entropy estimation and
information gain ratio. They use supervised ensemble ML
classifiers with the Extra-Tree algorithm for classification of
anomalous traffic. Gao et al. [22] present a fuzziness-based
semi-supervised learning approach via ensemble learning for
network intrusion detection. The authors combine a fuzziness-
based method to mine the hidden structure of unlabeled
data, while leveraging a supervised learning approach via an
ensemble of the Classification And Regression Tree (CART)
to classify labeled data. Similar to supervised learning, semi-
supervised learning depends on the availability of a partially
labeled dataset, which is difficult to obtain.

To overcome the supervised and semi-supervised learning
shortcomings, unsupervised learning has been employed. Choi
et al. [13] leverage the NSL-KDD dataset to train and test dif-
ferent architectures of Autoencoder. They develop a heuristic

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

to determine a threshold of reconstruction error and report
that their unsupervised anomaly detection technique outper-
forms other clustering algorithms. Yang et al. [12] develop
an Autoencoder with using sub-flow features to reduce the
response time in detecting DDoS attacks. Their Autoencoder
performs better than other classic ML algorithms. Villalobos et
al. [23] present a distributed and collaborative architecture for
online high rate DDoS attack detection and mitigation. Their
architecture leverages an in-memory distributed graph data
structure along with unsupervised ML algorithms, such as K-
Means for DDoS attack detection. However, most works that
leverage unsupervised learning employ flow-based features,
which can only detect a subset of network attacks as they
are oblivious to packet-level information [24]–[26].

Mirsky et al. [15] propose Kitsune that leverages statistical
temporal features for different time-windows to capture the
behavior of a packet’s channel (i.e., conversation). Kitsune is
a plug-and-play network intrusion detection system designed
to be light weight, for deployment on any low memory and
processing capacity network device, such as a router. It adopts
an online, unsupervised intrusion detection approach based on
an ensemble of Autoencoders that consist of training a set
of Autoencoders on clustered statistical features of a defined
size. The authors show that Kitsune performs better than other
ML algorithms, such as Gaussian Mixture Models (GMM) and
PcStream2. Nonetheless, designing Kitsune to be light weight
limits Autoencoder size and the exploration of more complex
architectures. Furthermore, the authors consider aggregated
features across different time-windows, without detailing their
choice of the time-windows in the aggregation.

Other works [27]–[30] that consider the notion of time for
anomaly detection address the problem using univariate and
multivariate time-series. These works aim to detect anomalies
in future time-steps based on previous observations, using
numerous ML algorithms, such as LSTM [27], variational Au-
toencoder [28], RNN [29], graph neural networks [30], among
others. The authors do not leverage or evaluate the impact of
time-based features that are generated by aggregating statistics
across different time-windows for detecting various anomalous
DDoS traffic.

B. Novelty of our work

Motivated by the above works, we analyze the impact of
flow-based features on detecting multiple DDoS attacks using
the Autoencoder. We show that a flow-based Autoencoder fails
to provide satisfactory detection performance for all DDoS
attacks in the CICDDoS2019 dataset. Using flow-based fea-
tures inspired from [5], [20] results in a high number of false
alarms across all DDoS attacks, undermining the suitability
of flow-based features for anomaly detection. Therefore, we
explore the impact of time-based features, similar to those
used in Kitsune [15], for detecting DDoS attacks. We perform
a fine-grained analysis on the impact of individual time-
windows, while Kitsune only shows the impact of a fixed
time-window aggregation across five time-windows. Based on
the Autoencoder performance for individual time-windows, we

choose and evaluate the performance of different time-window
aggregations. We show that aggregating across a small number
(i.e., only two) time-windows and a simpler anomaly detection
pipeline, Chronos marginally outperforms the state-of-the-art.
Furthermore, the time-based features significantly outperform
the flow-based features in anomaly detection across all attacks.

Kitsune [15] considers an ensemble approach, named Kit-
Net, which consists of an ensemble of Autoencoders, each
trained on a subset of features over aggregated time-windows.
Unlike KitNet that is designed for detecting anomalies in
a constrained environment (e.g., IoT gateways), we evaluate
the performance of Chronos using a time-based, complex
Autoencoder that supports correlation among a larger set
of features in an unconstrained environment (e.g., network
edge servers). Nevertheless, we compare the performance of
Chronos against KitNet using the CICDDoS2019 dataset. In
fact, we investigate the performance of KitNet on new types of
DDoS attacks. We show that Chronos performs slightly better
than KitNet across various DDoS attacks. We also discuss the
pros and cons of both approaches.

III. CHRONOS: TIME-BASED ANOMALY DETECTION
SYSTEM

A. Overview

We develop Chronos, a time-based anomaly detection sys-
tem that monitors network traffic and detects any deviation
from the normal behavior as an anomaly. The detection is
achieved via a neural network, primarily an Autoencoder.
Chronos accounts for training and execution modes. During
the training mode, the Autoencoder learns normal network
behavior. When in execution mode, the trained Autoencoder
applies its learning to detect anomalies. To better explain
Chronos, our time-based anomaly detection system, Fig. 1
presents a flow diagram detailing its different building blocks.

The presented system is composed of a network monitoring
tool, such as Wireshark [31], which monitors network traffic
and collects raw packet data during normal network operation.
When in training mode, the collected packets represent benign
data summarized in a PCAP file (cf., Fig. 1). The PCAP file
is then parsed by TShark [32], a network protocol analyzer.
The TShark packet parser receives raw binary, parses the
packets and extracts meta information (e.g., source/destination
IP, port numbers, frame length, etc.) into a TSV file. The meta
information is fed to a feature extractor [15], to extract time-
based features, based on a set of provided time-windows. The
extracted features are stored in a CSV file and provided as
input to the Autoencoder. Hence, the Autoencoder is trained
on benign data expressed by the provided time-based features.

Once trained, the Autoencoder can be used to detect anoma-
lies during network operation. Similar to the training phase,
raw packets are collected, parsed and pre-processed to extract
time-based features, while considering the same time-windows
used during the training phase. During the execution phase,
the goal of the trained Autoencoder is to provide a low
reconstruction error when the received data is similar to what it
has been trained on (i.e., benign data). Hence, we expect the

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

Fig. 1: Chronos: Time-based anomaly detection system

Autoencoder to fail in accurately reconstructing the unseen
anomalous data, leading to a high reconstruction error and
detection of anomalies. However, it is important to note that
the Autoencoder may not always perform well in the face of
anomalous data, especially when the training data is noisy
[33], which we showcase in Section V-C7 and alleviate its
impact. More details on feature extraction and the Autoencoder
are provided in the following subsections.

B. Feature selection and extraction

As Chronos is highly dependant on learning network traffic
patterns, it is crucial to represent these patterns accurately and
enhance the detection accuracy of our system. This translates
into selecting and extracting a set of features that depict
the observed traffic [15]. Many schemes have been used to
represent network traffic, including:
• Flow-based features represent statistical values that describe

the set of packets within a flow. Examples of such features
include, but are not limited to, packet count, average packet
size, inter-packet arrival times, etc. CICFlowMeter is one of
the well-known tools for generating flow-based features. It
generates 85 features per flow.

• Packet-based features are more fine-grained than flow-based
features as they describe each packet in the network. Exam-
ples of such features include, but are not limited to, packet
size, source IP, destination IP, etc.

Flow-based features have been widely used in the literature,
as discussed in Section II. However, they fail to facilitate the
ML models in achieving satisfactory anomaly detection per-
formance for numerous DDoS attacks, as shown in Section V.
Packet-based features describe each packet. However, they fail
to capture the context and a packet’s relationship with other
packets in the network.

Therefore, the authors of Kitsune [15] discuss the impor-
tance of temporal statistical features in detecting anomalies.
They explain that a sudden increase in jitter may indicate that
the traffic, which seems legitimate, is generated by a man-
in-the-middle attack. Such an increase can not be reflected
by flow-based nor non-temporal features. Hence, the authors
develop a feature extraction tool for statistical time-based
features from packets exchanged during a time-window. A
time-window is defined as a specific time period. For each
arriving packet, Kitsune’s feature extractor generates 20 traffic
statistics for each of the provided time-window. For instance,
considering a time-window of 10 ms, for a packet P captured

Fig. 2: Time-windows and feature extraction over different
packet aggregation levels

at time t, Kitsune’s feature extractor first constructs the fol-
lowing sets using the packets captured from time t to t+ 10,
as shown in Fig. 2:

• All packets originating from the same IP and MAC of P
• All packets originating from the same IP of P
• All packets with the same source and destination IPs of P
• All packets with the same source and destination sockets of
P

For each of these aggregation levels, the feature extractor
computes a few statistics, such as mean, standard error, and
correlations of bandwidth of the outbound traffic, bandwidth
of the outbound and inbound traffic together, packet rate of
the outbound traffic, and inter-packet delays of the outbound
traffic. Having the features for packet P , the feature extractor
considers the next captured packet and repeats the above steps
to generate the corresponding features for that packet. The
feature extractor of Kitsune uses incremental statistics main-
tained over a damped window, i.e., an incremental statistic can
be deleted when its dampening weight becomes zero, to save
additional memory [15].

