
DRL-Assisted Reoptimization of Network Slice
Embedding on EON-enabled Transport Networks

Seyed Soheil Johari∗, Sepehr Taeb∗, Nashid Shahriar†, Shihabur R. Chowdhury∗, Massimo Tornatore‡, Raouf
Boutaba∗, Jeebak Mitra§, and Mahdi Hemmati§

∗David R. Cheriton School of Computer Science, University of Waterloo,
{ssjohari | staeb | sr2chowdhury | rboutaba}@uwaterloo.ca

†Department of Computer Science, University of Regina, Nashid.Shahriar@uregina.ca
‡Politecnico di Milano, massimo.tornatore@polimi.it

§Huawei Technologies Canada Research Center,
{jeebak.mitra | mahdi.hemmati}@huawei.com

Abstract—5G transport networks will support dynamic ser-
vices with diverse requirements through network slicing. Elastic
Optical Networks (EONs) facilitate transport network slicing
by flexible spectrum allocation and tuning of transmission con-
figurations. A major challenge in supporting dynamic services
is the lack of priori knowledge of future slice requests. As a
consequence, slice embedding can become sub-optimal over time,
leading to spectrum fragmentation and skewed utilization. This in
turn can block future slice requests, impacting operator revenue.
To address this issue, operators can periodically re-optimize
slice embedding for reducing fragmentation. In this paper, we
address this problem of re-optimizing network slice embedding
on EONs for minimizing fragmentation. The problem is solved
in its splittable version, which significantly increases problem
complexity, but also offers more opportunities for a larger
set of re-configuration actions. We employ simulated annealing
for systematically exploring the large solution space. We also
propose a greedy algorithm to address the practical constraint
of limiting the number of re-configuration steps. Moreover, we
present a novel method based on Deep Reinforcement Learning
(DRL) for determining when performing re-configuration is most
effective. Our extensive simulations demonstrate that the greedy
algorithm yields a solution very close to that obtained using
simulated annealing while requiring orders of magnitude lesser
re-configuration actions. Finally, we show that by applying the
greedy algorithm periodically on the network according to the
DRL-based time selection algorithm, a significant improvement in
the total number of accepted slice requests can be achieved with
only performing a limited number of re-configuration operations.

Index Terms—Elastic Optical Network, Fragmentation, Deep
Reinforcement Learning (DRL), Transport Network

I. INTRODUCTION

Transport networks are evolving to support dynamic and
short-lived services with diverse quality of service (QoS)
requirements [1]–[3], such as enhanced mobile broadband
and ultra-reliable low-latency communication [4] through 5G
network slicing [5]. This evolution towards network slicing is
being fueled by recent advances in Elastic Optical Network
(EON) virtualization [5], [6], as EONs support finer-grained
spectrum allocation and tuning of transmission configurations
(such as modulation format, forward error correction (FEC)
overhead, and baudrate) that allow to rightsize EON resource
allocation to network slices [7], [8]. Hence, EON-enabled
transport networks can leverage their flexible resource alloca-
tion capabilities to offer to customers tailored and dynamic

network slices, typically in terms of a virtual networks (VN)
consisting of virtual nodes connected by virtual links.

A key challenge in supporting dynamic services with short
lifetime through network slicing is how to deal with the
lack of a priori knowledge of slice arrivals and departures.
Without such knowledge, it has been observed that slice
resource allocation becomes sub-optimal over time, and, in the
specific case of EONs, underlying spectrum resources become
fragmented and capacity utilization becomes skewed [9], [10].
Such imbalanced and fragmented spectrum utilization can
result in blocking future VN requests [9]. For these reasons,
it is essential to re-optimize resources allocated to VNs to
minimize fragmentation, ensuring optimal resource utilization,
and making room for future VN requests.

In this paper, we address the problem of re-optimizing
network slice or VN embedding on an EON. VN embedding
on EON involves allocating spectrum resources to a VN by
mapping the virtual nodes and virtual links on EON nodes
and paths with appropriate transmission configuration [7].
Among the possible objectives, we focus on reducing spec-
trum fragmentation through re-optimization of VN embedding.
Defragmentation is considered crucial for network operators
and has attracted remarkable attention in research [9]. Since
minimizing fragmentation alone may lead to unbounded in-
crease in spectrum usage, we measure to limit additional
spectrum usage during defragmentation, which adds additional
challenge to the re-optimization problem. While solving the
network slice embedding re-optimization problem, we only
consider modifying virtual link embedding, as virtual nodes of
a network slice typically have location constraints (e.g., they
are mapped to an EON node equipped with compute resources
located at a metro data center (MDC) or a Point-of-Presence
(PoP) site).

Moreover, re-optimization of VN embedding needs to be
invoked multiple times during network operation, and de-
termining the most appropriate times for invoking the re-
optimization is necessary for decreasing VN blocking with
minimal operational complexity. In other words, not perform-
ing re-optimization can result in severe VN blocking, whereas
invoking re-optimization too often will cause unnecessary
operational complexity. We propose to utilize Deep Reinforce-
ment Learning (DRL) for selecting the times for performing

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

re-optimization. DRL has shown to be very successful for
maximizing both current and future rewards simultaneously in
many decision-making applications where there are no prior
knowledge about the behavior of the environment [11], [12].

Even though Virtual Network Embedding (VNE) related
problems have been thoroughly investigated in the past, es-
pecially in IP networks, investigation of the same problem in
the optical layer is less extensive, and in particular, recent de-
velopment of sliceable transponders [13] and splitting-enabled
EON [14] to support massive bandwidth requests has increased
the complexity of the problem [8]. This has motivated us to
devise a new methodology to address the increased complexity
of the VNE-related problems. So, we significantly differ
from the research literature in optical network defragmenta-
tion on several aspects. First, we consider the possibility of
splitting a virtual link demand on multiple continuous and
contiguous spectrum allocations (called splits) over one or
more substrate EON path(s) (similar to [8], [14]). Second,
we do not assume the existence of any special technology
(e.g., push-pull [15] and hop-retuning [16]) for performing
disruption free defragmentation. We assume the capabilities
of commercial transponders and adopt make-before-break [17]
approach whenever possible.

We quantify spectrum fragmentation using the root mean
square fragmentation (RMSF) metric [18], which is non-
linear. Due to the non-linearity of our objective function of
RMSF, it becomes infeasible to use standard integer/mixed-
integer programming modeling tools to obtain optimal solution
even for very small problem instances. Therefore, we lever-
age Simulated Annealing (SA) search [19] to systematically
explore a large solution space for obtaining an estimation of
a loose lower bound of RMSF. One advantage of using SA
is that the search process naturally yields the sequence of
actions that must be taken to bring the network to the com-
puted re-optimized state. However, it may arrive at the final
defragmented state by applying a excessively large number
of re-configuration actions on the network, which might be
undesirable from a network operator’s perspective. Hence, we
also devise a greedy search heuristic that navigates through
the solution space with a given budget on the number of
possible actions. To the best of our knowledge, this aspect
of defragmentation was not studied before in the context
of splitting-enabled EON. Our extensive evaluation using
real network topologies demonstrates that the greedy search
process reduces network defragmentation nearly to the same
extent as the SA search, while applying orders of magnitude
lesser number of reconfiguration actions. For determining the
best times to perform re-optimization, we train a Soft Q-
Network model [20] as a DRL agent that in each considered
time step, intelligently decides whether to invoke the re-
optimization process or not.

This paper is an extended version of the work presented
in [21]. With respect to a SA and a greedy algorithm in [21],
we analyze the effect of applying re-optimization on increasing
the EON’s ability to accept more VN requests. Moreover,
we propose a novel DRL-based algorithm for resolving the
trade-off between increase in the number of accepted VNs
and total number of performed re-optimization operations in

an intelligent manner. Through extensive experiments, we
demonstrate the superiority of our DRL-based method com-
pared to other alternative strategies and also evaluate the
generalization capability of the DRL method for VN request
distributions that significantly differ from those seen during
training. Finally, we expand our discussion of the related works
and the experimental results.