We adopt Kitsune’s feature extractor to evaluate the im-
pact of different time-windows along with aggregated time-
based features (i.e., features from multiple time-windows, e.g.,
10sec and 1sec, denoted w=10sec, 1sec), to detect anomalies

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

Fig. 3: Autoencoder with 3 hidden layers and 7 input/output
neurons

corresponding to DDoS attacks. It is worth mentioning that
time-based features can be generated under different network
conditions in an online or offline scenario using PCAP files
(as in this work) or through network probes. They represent
statistical information over a subset of packets, similar to flow-
based features that account for all the packets in a flow [34],
[35]. In Section V, we showcase the efficacy of temporal
features in detecting anomalies for various DDoS attacks,
which result in high false alarms using flow-based features.

C. Autoencoder for anomaly detection

We leverage the extracted time-based features to train a
neural network, primarily an Autoencoder, to learn the benign
network traffic behavior.

1) Overview: As briefly discussed in Section I, an Au-
toencoder tries to map the input data to a lower dimension,
such that the resulting lower order representation remains rich
enough to reproduce the input data. More specifically, an
Autoencoder is composed of different layers [5]:
• An input layer with size (i.e., number of neurons) equal to

the number of input features.
• One or multiple hidden layers of different sizes that encode

and decode the input features. Typically, the encoding hid-
den layers have smaller dimensions than the number of input
features. The encoded features are reconstructed in reverse
through the decoding hidden layers with dimensions that are
typically the reverse of the encoding layers.

• An output layer with the same size as the input layer,
representing the reconstructed features.

The size and the number of layers of an Autoencoder define its
architecture. Fig. 3 represents an Autoencoder with 3 hidden
layers and 7 input neurons.

2) Architecture: The number of hidden layers and the
number of neurons in each hidden layer, play a crucial role
in the performance of an Autoencoder. A deeper Autoencoder
may not necessarily be better, as a higher number of param-
eters could negatively impact convergence time. Furthermore,
too many parameters increase network complexity and can
introduce high randomness in the learning process, preventing

the model from converging to the optimal minimum. On the
contrary, too few neurons in the bottleneck layer, may not
capture the characteristics of the input features. Hence, it is
important to select the appropriate architecture for our time-
based anomaly detector that can realize an acceptable conver-
gence time, while providing acceptable detection performance.

3) Reconstruction error and anomaly detection: To better
explain the functionality of our time-based anomaly detector,
we consider an Autoencoder with a bottleneck layer (i.e., code
in Fig. 3) of size z. The input data x ∈ RN , where RN is a N
dimensional set of real numbers, passes through the encoder
with parameters We to produce the corresponding mapping
y ∈ Rz , which is used by the decoder with parameters Wd to
reconstruct the input data. The reconstructed data (i.e., output)
is represented by x̂ ∈ RN . Having training data of size M , in
each training step, the Autoencoder uses Stochastic Gradient
Descent (SGD) to update the model parameters, such that
it minimizes the reconstruction error, i.e., the Mean Squared
Error (MSE) (1) in our case, between x and x̂. The MSE is
given as:

MSE =
1

MN

M∑
i=1

N∑
j=1

(xi[j]− x̂i[j])
2, (1)

where N is the size of the input features and xi[j] represents
the jth feature of data sample xi.

With the reconstruction error loss function, the Autoencoder
learns a good lower order mapping that can be used to
reconstruct the input data [36]. By observing the samples in
the training dataset over numerous epochs, the Autoencoder
provides a low MSE when tested using a data similar to the
one it was trained on. In contrast, if the test data expresses
different behavior from the training data, there is a high chance
that the Autoencoder will provide a large MSE between x and
x̂. Thus, considering this behavior, we feed the Autoencoder
with benign traffic, to train it to efficiently detect anomalies.

D. Reconstruction error threshold selection

Recall that our time-based anomaly detector, trained in
an unsupervised manner (i.e., using unlabeled data), aims
at minimizing the reconstruction error (i.e., MSE). A high
value of the reconstruction error depicts a divergence from
the normal behavior. To identify such divergence, a thresh-
old must be selected, such that, if the reconstruction error
for an input instance is above the threshold, the input is
deemed anomalous. However, it is non-trivial to select this
threshold. A naı̈ve approach may select the largest training
reconstruction error as the threshold. However, the training
dataset may contain benign outliers that result in abnormally
high reconstruction losses. A very high threshold would result
in high false negatives (i.e., low recall) and missing attacks.
In contrast, a very low threshold would cause a lot of false
alarms, negatively impacting precision. In both cases, the
performance of the Autoencoder is significantly degraded. F1-
score, ideally 1, takes both false negatives and false positives

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

into consideration. Hence, in Chronos, we select the threshold
that maximizes the F1-score.

To select the threshold, we reserve a small portion of the
test dataset, called optimization dataset (cf., Section IV). Then,
we take the benign instances in the optimization dataset and
generate their reconstruction errors. Note that there may be
outliers with abnormally high reconstruction errors, as before.
Therefore, naı̈vely selecting the highest reconstruction error as
the threshold could jeopardize the Autoencoder performance.
Instead, we sort the reconstruction errors in descending order,
and iterate over the highest α% of the reconstruction errors in
steps of α/β, where α and β corresponding to the search depth
and granularity, respectively. We select the corresponding
reconstruction error as the current threshold and predict on
the optimization dataset. At each iteration, we compute the F1-
score for the predictions. After exhausting all the thresholds,
we select the one that results in the highest F1-score as the
optimal threshold for the Autoencoder. The pseudo-code for
our threshold selection heuristic is shown in Algorithm 1.

Algorithm 1 Reconstruction error threshold selection
Input: α, β, model, dataset, labels
Output: optimal threshold

1: optimal threshold← optimal f1← −∞
2: mse← model.predict(dataset).mse()
3: benign mse← mse.get benign mse().sort()
4: for each i in range(0, β, α/β) do
5: threshold← benign mse[benign mse.len()− i]
6: predicted labels← get labels(mse, threshold)
7: f1← get f1(labels, predicted labels)
8: if optimal f1 < f1 then
9: optimal threshold← threshold

10: optimal f1← f1
11: end if
12: end for
13: return optimal threshold

Indeed, this requires a small labeled dataset. However, it
does not undermine Autoencoder performance for zero-day
attacks. As shown in Section V-C5, labels for known attacks
across both attack types (i.e., reflection- and exploitation-based
attacks), are sufficient to detect unknown attacks (i.e., attacks
not used during threshold selection) that belong to the same
attack types.

IV. DATASET PREPARATION

A. CICDDoS2019 dataset

We leverage the CICDDoS2019 dataset, which includes dif-
ferent DDoS attacks, carried out via application layer protocols
over TCP/UDP. The dataset contains both raw packets of net-
work traffic in PCAP format and flow-based features in CSV
format, extracted using CICFlowMeter (used in flow-based
evaluation). The data is captured during two days, on January
12th between 10:30 and 17:15 and on March 13th between
09:40 and 17:35. Multiple reflection- and exploitation-based

TABLE I: The timing of attacks in the CICDDoS2019 dataset

Type Attack Time

Reflection-based

LDAP March 11th, 10:21 - 10:30
MSSQL January 12th, 11:36 - 11:45
NetBIOS January 12th, 11:50 - 12:00
PortMap March 11th, 9:43 - 9:51
SNMP January 12th, 12:12 - 12:23
SSDP January 12th, 12:27 - 12:37
TFTP January 12th, 13:35 - 17:15

Exploitation-based
UDP January 12th, 12:45 - 13:09
UDPLag January 12th, 13:11 - 13:15
SYN January 12th, 13:29 - 13:34

TABLE II: Test dataset statistics

Attacks Benign Packets (#) Attack Packets (#)
LDAP 889 463,928
MSSQL 2,186 4,997,914
NetBIOS 14,291 1,582,576
PortMap 130,249 380,815
SNMP 1,910 4,998,090
SSDP 12,993 4,987,006
TFTP 13,447 4,986,553
UDP 15,390 4,984,610
UDPLag 3,166 3,123,705
SYN 4,863 3,775,195

DDoS attacks are performed at different times, with ones we
evaluate shown in Table I.