The rest of the paper is organized as follows. We first
discuss the related works in Section II. Then, we discuss our
choice of fragmentation metric and re-configuration actions,
followed by a formal problem definition in Section III. In
Section IV, we present our SA algorithm for re-optimizing
VN embedding over an EON. Our greedy search approach
with a bounded number of re-configuration actions is presented
in Section V, and the DRL-based time selection strategy for
invoking the re-optimization operations is presented in Sec-
tion VI. Evaluation results are presented in Section VII. We
conclude with some future research directions in Section VIII.

II. RELATED WORKS

EON spectrum defragmentation strategies fall into two
broad categories, namely, proactive and reactive [9]. Proactive
approaches are executed periodically or when fragmentation
level reaches a pre-defined threshold [22]. In contrast, re-
active approaches defragment spectrum resources when the
embedding of a new VN is blocked due to fragmentation
and can make room for the newly arrived VN [23]. How-
ever, there is no guarantee that reactive defragmentation will
be successful and it may result in sub-optimal embedding
for the VNs that are migrated during the process. Another
line of work for EON defragmentation is fragmentation-
aware VN embedding [24], [25]. Fragmentation awareness
is achieved by embedding new VNs in a way to reduce
spectrum fragmentation. Fragmentation-aware embedding may
not be sufficient to defragment an entire EON since such
embedding only concerns fragmentation around the new VN.
In contrast, proactive defragmentation accounts for all VNs
and EON links, and offers more opportunities to re-optimize
VN embeddings. Hence, in this paper, we focus on proactive
defragmentation by changing the route and/or the spectrum
allocation of connections. While doing so, existing approaches
assume the availability of techniques, such as push-pull or
hop re-tuning, that promises to reconfigure spectrum allocation
without causing any traffic disruption [26], [27]. However,
these technologies are still experimental and are not available
in commercial equipment. Conversely, we do not assume any
specific technology for eliminating disruption and adopt the
make-before-break approach whenever possible [17].

Shakya et al., proposed a defragmentation approach in [28]
that minimizes the maximum used spectrum slot index on
any EON link. This objective may not be useful since many
fragmented spectrum blocks can exist on a link even when
maximum slot index is low. Dávalos et al., presented two
metaheuristic-based algorithms for selecting lighpaths that
need to be reconfigured for defragmentation [29]. This ap-
proach does not generate the order in which lightpaths should
be re-configured that we address in this paper. Comellas et

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

al., [22] evaluated several ordering strategies for reconfigur-
ing lightpaths for defragmentation. However, a deterministic
order can get stuck at a local minima, mandating to include
randomness in the deframengtation algorithm.

Zeng et al., presented an SA-based defragmentation mech-
anism for EONs that modifies the route and/or spectrum
assignment of a randomly chosen connection [30]. The cost
function in [30] prefers a state where lightpaths have shorter
lengths, and spectrum is allocated from a lower frequency.
Conversely, we adopt a comprehensive cost function account-
ing for multiple factors such as number of fragments, size
of fragments, and locations of fragments in the spectrum.
We also employ several new re-configuration operations and
additional optimizations not considered in [30]. One caveat of
SA algorithm, both ours and that in [30], is that it requires a
large number of steps to reach a re-optimized state, making it
impractical. Therefore, we also propose an effective algorithm
that reaches a defragmented state in a limited amount of steps,
which makes our approach ready to be applied in practice.

There have been some works that try to form an analytical
performance modeling of spectrum defragmentation in elastic
optical links, such as [31], and [32]. The work in [31]
presents an analytical study of the effect of defragmentation
on the connections’ blocking probability in an elastic optical
link depending on whether defragmentation is proactively
or reactively performed. The authors of [32] formulate a
Markov Chain model for characterizing the fragmentation
issue in a simplified two-service elastic optical link scenario.
These works are limited to the case of a single fiber link,
and extending their work to attain an analytic modeling of
spectrum defragmentation in large scale EONs with splitting-
enabled technology would be a very interesting but challenging
research direction. Moreover, heuristics that require calculating
a complex fragmentation metric (such as RMSF [18]) would
significantly increase the complexity of the modeling. We
consider such analytical modeling to be out of scope of this
paper and leave it as a potential future work direction.