B. Data pre-processing

Our time-based anomaly detection Autoencoder is trained
on benign traffic and tested on attacks. For this reason, we
pre-process the CICDDoS2019 dataset’s PCAP files. We first
create a training dataset of benign packets, by extracting the
data collected between 10:30 and 11:36 on January 12th and
disregarding all the attack packets collected during this period.
We further add to the created benign dataset, all benign packets
collected during different time frames when no attacks were
performed (e.g., January 12th from 11:46 till 11:49). There are
a total of 243,708 packets in the benign dataset. In order to test
the detection performance of the Autoencoder, we construct a
separate test dataset for each of the 10 attacks that are shown
in Table I. The test files, that we refer to as attack files, contain
both benign and attack packets.

We use the IP address of the attack network to label the
packets. Any packet that has the source or destination IP of the
attack network is considered an attack packet, while others are
benign. We have limited the size of each attack file to 5 million
packets. The number of packets considered in each test file are
presented in Table II. Furthermore, we randomly extract 1% of
the packets from each attack file for the optimization dataset
to select the reconstruction error threshold (cf., Section III-D).
From Table II, we note an imbalance between the benign and
attack packets in the test files. This is primarily because these
files are based on the attack time frames, i.e., when the attack
is performed. Therefore, the number of captured attack packets
are larger than the number of benign ones.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

V. EXPERIMENTS

We carry out extensive experiments to evaluate the per-
formance of our time-based anomaly detection system, i.e.,
Chronos, compared to the flow-based approach. Both solutions
leverage an Autoencoder that is trained and tested on the
CICDDoS2019 dataset. The presented Autoencoders learn
from different features reflecting statistical information about
benign packets or flows for the time-based and flow-based
anomaly detection, respectively. The Autoencoder must be re-
trained and/or the threshold must be re-selected, whenever a
performance degradation is noticed (e.g., uncovering a high
number of false positives). Note that identified anomalies must
be further investigated by a security expert, or other methods
(e.g., using ML classifier [20]) that can identify the attack type
and facilitate the subsequent stage of attack mitigation (e.g.,
using reinforcement learning [37]).

In this section, we start by presenting the environment setup
for experiments and the metrics employed for evaluation. This
is followed by experiments on anomaly detection using time-
based features, which includes: (i) justification for the choice
of Autoencoder in Chronos, (ii) threshold selection using
Algorithm 1, (iii) impact of different time-windows and their
aggregations, (iv) comparison of Chronos to a state-of-the-art
time-based system [15], (v) robustness to zero-days attacks,
(vi) influence of limited training data, and (vii) effectiveness
in the face of noise in training data. We conclude with a
comparison of the time-based Autoencoder in Chronos to flow-
based approaches [5], [20].

A. Environment setup

We perform our evaluation on a virtual machine (VM)
deployed in an OpenStack [38] environment. The VM runs
Ubuntu 18.04, managed by a KVM hypervisor. It includes 4
vCPUs, running on a server with 4x 64-bit Intel core processor
CPUs. The VM also uses a GPU that features 28GB of
RAM. Chronos is implemented using Python 3.7.6, while the
Autoencoder leverages Keras library in Tensorflow 2.2.0 [39].

B. Evaluation metrics

We use the Autoencoder as a binary classifier to predict
input instances (i.e., packets or flows) belonging to the benign
or the attack class. Accuracy, a widely used metric to evaluate
classification performance, is the proportion of true predictions
among the total number of predictions. However, it suffers in
the face of dataset imbalance. For example, consider a classi-
fication problem with 95% and 5% instances belonging to the
attack and benign classes, respectively. Even if the classifier
predicts all input instances as attack, the accuracy would still
be 95%, which is misleading. Therefore, we rely on other
metrics to evaluate the Autoencoder prediction performance.

We denote the attacks as positive instances. Precision (2)
is the proportion of attack predictions corresponding to the
attack class. In contrast, recall (3) is the proportion of correct
predictions for the attack class. A higher precision suggest
lower false alarms, i.e., benign instances being predicted as

attacks, while a high recall implies that more attack instances
are not missed.

Precision =
True Positive

True Positive+ False Positive
(2)

Recall =
True Positive

True Positive+ False Negative
(3)

However, similar to accuracy, precision and recall by them-
selves can not be used to evaluate a classifier’s performance.
For example, a classifier that predicts all input instances as
attack will have a perfect recall. Similarly, a classifier that
predicts all input instances as benign will have no false alarms.
Therefore, the F1-score (4) is defined as a harmonic mean
of precision and recall, which captures the trade-off between
these metrics. Note that the harmonic mean is more useful
than the arithmetic mean, since if either metric (i.e., precision
or recall) falls to zero, so would the F1-score.

F1− score = 2× Precision×Recall
Precision+Recall

(4)

Our heuristic (cf., Section III-D) selects a threshold that
maximizes the F1-score, our primary objective. However, the
performance of the classifier (i.e., the Autoencoder) is highly
dependant on the selected threshold. Therefore, to showcase
the performance independently of a specific threshold, we
resort to the ROC curves, which represent the classifier per-
formance in terms of the True Positive Rate (TPR) against
the False Positive Rate (FPR) at various thresholds. We also
highlight the Area Under the ROC Curve (AUC), which
provides an aggregated measure of performance across the
various thresholds. To compare the Autoencoder across all
attacks, we use the mean AUC. An AUC of 1 depicts a perfect
model, with TPR and FPR equal to 1 and 0, respectively.

C. Anomaly detection using time-based features

1) Autoencoder selection: Before we experiment with the
time-based features to detect anomalies using Chronos, we
select the appropriate Autoencoder architecture and hyper-
parameters. We evaluate four different architectures, starting
from a very shallow network (i.e., one hidden layer), and
increase it to seven hidden layers. Consider k = number of
input and output neurons, the architectures are:
• Arch. A = [k, k × 30%, k],
• Arch. B = [k, k × 70%, k × 30%, k × 70%, k],
• Arch. C = [k, k × 80%, k × 50%, k × 30%, k × 50%, k ×
80%, k], and

• Arch. D = [k, k × 80%, k × 60%, k × 40%, k × 30%, k ×
40%, k × 60%, k × 80%, k].
Note that we do not hard-code the number of neurons in

the hidden layers. Rather, we specify them as a percentage
of the neurons in the input and output layers. For example,
in Arch. A, there is one hidden layer, with the number of
neurons equal to 30% of the number of input neurons, i.e.,
for k = 20, the number of neurons in the singleton hidden

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

layer is 6. Therefore, for a given architecture, the number of
neurons in the hidden layers changes with k, but the depth
(i.e., number of layers) for the Autoencoder remains the same.
This impacts the number of trainable model parameters (i.e.,
weights) relative to the input, and allows to evaluate the
Autoencoder performance with the change in the number of
input features. We leverage k = 80 by aggregating time-
based features from different window sizes, denoted w (cf.,
Section V-C3), including 10sec, 1sec, 100ms, and 10ms, and
observe the average reconstruction loss, i.e., the average MSE
across the different training epochs. The Autoencoder hyper-
parameters are depicted in Table III. Note that during our
experiments, we notice that the batch sizes affect the training
time, without significant impact on detection performance.

TABLE III: Autoencoder settings

Hyper-parameter Value

Number of epochs 200
Patience 20
Learning rate 0.001
Batch size 1024
Validation split 0.2
Optimizer Adam
Hidden activation ReLU
Output activation Linear

All architectures, except Arch. D depict reasonable con-
vergence within the first 50 epochs, as shown in Fig. 4. In
contrast, Arch. D takes the longest to converge, and continues
to reduce the average MSE upto 200 epochs. Indeed, it is
possible for Arch. D to converge further to smaller average
MSE. However, this comes with the highest number of model
parameters, with no guarantee on convergence. Arch. A is the
leanest architecture with the smallest degree of freedom, limit-
ing its performance. On the other hand, Arch. B and Arch. C
show comparable performance. However, Arch. C, with its
higher degree of freedom, further minimizes the average MSE
over the training epochs, resulting in the smallest average MSE
across all architectures. Hence, we choose Arch. C for the
remainder of our experiments.

0 50 100 150 200

0.1

0.15

0.2

0.25

0.3

Epoch

A
ve

ra
ge

M
SE

Arch. A
Arch. B
Arch. C
Arch. D

Fig. 4: Average MSE over training epochs with w=10sec, 1sec,
100ms, 10ms

2) Reconstruction error threshold selection: Recall that
the Autoencoder is primarily trained on benign data in an

unsupervised manner (i.e., using unlabeled data), to minimize
the reconstruction loss (i.e., MSE). After training, the Autoen-
coder flags any divergence from the norm as an anomaly. To
determine the threshold in Chronos, we randomly extract 1%
of the packets from each attack file for the optimization dataset
(cf., Section III-D), while preserving the same proportion of
attack and benign packets existing in that file. We observe that
the outliers in the benign portion (i.e., packets with high MSE)
of the optimization dataset are minimal. Hence, the optimal
threshold is typically amongst the first few reconstruction
errors, as depicted in Fig. 5 (i.e., the first in this case,
highlighted in yellow). We employ hyper-parameters α = 20%
and β = 20 in our selection of the threshold. Both α (i.e.,
search depth) and β (i.e., search granularity) can be adjusted
depending on the quality of optimization dataset, and allow
for further exploration in threshold selection to potentially
improve the Autoencoder performance in detecting anomalies.
We discuss this further in Section V-C7.

010203040

0.92

0.94

0.96

0.98

1

Threshold

F1
-s

co
re

0.85

0.9

0.95

1

Pr
ec

is
io

n
/

R
ec

al
l

F1-score
Precision
Recall

Fig. 5: Maximizing F1-score during threshold selection with
α = 20%, β = 20, and w=10sec, 1sec, 100ms, 10ms, and the
optimal F1-score highlighted

3) Impact of window sizes: In the previous subsections,
we use aggregated window sizes (i.e., w=10sec, 1sec, 100ms,
10ms) to evaluate the impact of Autoencoder architectures on
the training performance and showcase our threshold selection
heuristic. The CICDDoS2019 dataset has traces of numerous
DDoS attacks belonging to the well-known categories of
reflection- and exploitation-based attacks, as shown in Table I.
Indeed, these attacks, within and across categories, can evolve
differently. For example, a flooding attack can evolve quickly
over time. Hence, a smaller time-window can potentially
flag corresponding packets as anomalous, facilitating early
detection. In contrast, a slow and low attack will be more
stealthy with malicious activity spanning across a larger time-
window. In this subsection, we start by evaluating the impact
of individual window sizes (i.e., w=10sec, w=1sec, w=100ms,
and w=10ms) in Chronos, with respect to anomaly detection
across the different attacks.

Time-based features facilitate the Autoencoder in capturing
the true characteristics of benign traffic. This is also sup-
ported by the low average reconstruction loss depicted in
Fig. 4. As shown in Table IV, the Autoencoder is able to
achieve significantly high F1-scores (i.e., over 98.6%) for all

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

TABLE IV: Anomaly detection using time-based features and individual window sizes

w=10sec w=1sec w=100ms w=10ms
Attack Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

LDAP 1.00000 0.99749 0.99875 1.00000 0.98747 0.99369 1.00000 0.93985 0.96899 1.00000 0.90100 0.94792
MSSQL 1.00000 1.00000 1.00000 1.00000 0.99840 0.99920 1.00000 0.99467 0.99733 1.00000 0.99360 0.99679
NetBIOS 1.00000 0.36730 0.53727 1.00000 0.40628 0.57781 1.00000 0.83115 0.90779 1.00000 0.97425 0.98696
PortMap 0.99988 0.97332 0.98642 0.99984 0.95073 0.97466 0.99997 0.90411 0.94963 0.99994 0.85394 0.92119
SNMP 1.00000 0.99942 0.99971 1.00000 0.99884 0.99942 1.00000 0.99476 0.99737 1.00000 0.99126 0.99561
SSDP 1.00000 0.99791 0.99895 1.00000 0.99693 0.99846 1.00000 0.99104 0.99550 1.00000 0.99221 0.99609
TFTP 1.00000 0.99058 0.99527 1.00000 0.99083 0.99539 1.00000 0.98694 0.99343 1.00000 0.97066 0.98511
UDP 1.00000 0.99827 0.99913 1.00000 0.99581 0.99790 1.00000 0.98960 0.99477 1.00000 0.98650 0.99320
UDPLag 1.00000 0.99965 0.99982 1.00000 0.99860 0.99930 1.00000 0.99227 0.99612 1.00000 0.98244 0.99114
SYN 1.00000 0.99954 0.99977 1.00000 0.99886 0.99943 1.00000 0.99520 0.99759 1.00000 0.98263 0.99124

attacks with at least an individual window size. Furthermore,
the precision is perfect for all attacks, except for PortMap,
across all individual window sizes. However, the window
size impacts the performance of the Autoencoder for some
attacks (examples are highlighted in yellow in Table IV). For
example, the Autoencoder performance in anomaly detection
for LDAP and PortMap decreases as the window size is
reduced, from w=10sec through w=10ms. In contrast, for Net-
BIOS, the Autoencoder performance increases as the window
size is reduced, from w=10sec through w=10ms. Clearly, the
Autoencoder is susceptible to window sizes, primarily in the
face of reflection-based attacks.

Choosing the best window size that allows to detect anoma-
lies pertaining to the various attacks with high F1-scores,
specifically for unknown attacks, is non-trivial. We show that
aggregating time-based features across multiple window sizes
in Chronos, achieves superior performance in anomaly detec-
tion across all attacks in the CICDDoS2019 dataset. However,
note that the higher the number of aggregated window sizes,
the more complex the Autoencoder with a higher number of
model parameters to tune for convergence. Consider the cho-
sen Arch. C with an individual window size (e.g., w=10sec).
Each window size corresponds to 20 input features (cf., Sec-
tion III-B), resulting in [20, 16, 10, 6, 10, 16, 20] architecture
for the Autoencoder and 1,578 trainable parameters. Similarly,
four window sizes aggregated together (e.g., w=10sec, 1sec,
100ms, 10ms), results in [80, 64, 40, 24, 40, 64, 80] Autoen-
coder architecture and 24,072 trainable parameters. While
one would expect a better detection performance when the
Autoencoder is trained on a larger number of features and
trainable parameters, we show that this assumption does not
hold. An Autoencoder that is trained on a smaller number
of time-based features from a limited number of aggregated
window sizes, provides comparable detection performance.

We evaluate the Autoencoder performance over multiple
window size aggregations, i.e., w=10sec, 1sec, 100ms, 10ms
(i.e., all window sizes in Table IV), w=10sec, 10ms, and
w=60sec, 10sec, 1.5sec, 500ms, 100ms (i.e., which is inspired
by [15]). As shown in Fig. 6, the smaller aggregation across
only two window sizes (i.e., w=10sec, 10ms) outperforms the
other window size aggregations. It achieves an F1-score of
over 99% for most attacks and greater than 95% for all attacks,
with an average of 99.2%. This is in contrast to the average

F1-score of 99% and 96.8% for w=10sec, 1sec, 100ms, 10ms
and w=60sec, 10sec, 1.5sec, 500ms, 100ms, respectively.

L
D

A
P

M
SS

Q
L

N
et

B
IO

S

Po
rt

M
ap

SN
M

P

SS
D

P

T
FT

P

U
D

P

U
D

PL
ag

SY
N

0.75

0.8

0.85

0.9

0.95

1

Attack

F1
-s

co
re

w=10sec, 1sec, 100ms, 10ms
w=10sec, 10ms
w=60sec, 10sec, 1.5sec, 500ms, 100ms

Fig. 6: Time-based anomaly detection using aggregated win-
dow sizes

Though remarkable performance is achieved for w=10sec,
10ms in Chronos, the lowest performing attack is PortMap,
with similar performance across the other window aggrega-
tions. We partly attribute this to the peculiar nature of PortMap
in the dataset, which we discuss further in Section V-C5.
Furthermore, we notice a inferior performance of the Au-
toencoder for NetBIOS with the largest window aggregation
(i.e., w=60sec, 10sec, 1.5sec, 500ms, 100ms). This highlights
that the window size aggregation and threshold selection play
a quintessential role in the performance of the Autoencoder.
Indeed, the threshold selection heuristic optimizes the average
F1-score across all attacks (cf., Fig. 6), but does not maximize
the F1-score for an individual attack (e.g., NetBIOS).