There are also several papers that analyze the effect of spec-
trum defragmentation on decreasing the blocking probability
and improving the EON capacity for accepting more future
traffic. Among them, [29] evaluates the effect of two proactive
defragmentation algorithms based on Ant Colony optimization
and Genetic metaheuristics on blocking probability over two
different EON topologies. A survey paper [9] evaluates and an-
alyzes state-of-the-art fragmentation management approaches
in terms of blocking probability by implementing and applying
those approaches in a unified simulation environment for
fair comparison. As discussed before, an important question
regarding proactive defragmentation is when to invoke the
re-optimization process. However, the aforementioned papers
simply trigger the re-optimization process pro-actively in a
periodic manner, or when specific thresholds are exceeded
(e.g., fragmentation is high). In contrast to these works, [33]
proposed an intelligent algorithm for time selection of the re-
optimization operations. The proposed algorithm periodically
monitors the temporary blocking probability for the previous
requests in a time window whose size is purposefully adjusted
to cope with the changes in the traffic. However, as our

experimental results will show, simply relying on a single
metric for choosing the re-optimization times might lead to
a very poor performance in terms of acceptance ratio.

III. PROBLEM DEFINITION

A. Problem Statement

We are given an EON G and a set of VNs G embedded
on G. EON G (the substrate network) consists of a set of
substrate optical nodes (SNodes) and substrate optical links
(SLinks), respectively; and a SPath is a substrate path between
two SNodes in the EON that can contain a sequence of SLinks.
Each VN Ḡ ∈ G consists of a set of virtual nodes (VNodes)
V̄ and virtual links (VLinks) Ē where each VLink ē ∈ Ē has
a bandwidth demand bē. Each VN is embedded by mapping
each of its VNodes to an EON node and each of its VLinks
to a set of splits with a maximum of q splits. Fig. 1 shows
an illustrative example of the embedding of a VLink over two
splits. Each split represents a path in the EON where each path
p is configured with a transmission configuration represented
by a tuple t = (d, b,m, f) ∈ T = (D×B×M×F) to provide
a data-rate so that the sum of data-rates is bē. Here, d, b,
m, and f represent data-rate, baud-rate, modulation format,
and FEC selected from the set of possible values D, B, M,
and F, respectively. Each tuple t has a spectrum requirement
and a maximum optical reach within which t can be used
with satisfactory signal quality as defined by a reach table
R [34]. The reach table R contains a set of tuples each of
which has a specific spectrum requirement and a maximum
optical reach. Note that the same SPath can be used multiple
times as the splits of a VLink following the reasoning in
[8]. Also note that χēi = (p, t, sb, st)|1 ≤ i ≤ q represents
the i-th split, where χ

(p)
ēi and χ

(t)
ēi denote the selected SPath

and transmission configuration for the i-th split, respectively.
The spectrum slot allocation for the i-th split begins at index
χ
(sb)
ēi ∈ S and ends at index χ

(st)
ēi ∈ S along each SLink in the

SPath χ
(p)
ēi to satisfy the spectrum contiguity constraint [9].

The VN embedding re-optimization problem seeks to find
a feasible sequence of re-configuration actions applied on the
VN embeddings such that the resulting embeddings of the
VNs optimize (i.e., maximize or minimize) a certain objective
function. In our problem, the objective is to minimize network-
wide RMSF metric presented in (1). This metric leverages
RMSF values of each EON link computed using (2), which
is the most comprehensive fragmentation metric [18]. We
assume VNode mapping to remain unchanged during the re-
optimization process (typical assumption in optical network
virtualization [35]).

FRMSF
net =

∑
e∈E FRMSF

e

|E|
smax

|S|
(1)

FRMSF
e =

smax
e |I|√∑

i∈I f2
i

|I|

(2)

During re-optimization, the embedding of a VLink of the
existing VNs in G can be re-configured one or multiple times
to reduce spectrum fragmentation. VLink re-configuration
consists in changing the VLink’s embedding i.e., one or more

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Different re-configuration actions and corresponding cost
ID Re-optimization action Disruption

level
Extra
Transponder?