Hence, we compare the anomaly detection performance
of the Autoencoder with different window size aggregations,
independently of a specific threshold, as depicted in Fig. 7a,
7b, and 7c. The legend in the figures show the AUC of the
corresponding ROC curve for each attack. We also showcase
the mean ROC curve that represents the overall performance
under all attacks. The Autoencoder has a similar performance
for PortMap across the different window size aggregations for
various thresholds, where w=10sec, 10ms marginally outper-
forms the other window size aggregations with an AUC of

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

0.9785. This is consistent with the results in Fig. 6.
Based on the ROC curves in Fig. 7c, we can conclude that

the low F1-score of NetBIOS for w=60sec, 10sec, 1.5sec,
500ms, 100ms (cf., Fig. 6) is due to the particular selection
of threshold. More precisely, the selected threshold in Fig. 6
results in a perfect precision (i.e., zero false alarms) and a
low recall (i.e., TPR = 0.64) for NetBIOS. However, as the
threshold decreases, the recall approaches 1 without sacrificing
precision, as shown in Fig. 7c. Similar to other window size
aggregations, NetBIOS shows a high AUC of 0.9997 across
various thresholds for w=60sec, 10sec, 1.5sec, 500ms, 100ms.

Furthermore, all window size aggregations perform well
across all attacks. Table V provides a comparison for the
smallest (i.e., w=10sec, 10ms) and the largest (i.e., w=60sec,
10sec, 1.5sec, 500ms, 100ms) window size aggregations, with
respect to trainable parameters and the average training time of
the Autoencoder. The result in Table V leverages Arch. C (cf.,
Section V-C1) and hyper-parameter settings in Table III, over
the entire training dataset with 243,708 benign packets. For
a fair comparison, the patience (i.e., early stopping) hyper-
parameter is ignored. Clearly, the mean AUC for w=10sec,
10ms (cf., Fig. 7b) outperforms the other window aggregations
with a smaller number of trainable parameters and a lower
average training time with GPU acceleration. Furthermore, the
feature extraction time for w=60sec, 10sec, 1.5sec, 500ms,
100ms is 60% higher than that of w=10sec, 10ms. Hence,
we choose w=10sec, 10ms for the time-based Autoencoder in
Chronos, and further experiment with it.

TABLE V: Autoencoder complexity and training overhead for
aggregated window sizes

Window size (w) No. of Trainable
Parameters

Avg. Training
Time (sec)

10sec, 10ms 6,116 1,190
60sec, 10sec, 1.5sec, 500ms, 100ms 37,490 1,583

4) Comparison to Kitsune: We also evaluate the efficacy of
the anomaly detection pipeline presented in [15]. Recall that
the authors propose their approach for an environment with
resource constraint. To alleviate this constraint, they leverage
an ensemble of light weight Autoencoders. They employ
clustering to map the input features into smaller sets, one for
each Autoencoder in the ensemble. This is followed by an
output Autoencoder, which serves as a voting mechanism for
the ensemble. The authors use a fixed window size aggregation
of 60sec, 10sec, 1.5sec, 500ms, and 100ms, while allowing
to tune the maximum number of inputs for the ensemble
Autoencoders. This tuning can increase the speed of anomaly
detection, at the cost of performance.

Fig. 8 illustrates the performance of their anomaly detection
pipeline with respect to various DDoS attacks while setting
the tunable parameter (i.e., maximum number of inputs for
the ensemble Autoencoders) to 10 (i.e., default). Evidently,
the anomaly detection pipeline in [15] achieves a comparable
performance to Chronos, with a mean AUC of 0.9969. How-
ever, it is important to note that even a small difference in

AUC can pertain to a high number of packet misclassifications.
For example, with a specific threshold and corresponding
high TPR of ≈0.95, there are ≈10,500 less false positives
across all attacks in Fig. 7b (i.e., Chronos) versus Fig. 8 (i.e.,
[15]). Furthermore, the anomaly detection pipeline in [15] is
rather complex. In contrast, Chronos leverages a single more
complex Autoencoder that is able to correlate between a larger
number of input features, and it marginally outperforms the
anomaly detection pipeline in [15]. This shows the advantage
of our approach in comparison to Kitsune, when deployed
in an unconstrained, centralized environment, rather than on
distributed IoT gateways with limited computing resources.

5) Robustness to zero-day attacks: Sophisticated adver-
saries often randomize malicious activities or leverage poly-
morphic attacks to avoid detection. Therefore, anomaly detec-
tion should be robust against unknown attacks or variations of
known attacks. To evaluate the robustness of our time-based
Autoencoder in Chronos, we modify the threshold selection,
such that, we exclude some attacks (i.e., NetBIOS, PortMap,
and TCP SYN, belonging to both reflection- and exploiting-
based attack types) from the optimization dataset. Hence,
during threshold selection, the reconstruction errors depicting
the characteristics of these unknown attacks (i.e., NetBIOS,
PortMap, and TCP SYN) do not influence the selection of the
threshold. However, there are other known attacks, belonging
to both attack types, leveraged during optimization, which
can facilitate the detection of unknown DDoS attacks. As
shown in Table VI, anomaly detection in the face of NetBIOS
and TCP SYN attacks achieves an F1-score of over 99%.
The performance against PortMap is just over 83%, which
is primarily due to the high number of false alarms.

TABLE VI: Robustness to unknown attacks using time-based
features and aggregated window sizes of 10sec and 10ms

w=10sec, 10ms
Attack Precision Recall F1-score

LDAP 1.00000 0.99875 0.99937
MSSQL 1.00000 1.00000 1.00000
NetBIOS 1.00000 0.99603 0.99801
PortMap 0.73421 0.97541 0.83780
SNMP 1.00000 1.00000 1.00000
SSDP 1.00000 0.99935 0.99967
TFTP 0.99967 0.99802 0.99884
UDP 1.00000 0.99913 0.99957
UDPLag 1.00000 0.99965 0.99982
SYN 1.00000 0.99959 0.99979

The under performance of PortMap can be attributed to
the selected threshold, as PortMap achieves a high AUC of
0.9785 in Fig. 7b. Regardless, we notice a slightly inferior
performance for PortMap against other attacks across our ex-
periments. This suggests that PortMap is rather peculiar and it
is more complex to differentiate between PortMap and benign
packets using time-based features. To validate this we portray a
visual representation of the 40 time-based features of w=10sec,
10ms for different attacks. We leverage Uniform Manifold
Approximation and Projection (UMAP) [40] to find a lower
order (i.e., 2-dimensional) representation of the features and

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=1.0)
MSSQL (AUC=1.0)
NetBIOS (AUC=0.9999)
PortMap (AUC=0.9749)
SNMP (AUC=1.0)
SSDP (AUC=1.0)
TFTP (AUC=1.0)
UDP (AUC=1.0)
UDPLag (AUC=1.0)
SYN (AUC=1.0)
Mean (AUC=0.9988)

(a) w=10sec, 1sec, 100ms, 10ms

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=1.0)
MSSQL (AUC=1.0)
NetBIOS (AUC=0.9999)
PortMap (AUC=0.9785)
SNMP (AUC=1.0)
SSDP (AUC=1.0)
TFTP (AUC=1.0)
UDP (AUC=1.0)
UDPLag (AUC=1.0)
SYN (AUC=1.0)
Mean (AUC=0.9993)

(b) w=10sec, 10ms (Chronos)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=1.0)
MSSQL (AUC=1.0)
NetBIOS (AUC=0.9997)
PortMap (AUC=0.9754)
SNMP (AUC=1.0)
SSDP (AUC=0.9999)
TFTP (AUC=0.9998)
UDP (AUC=0.9999)
UDPLag (AUC=1.0)
SYN (AUC=0.9999)
Mean (AUC=0.9980)

(c) w=60sec, 10sec, 1.5sec, 500ms, 100ms

Fig. 7: Anomaly detection ROC curves and AUC using time-based features and different aggregated window sizes

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=0.9997)
MSSQL (AUC=1.0)
NetBIOS (AUC=0.9983)
PortMap (AUC=0.9690)
SNMP (AUC=0.9999)
SSDP (AUC=0.9997)
TFTP (AUC=0.9979)
UDP (AUC=0.9994)
UDPLag (AUC=0.9999)
SYN (AUC=0.9997)
Mean (AUC=0.9969)

Fig. 8: ROC curves and AUC for the anomaly detection
pipeline in [15]

plot them. Note that we use UMAP in the unsupervised mode
when computing the lower order representation of each packet,
i.e., UMAP is unaware of a packet’s label, benign or attack.

The results of UMAP on time-based features for benign
and attack (i.e., LDAP, PortMap, SNMP, UDPLag, NetBIOS,
and TCP SYN) packets are visualized in Fig. 9. We randomly
sample 100K benign packets and 50K attack packets from each
attack, and visualize benign versus each attack separately. We
observe that for most attacks (e.g., LDAP, SNMP, and UD-
PLag), their lower order representation is well separated from
benign packets. In contrast, a marginal overlap between benign
and attack packets is depicted in the case of NetBIOS and
TCP SYN attacks. However, the lower order representation
of PortMap stands out with a significant overlap with benign
packets. This visualization explains the inferior performance
of time-based features in the detection of PortMap attack, in
comparison to other attacks in the dataset.

6) Training on partial data: In previous subsections, the
time-based Autoencoder is trained on the entirety of benign
dataset, which consists of 243,708 benign packets (cf., Sec-
tion IV). Indeed, training the Autoencoder on a large corpus
of training data provides a holistic view of the benign traffic
pattern, which can facilitate the model in achieving superior
detection performance. Nonetheless, in this subsection, we
evaluate the performance of Chronos in the absence of a large

training dataset. Thus, we train the time-based Autoencoder
on an increasing number of benign packets to showcase how
quickly (i.e., on a very small number of packets) the Autoen-
coder becomes very effective in detecting DDoS attacks. The
results of our evaluation are depicted in Table VII.

TABLE VII: Autoencoder performance on partial, very small
training data

w=10sec, 10ms
Training

Packets (%)
Training

Packets (#)
Average
Precision

Average
Recall

Average
F1-score

1 2,437 0.93091 0.91568 0.92206
2 4,874 0.91837 0.90900 0.91228
3 7,311 0.97147 0.93300 0.95050
4 9,748 0.99139 0.94797 0.96830
5 12,185 0.99789 0.96659 0.98160
6 14,622 0.99802 0.97431 0.98581
7 17,059 0.99798 0.97302 0.98510
8 19,496 0.99800 0.97178 0.98446
9 21,933 0.99778 0.96851 0.98260

10 24,370 0.99768 0.96511 0.98070
11 26,807 0.99770 0.95794 0.97676
12 29,244 0.99546 0.97477 0.98484

As shown in Table VII, we train the Autoencoder using
only a portion (i.e., in percentage) of the benign packets.
Note that in an online setting, it is crucial to retrain the
Autoencoder as new data becomes available. This can allow
to account for changes in benign traffic pattern. Incremental
learning [41] can be used to train the Autoencoder on new
data, as it becomes available. However, in the absence of past
data (i.e., typically due to storage resource constraint), the
model weights during training change based on the new data
only, which can result in catastrophic forgetting and significant
degradation in performance. Though, numerous approaches
have been proposed to overcome this phenomenon (e.g., [42],
[43]), it is out of the scope of this paper to evaluate incremental
learning and address its shortcomings. Hence, to alleviate
the issue raised, when increasing the number of packets, we
retrain the Autoencoder on the entire portion. For example,
when training on 5% after training on 4% of the packets, the
training dataset consists of the entire 5% of the benign packets,
rather than the new additional 1% of packets only. As shown

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

(a) Benign vs. LDAP (b) Benign vs. SNMP (c) Benign vs. UDPLag

(d) Benign vs. NetBIOS (e) Benign vs. TCP SYN (f) Benign vs. PortMap

Fig. 9: UMAP’s 2-dimensional time-based features for benign and attack packets for w=10sec, 10ms

in Table VII, training the Autoencoder with only 1% of the
packets (i.e., 2,437) result in a respectable F1-score of 92.2%.

Recall that benign packets can act as outliers, such that
their training MSE is high, even higher than some attack
packets. As more benign packets are leveraged for training,
the overall quality of benign packets may change, causing
the Autoencoder to tune the model parameters accordingly.
Therefore, as the Autoencoder is trained on more benign pack-
ets, we may see a slight drop in performance. For example,
the average F1-score drops from 92.2% to 91.2% with 1%
and 2% training packets, respectively. This can also be partly
attributed to the selected threshold. However, the general trend
is an increase in F1-score as more packets are leveraged to
train the Autoencoder. Nevertheless, with only 6% of the
benign packets (i.e., 14,622), the Autoencoder achieves a high
F1-score of almost 98.6%, as shown in Table VII. Clearly,
with only a small number of benign packets, the Autoencoder
achieves exceptional performance in anomaly detection across
all attacks, making it suitable for deployment in an online
setting with limited training data.

7) Training on noisy data: In an operational network, ac-
cess to exclusively benign packets for training the Autoencoder
is non-trivial. While in previous experiments, we train our
time-based Autoencoder on exclusively benign packets, we
show that, without loss of generality, the Autoencoder can
be trained on a mix of unlabeled benign and attack (i.e., in
significantly smaller proportion) traffic. Therefore, in Fig. 10
we present the performance of Chronos, when the time-based
Autoencoder is trained on benign data that is contaminated
with noise (i.e., attacks) from the test datasets in Table II. We
ensure that the attack packets introduced in the training dataset
do not overlap with the test packets. Fig. 10 depicts that as the
traffic becomes noisier, the performance of the Autoencoder
deteriorates. For noise levels of 0.4% and above, the average
F1-score (i.e., across all attacks) falls well below 60%.

Deep learning models, including Autoencoder, are prone to
overfitting in the face of noisy training data. This can result
in poor performance for anomaly detection on the attacks.

0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1

Noise (%)

A
ve

ra
ge

F1
-s

co
re None

Dropout
L1 Regularization
Dropout & L1 Regularization

Fig. 10: Regularization on noisy training data for w=10sec,
10ms

However, regularization techniques can alleviate overfitting
and improve model generalization. Dropout is a regularization
technique, where a specified portion (i.e., the dropout rate)
of layer outputs are randomly ignored during each epoch,
essentially training over multiple sub-architectures in parallel.
L1 regularization penalizes the absolute value of the weights
based on the specified regularization hyper-parameter λ. In
L1 regularization, the weights can decay to zero, essentially
compressing the model and alleviating overfitting. We evaluate
dropout and L1 regularization with a dropout rate of 0.1 and
λ as 0.01, respectively. We apply these regularization to the
input layer of the Autoencoder. We also evaluate Autoencoder
performance by combining dropout and L1 regularization,
which has shown to improve model performance [44].

As shown in Fig. 10, both dropout and L1 regularization
alleviate the impact of noisy training data on the Autoencoder
performance in anomaly detection. The average F1-score with
dropout and L1 regularization across the different noise levels
and attacks is 95.4% and 92.7%, respectively. However, the
Autoencoder performance using just dropout or L1 regular-
ization, is rather erratic. For example, with 0.3% noise level
in the training dataset, the Autoencoder with L1 regularization

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

significantly under performs in anomaly detection. This is alle-
viated with the combination of both regularization techniques.
The Autoencoder with both dropout and L1 regularizations,
generally outperforms the Autoencoder with just dropout,
achieving an average F1-score of 96.1%. Furthermore, we
perform an additional experiment for noisy training data at
0.5% (i.e., with average F1-score of 91.1%), where we increase
the hyper-parameters α and β in Algorithm 1 to 40% and 80,
respectively. In this experiment, the time-based Autoencoder
in Chronos achieves a high average F1-score of 97.5%.

D. Anomaly detection using flow-based features

Flow-based features have been widely adopted for DDoS
detection. In this subsection, we gauge the performance of
flow-based Autoencoder in detecting anomalies for various
DDoS attacks. We leverage flow-based features from CI-
CFlowMeter, which are available in CSV files as part of the
CICDDoS2019 dataset. We evaluate two subset of flow-based
features from CICFlowMeter. The first subset is inspired from
Elsayed et al. [5]. The authors exclude some features to detect
DDoS attacks, as they can introduce a bias in the model
behavior. These features include source and destination IP
addresses, source and destination port numbers, timestamp and
flow ID. The second subset of flow-based features is inspired
from Jia et al. [20], where RST flag count, PSH flag count and
ECE flag count features are excluded, as they are less likely to
impact classification performance [20]. We leverage Arch .C,
i.e., [k, k × 80%, k × 50%, k × 30%, k × 50%, k × 80%, k],
where k = 79 and k = 76 for [5] and [20], respectively. Note
that the choice of the Autoencoder architecture does not have
a significant impact on anomaly detection performance. For
a fair comparison, we leverage the hyper-parameter settings
in Table III, along with the threshold selection heuristic in
Algorithm 1 with α = 20% and β = 20.