Extra
Spectrum?

R1 Move a split on the same path with the optimal tuple in R Zero No No
R2 Move a split to a different path with the optimal tuple in R Zero No No

R3

Merge two splits of the same VLink into one such that spectrum
allocation of the new split does not overlap with the spectrum
allocations of previous two splits

Zero No No

R4

Merge two splits of the same VLink into one such that spectrum
allocation of the new split overlaps with the spectrum allocation of
any of the previous two splits

High No No

R5 Divide a split of a VLink into multiple splits on the same path Zero Yes (Possibly) Yes

splits’ SPath (χ(p)
ēi), tuple (χ(t)

ēi), and spectrum allocation
(χ(sb)

ēi and/or χ(st)
ēi) or a combination thereof. A re-configured

split still has to satisfy spectrum contiguity and optical reach
constraints and total number of splits after re-optimization
cannot be more than q. We use 5 different re-configuration
actions with different levels of disruption and their impact on
resource usage (e.g., transponder or spectrum usage) shown
in Table I. For instance, R1 in Table I may change any or
all of χ

(t)
ēi , χ(sb)

ēi , and χ
(st)
ēi of a split while keeping its χ

(p)
ēi

fixed, whereas R2 can change all of them. Splitting offers us
new re-configuration actions (R3, R4, and R5) that were not
considered in prior work. For example, we can merge two
splits into a larger one using R3/R4 or divide a large split
into multiple smaller ones using R5.

All actions except R4 in Table I can be applied using make-
before-break to avoid any disruption as long as the spectrum
allocation after applying any of these actions does not overlap
with the previous spectrum allocation. Note that make-before-
break requires double committed resource for a short period
of time when it is applied. There are scenarios when the
spectrum allocation after re-configuration overlaps with the
allocation present before applying the action such as for action
R4 in Table I. In such scenarios, it might not be possible to
apply make-before-break, therefore, the disruption level can be
significantly high. However, disruptive action such as R4 may
be useful to defragment a highly utilized EON and should be
used only when necessary.

B. Pre-computations

For each VLink ē ∈ Ē, we pre-compute Pk
ē , a set of k

shortest paths between each pair of SNodes that a VLink’s end
VNodes have been mapped to. For each SPath p ∈ Pk

ē , we
pre-compute the set of admissible transmission configurations,
Tēp ⊂ T , such that each configuration t ∈ Tēp results in a
reach rt ≥ len(p) and has a data-rate t(d). Tē contains all the
distinct tuples suitable for ē and is defined as

⋃
∀p∈Pk

ē
Tēp.

IV. RE-OPTIMIZATION WITH UNBOUNDED NUMBER OF
ACTIONS

In this section, we present a Simulated Annealing [19] (SA)
based algorithm for solving the VN embedding re-optimization
problem. SA allows us to systematically search through a
solution space, while maintaining a lineage of operations
starting from the initial network state to reach a feasible re-
optimized state. The advantage of SA is that it can avoid
getting stuck at local minima by employing random moves,
and converge to a global minimum if the SA process is run
for a sufficiently long period of time.

(a) Embedding over two splits on different paths

(b) Embedding over two splits on the same path

Fig. 1: Embedding of a virtual link over two substrate splits.
Red and white rectangles represent occupied and empty spec-
trum slots, respectively.

A. Simulated Annealing (SA) Algorithm

SA systematically explores the neighborhood of an initial
set of embeddings of all VLinks in G (i.e., current state) and
keeps reducing the fragmentation of the EON G. A neighbor
to the current state is another set of embeddings where the
embedding of only one VLink from the current state is
re-configured using one of the actions presented in Table I.
SA then evaluates quality of the neighbor using our objective
function of FRMSF

net in Eqn. (1) and moves to a neighbor
that improves FRMSF

net . It also probabilistically accepts a worse
neighbor (a re-optimized embedding with a higher value of
FRMSF

net than the current state) from the search neighborhood.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

Typically, a temperature parameter (T) and energy function
controls the probability of accepting a worse neighbor. Pa-
rameter T is set to a higher value during the initial iterations
of the search, resulting in a higher probability of accepting a
worse neighbor. A cooling schedule attenuates the temperature
and eventually decreases the probability of accepting a worse
neighbor towards the end of the SA search. By accepting worse
solutions, SA tries to avoid being stuck at a local minimum.
We run multiple iterations of the neighborhood exploration
procedure for each temperature to cover a wider search space.
To better explain the SA algorithm, we define the following:

• A neighborhood generation function, which generates a
set of neighbors to the current state and returns a
neighbor according to a policy.