The result in Fig. 11a shows a consistent performance across
the feature sets from [5] and [20], with minor variations in
F1-score for each attack. Both perform very well in terms of
recall across all attacks, with an average of 99.9%, as shown
in Table VIII. This is slightly better than the 98.4% recall
in Chronos, i.e., the Autoencoder with time-based features
and w=10sec, 10ms (cf., Fig. 6). However, the flow-based F1-
score suffers with an average of 94.1% and 93.7% for [5] and
[20], respectively. This is primarily attributed to low precision
across all attacks using flow-based features (cf., Table VIII),
indicating a high number of false alarms. The average pre-
cision using flow-based features across all attacks is 89%
and 88.2% for [5] and [20], respectively. This undermines
the suitability of the Autoencoder using flow-based features
to detect anomalies with respect to various DDoS attacks. In
contract, the precision of the Autoencoder with time-based
features and w=10sec, 10ms in Chronos, is perfect for all
attacks and 99.99% for PortMap.

Consider the TCP SYN flooding attack that abuses the TCP
three-way handshake procedure, and floods the server with
repetitive SYN packets. Although both flow-based feature sub-
sets employed in our evaluation include the flow’s SYN flag

count, among other flow statistics, the Autoencoder performs
poorly in differentiating benign packets in the face of the SYN
flooding attack. The precision for SYN attack is approximately
87% for both feature subsets. The ROC curves in Fig. 11b and
Fig. 11c further assert the Autoencoder under performance for
some attacks, irrespective of the selected threshold.

Regardless of the feature subset, the Autoencoder perfor-
mance is impaired for most attacks, more so for the features
in [20]. Evidently, the removal of the PSH, RST and ECE flag
counts negatively impact Autoencoder performance, which
contradicts the reason for removing these features in [20].
Nevertheless, the Autoencoder shows a lackluster performance
using flow-based features with a mean AUC of 0.9738 and
0.9588 for [5] and [20], respectively. This is in stark contrast
to the time-based features with w=10sec, 10ms in Chronos
(cf., Fig. 7b), where the Autoencoder achieves a very high
mean AUC of 0.9993. Clearly, the flow-based features are not
discriminative enough to distinguish between anomalous and
benign behavior for various DDoS attacks.

TABLE VIII: Anomaly detection using flow-based features
from Elsayed et al. [5] and Jia et al. [20]

Elsayed et al. [5] Jia et al. [20]
Attack Precision Recall Precision Recall

LDAP 0.84652 1.00000 0.82709 1.00000
MSSQL 0.93617 1.00000 0.85660 1.00000
NetBIOS 0.86236 1.00000 0.91806 1.00000
PortMap 0.92532 0.99765 0.89268 0.99977
SNMP 0.87194 1.00000 0.92550 0.99926
SSDP 0.91102 1.00000 0.91223 1.00000
TFTP 0.92421 0.99474 0.86288 0.99912
UDP 0.83186 1.00000 0.86477 1.00000
UDPLag 0.92376 0.99970 0.90078 0.99970
SYN 0.87326 0.99966 0.86292 0.99966

VI. CONCLUSION

We proposed Chronos, a novel time-based anomaly detec-
tion system that leverages an Autoencoder to detect anomalous
DDoS traffic. We evaluated the impact of different window
sizes in detecting anomalies pertaining to various DDoS
attacks. We showed that by aggregating features across just
two time-windows along with the proposed threshold selection
heuristic, Chronos achieves a F1-score of over 99% for most
attacks and greater than 95.86% for all attacks. Chronos also
showed robustness to unknown attacks with an F1-score of
over 99% for TCP SYN and NetBIOS, and over 83% for
PortMap. We attributed and visualized the under performance
of PortMap to its peculiar similarity to benign traffic. With
the help of regularization techniques, Chronos alleviated the
impact of noise in training data, and showed suitability for on-
line deployment with superior anomaly detection performance
on a very small number of packets.

Chronos also marginally outperformed [15] using a rather
simple, less complex anomaly detection pipeline, while clearly
out classing the flow-based features employed in [5], [20]. In
the future, we will explore incremental learning to facilitate
online detection of DDoS attacks. This will also entail adaptive

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

L
D

A
P

M
SS

Q
L

N
et

B
IO

S

Po
rt

M
ap

SN
M

P

SS
D

P

T
FT

P

U
D

P

U
D

PL
ag

SY
N

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Attack

F1
-s

co
re

Elsayed et al. [5]
Jia et al. [20]

(a) F1-score with flow-based features

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=0.9996)
MSSQL (AUC=0.9915)
NetBIOS (AUC=0.9799)
PortMap (AUC=0.9676)
SNMP (AUC=0.9987)
SSDP (AUC=0.9832)
TFTP (AUC=0.9939)
UDP (AUC=0.979)
UDPLag (AUC=0.9516)
SYN (AUC=0.9145)
Mean (AUC=0.9738)

(b) ROC curves and AUC for features in [5]

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

Po
si

tiv
e

R
at

e

LDAP (AUC=0.9989)
MSSQL (AUC=0.9866)
NetBIOS (AUC=0.9784)
PortMap (AUC=0.9808)
SNMP (AUC=0.9984)
SSDP (AUC=0.9958)
TFTP (AUC=0.9822)
UDP (AUC=0.96)
UDPLag (AUC=0.896)
SYN (AUC=0.8413)
Mean (AUC=0.9588)

(c) ROC curves and AUC for features in [20]

Fig. 11: Autoencoder performance using flow-based features from Elsayed et al. [5] and Jia et al. [20]

threshold selection to account for changes in network traffic.
Federated training of the time-based Autoencoder to facilitate
knowledge sharing across the network edge is also a promising
direction. Furthermore, we will investigate the efficacy of
the time-based Autoencoder in differentiating between DDoS
attacks and flash crowd traffic.

ACKNOWLEDGMENTS

We thank Dr. Makan Pourzandi, Dr. Stere Preda, Dr.
Michael Liljenstam and Dr. Jakob Sternby from Ericsson
Research, for their invaluable feedback. This work is supported
in part by Ericsson Canada, and in part by the NSERC CRD
Grant 536445-18.

REFERENCES

[1] Steve Morgan, “Cybercrime Facts and Statistics—Report: Cyberwarfare
in the C-Suite,” 2021, accessed: 2021-03-01. [Online]. Avail-
able: https://1c7fab3im83f5gqiow2qqs2k-wpengine.netdna-ssl.com/wp-
content/uploads/2021/01/Cyberwarfare-2021-Report.pdf

[2] Rob Sobers, “134 Cybersecurity Statistics and Trends
for 2021,” 2021, accessed: 2021-02-28. [Online]. Available:
https://www.varonis.com/blog/cybersecurity-statistics/

[3] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,
F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, 2018.

[4] S. Sedaghat, “The forensics of ddos attacks in the fifth generation mobile
networks based on software-defined networks.” IJ Network Security,
vol. 22, no. 1, pp. 41–53, 2020.

[5] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “DDoSNet: a
deep-learning model for detecting network attacks,” IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks,
CCNCPS2020 Workshop, 2020.

[6] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys, vol. 41, no. 3, pp. 1–58, 2009.

[7] J. Lam and R. Abbas, “Machine learning based anomaly detection for
5g networks,” arXiv preprint arXiv:2003.03474, 2020.

[8] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,
F. Estrada-Solano, and O. M. Caicedo, “A comprehensive survey on
machine learning for networking: evolution, applications and research
opportunities,” Journal of Internet Services and Applications, vol. 9,
no. 1, p. 16, 2018.

[9] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in IEEE Security
and Privacy Workshops, 2018, pp. 29–35.

[10] S. Sarraf, “Analysis and detection of ddos attacks using machine learning
techniques,” American Scientific Research Journal for Engineering,
Technology, and Sciences, vol. 66, no. 1, pp. 95–104, 2020.

[11] M. Kravchik and A. Shabtai, “Efficient cyber attack detection in indus-
trial control systems using lightweight neural networks and pca,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[12] K. Yang, J. Zhang, Y. Xu, and J. Chao, “DDoS attacks detection
with autoencoder,” in IEEE/IFIP Network Operations and Management
Symposium, 2020, pp. 1–9.

[13] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised learning approach
for network intrusion detection system using autoencoders,” The Journal
of Supercomputing, vol. 75, no. 9, pp. 5597–5621, 2019.

[14] Y. Intrator, G. Katz, and A. Shabtai, “Mdgan: Boosting anomaly detec-
tion using multi-discriminator generative adversarial networks,” arXiv
preprint arXiv:1810.05221, 2018.

[15] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
Ensemble of Autoencoders for Online Network Intrusion Detection,”
Network and Distributed System Security Symposium, 2018.

[16] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A
survey,” arXiv preprint arXiv:1901.03407, 2019.

[17] M. A. Salahuddin, M. F. Bari, H. A. Alameddine, V. Pourahmadi,
and R. Boutaba, “Time-based anomaly detection using autoencoder,”
in IFIP/IEEE International Conference on Network and Service Man-
agement, 2020, pp. 1–9.

[18] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Devel-
oping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in IEEE International Carnahan Conference on Security
Technology, 2019, pp. 1–8.

[19] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of encrypted and vpn traffic using time-related,” in
International conference on information systems security and privacy,
2016, pp. 407–414.

[20] Y. Jia, F. Zhong, A. Alrawais, B. Gong, and X. Cheng, “Flowguard:
an intelligent edge defense mechanism against iot ddos attacks,” IEEE
Internet of Things Journal, vol. 7, no. 10, pp. 9552–9562, 2020.

[21] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for ddos detection,” Applied Intelligence, vol. 48,
no. 10, pp. 3193–3208, 2018.

[22] Y. Gao, Y. Liu, Y. Jin, J. Chen, and H. Wu, “A novel semi-supervised
learning approach for network intrusion detection on cloud-based robotic
system,” IEEE Access, vol. 6, pp. 50 927–50 938, 2018.

[23] J. J. Villalobos, I. Rodero, and M. Parashar, “An unsupervised approach
for online detection and mitigation of high-rate ddos attacks based on
an in-memory distributed graph using streaming data and analytics,” in
IEEE/ACM International Conference on Big Data Computing, Applica-
tions and Technologies, 2017, pp. 103–112.

[24] F. Erlacher and F. Dressler, “On high-speed flow-based intrusion detec-
tion using snort-compatible signatures,” IEEE Transactions on Depend-
able and Secure Computing, 2020.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3088326, IEEE
Transactions on Network and Service Management

[25] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of ip flow-based intrusion detection,” IEEE communica-
tions surveys & tutorials, vol. 12, no. 3, pp. 343–356, 2010.

[26] M. F. Umer, M. Sher, and Y. Bi, “Flow-based intrusion detection:
Techniques and challenges,” Computers & Security, vol. 70, pp. 238–
254, 2017.

[27] S. Maleki, S. Maleki, and N. R. Jennings, “Unsupervised anomaly
detection with lstm autoencoders using statistical data-filtering,” Applied
Soft Computing, vol. 108, p. 107443, 2021.

[28] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in World Wide Web
Conference, 2018, pp. 187–196.

[29] S. Wambura, J. Huang, and H. Li, “Robust anomaly detection in feature-
evolving time series,” The Computer Journal, 2021.

[30] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in AAAI Conference on Artificial Intelli-
gence, 2021, pp. 2–9.

[31] The Wireshark team, “Wireshark, Go Deep,” 2021, accessed: 2021-02-
28. [Online]. Available: https://www.wireshark.org/

[32] ——, “The Wireshark Network Analyzer,” 2021, accessed:
2021-02-28. [Online]. Available: https://www.wireshark.org/docs/man-
pages/tshark.html

[33] Z. Yang, I. S. Bozchalooi, and E. Darve, “Regularized cycle consistent
generative adversarial network for anomaly detection,” arXiv preprint
arXiv:2001.06591, 2020.

[34] Y. Lee and Y. Lee, “Toward scalable internet traffic measurement and
analysis with hadoop,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 1, pp. 5–13, 2012.

[35] M. Wullink, G. C. Moura, M. Müller, and C. Hesselman, “Entrada:
A high-performance network traffic data streaming warehouse,” in
IEEE/IFIP Net. Operations and Mgmt. Symposium, 2016, pp. 913–918.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[37] I. Akbari, E. Tahoun, M. A. Salahuddin, N. Limam, and R. Boutaba,
“Atmos: Autonomous threat mitigation in sdn using reinforcement learn-
ing,” in IEEE/IFIP Network Operations and Management Symposium,
2020, pp. 1–9.

[38] OpenStack, “Build the future of Open Infrastructure,” 2021, accessed:
2021-02-28. [Online]. Available: https://www.openstack.org/

[39] Google Brain Team, “Tensorflow,” 2021, accessed: 2021-02-28.
[Online]. Available: https://www.tensorflow.org/

[40] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection for dimension reduction,” arXiv preprint
arXiv:1802.03426, 2018.

[41] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in European conference on computer
vision, 2018, pp. 233–248.

[42] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska
et al., “Overcoming catastrophic forgetting in neural networks,” National
academy of sciences, vol. 114, no. 13, pp. 3521–3526, 2017.

[43] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, “Overcoming
catastrophic forgetting by incremental moment matching,” arXiv preprint
arXiv:1703.08475, 2017.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from overfit-
ting,” Journal of machine learning research, vol. 15, no. 1, pp. 1929–
1958, 2014.

Mohammad A. Salahuddin received the M.Sc. and
Ph.D. degrees in Computer Science from Western
Michigan University in 2003 and 2014, respectively.
He was a postdoctoral research associate with the
Université du Québec à Montréal and University of
Waterloo, and a Visiting Scientist with Concordia
University. He is currently a Research Assistant
Professor of Computer Science at the University of
Waterloo. His research interests include the Internet
of Things, content delivery networks, network soft-
warization, network security, and cognitive network

management. He serves as a TPC member for international conferences and
is a reviewer for various journals and magazines.

Vahid Pourahmadi received the B.Sc. and M.Sc.
degrees from Tehran University, and the Ph.D. de-
gree in electrical engineering from the University
of Waterloo, Waterloo, ON, Canada. He served as
a Postdoctoral Fellow at the ECE Department, Uni-
versity of Toronto, Canada, held a Technical Staff
position at Blackberry Inc., Ottawa, and was a Wire-
less Research Engineer at the 5G group of Motorola
Mobility, Chicago, IL, USA. His research interests
include machine learning, wireless communication,
and data analysis.

Hyame Assem Alameddine received her Ph.D.
degree in Information and Systems Engineering
from Concordia University, Canada in 2019. She
holds a Master’s degree in Computer Engineering
- Information, Systems and Multimedia which she
earned in 2015 from Conservatoire National des
Arts et des Métiers (CNAM) University, France. She
is an experienced researcher at Ericsson, Canada.
Before joining Ericsson, she served as a postdoctoral
fellow at the University of Waterloo, Canada in
2019 - 2020. She also worked as a programmer

and application developer in multiple national and international companies
between 2009 and 2014. Her current research interests include Network
Function Virtualization, network security, 5G, internet of Things, cloud and
edge computing. She serves as a TPC member for international conferences
and a reviewer for various journals and magazines.

Md. Faizul Bari received his Ph.D. degree in
computer science from the University of Waterloo,
Canada. He completed M.Sc. in computer science
and engineering from BUET, Bangladesh. After
completing his Ph.D., Faizul worked as a Postdoc-
toral Research Fellow for two years at the School
of Computer Science, University of Waterloo. After
that, he worked as an R&D Software Engineer in the
Distribute Database Lab at Huawei Canada Research
Center. In 2021, he joined Spectrum S&C as the
Chief Technology Officer. His research interests in-

clude network softwarization, cloud computing, blockchain, machine learning,
deep learning, and cybersecurity.

Raouf Boutaba received the M.Sc. and Ph.D. de-
grees in computer science from Sorbonne University
in 1990 and 1994, respectively. He is currently a
University Chair Professor and the Director of the
David R. Cheriton School of Computer science at
the University of Waterloo (Canada). He also holds
an INRIA International Chair in France. He is the
founding Editor-in-Chief of the IEEE Transactions
on Network and Service Management (2007-2010)
and the current Editor-in-Chief of the IEEE Journal
on Selected Areas in Communications. He is a fel-

low of the IEEE, the Engineering Institute of Canada, the Canadian Academy
of Engineering, and the Royal Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on July 17,2021 at 05:46:58 UTC from IEEE Xplore. Restrictions apply.