• An energy function, which determines the fitness of a
neighbor. It regulates the probability of accepting or
rejecting a neighbor during an iteration of SA.

• A cooling schedule, which determines how the tempera-
ture is attenuated during the search process.

1) Neighborhood Generation: We devise an algorithm
(Algorithm 1) for generating a set of neighbors to the
current state and returning one of the neighbors. Algo-
rithm 1 first chooses a random split Y from the uni-
formly distributed set of embeddings of the VLinks of
current state. Then, Algorithm 1 generates all feasible
neighbors, all neighbors, by applying each action from Table
I on split Y . However, if the chosen random split belongs
to a Vlink that does not allow service disruption according
to its QoS requirement, then no neighbors from applying
R4 on the current state will be generated in this process.
Moreover, note that the number of feasible neighbors for a
single action can be large due to the many possible feasible
spectrum re-allocation of a split Y . Since there can be a
substantial number of feasible neighbors in all neighbors
and a significant portion of them are not helpful for re-
optimization, Algorithm 1 adopts two heuristics for keep-
ing the most promising neighbors in neighbor pool. First,
Algorithm 1 excludes those neighbors from all neighbors
that use δ% additional spectrum slots compared to that used
in split Y ’s current embedding (line 4). We call δ as Slot
Usage Limit. The rationale for doing so is that a network
operator may not want to increase spectrum usage during
re-optimization and may want to move to neighbors whose
spectrum usage remains within a specified bound. Second,
Algorithm 1 populates a sorted list of the remaining neighbors
in all neighbors in increasing order of the neighbors’ FRMSF

net
values (sorted neighbors) and adds only the first Γ% (called
as Neighborhood Limit) neighbors from sorted neighbors to
neighbor pool (line 6). Here, both δ and Γ parameters can
be tuned based on network operator policies. Moreover, as
action R4 has the drawback of causing service disruption, to
make sure that this action is only chosen when it leads to
a significant decrease in the network’s fragmentation metric,
we introduce a new parameter Γ′ called Disruption Limit.
We only keep neighbors generated by action R4 that lie in
the first Γ′% of neighbors in neighbor pool (which is also
sorted based on the FRMSF

net values) and remove all the other

neighbors generated by applying R4 from neighbor pool. In
our experiments, we observed that even setting Γ′ = 100%
led to choosing very limited number of action R4 (see Fig. 6).
However, if the operators desire to further limit the number of
times that action R4 is chosen in the defragmentation process,
they can choose a lower value for Γ′.

Algorithm 1: Select-Neighbor
1 function Select-Neighbor(current state, δ,Γ,Γ′)
2 Choose a random split Y from current state
3 all neighbors← Generate all feasible neighbor states

by applying actions from Table I on split Y
4 Exclude neighbor states from all neighbors that uses

≥ δ% additional slots compared to current state
5 sorted neighbors← Sort the neighbors in

all neighbor in increasing order of their RMSF
6 neighbor pool← Select the first Γ% neighbors from

sorted neighbors
7 Remove neighbors generated by R4 that don’t lie in the

first Γ′% of neighbor pool
8 max RMSF ← Maximum value of RMSF among the

neighbors in neighbor pool
9 for neighbor ∈ neighbor pool do

10 Gainneighbor ←
(RMSFneighbor −max RMSF)2

11 < neighbor, action spec >← A neighbor from
neighbors pool with a probability proportional to
Gainneighbor and corresponding action

12 return < neighbor, action spec >

After generating neighbor pool, Algorithm 1 finds
the maximum value of FRMSF

net among the neighbors in
neighbor pool. This value is then used to compute the relative
RMSF gain (Gainneighbor) of each of the other neighbors in
neighbor pool (line 8 – 9). Gainneighbor is defined as the
square of the difference between the neighbor’s FRMSF

net and
the maximum value of FRMSF

net . Finally, the algorithm returns
a neighbor with the probability proportional to its RMSF gain
and action spec, the action that generated the neighbor.

2) Energy Function and Cooling Schedule: We use our
fragmentation metric FRMSF

net defined in Eqn. (1) as the energy
function. During iteration k of SA search, the probability of
moving to a neighbor is a function of energy and tempera-
ture [19]. This probability is defined as follows:

P(Energy, Tk) =

{
1 if ∆Energy < 0

e−∆Energy/Tk otherwise.

Here, Tk is the temperature at the k-th iteration and
∆Energy = FRMSF

net (current state) − FRMSF
net (new state),

where FRMSF
net (current state) and FnetRMSF(new state) are en-

ergies of current state and the neighbor returned by Algo-
rithm 1, respectively. We use a linear cooling schedule [36]
and set the temperature T at iteration k+1 as: Tk+1 = ρ∗Tk,
where 0 < ρ < 1 is the cooling rate (Line 21).

The SA algorithm, as outlined in Algorithm 2, takes as
input an initial state, i.e., current set of VN embedding
(C), maximum number of iterations to perform (itmax), the
number of iterations to perform per temperature value (ittemp),
an initial temperature (T0) and the cooling rate (ρ). During
each iteration for a particular temperature value, new state

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: SA-Re-Optimize
1 function SA-Re-Optimize(C, itmax, ittemp, T0, ρ)
2 iterations← 0, T ← T0

3 action sequence← best sequence← ϕ
4 best state← current state← C
5 while iterations < itmax do
6 while iterationst < ittemp do
7 current cost← F RMSF

net (current state)
8 < new state, action spec >←

Select-Neighbor (current state, δ,Γ)
9 new cost← F RMSF

net (new state)
10 ∆energy = current cost− new cost
11 p← rand(0, 1)
12 if ∆energy < 0 or p < e∆energy/T then
13 current state← new state
14 current cost← new cost
15 action sequence.append(action spec)
16 if current cost < best cost then
17 best cost← current cost
18 best state← current state
19 best sequence← action sequence
20 Increment iterationst
21 T = ρ ∗ T , Increment iterations
22 return < best state, best sequence >

and its action spec are generated by invoking the Select-
Neighbor procedure from Algorithm 1 (line 8). Based on the
energy of the new state and the current temperature, the SA
search moves to the new state or not (line 11 – 15). During
the search, SA keeps track of the best state (best state)
and corresponding action sequence (best sequence) accord-
ing to the objective function FRMSF

net . Finally, best state and
best sequence generated during all the iterations are returned.

V. RE-OPTIMIZATION WITH BOUNDED NUMBER OF
ACTIONS

Although the SA algorithm from Section IV is capable of
systematically exploring a large solution space, it may require
an excessively large number of reconfiguration actions to reach
the re-optimized state. A long sequence of reconfiguration
steps can cause a long period of network instability, rendering
the SA algorithm impractical in realistic settings. Another
drawback of SA algorithm is the lack of fairness among
the involved VLinks, i.e., some VLinks may be subject to
a significantly more number of reconfiguration actions than
others, resulting in longer period of instability for those
VLinks. To resolve these two limitations of the SA algorithm,
we propose a greedy algorithm that can provide a satisfactory
re-optimization performance using a bounded number of total
actions and per-VLink actions. In this section, we first discuss
the two constraints to bound the number of actions, and then
describe how the greedy algorithm enforces these constraints.

Maximum number of actions: This bound defines the
maximum number of actions (Mmax) the re-optimization pro-
cess can take, similar to the bound proposed in [37]. The so-
lution to the re-optimization problem will generate an ordered
sequence of at most Mmax actions that lead to the best possible
re-optimized state.

Maximum number of actions per-VLink: This bound
enforces a limit on the maximum number of actions (Amax)

the re-optimization process can apply on each VLink. Sim-
ilar bounds have been applied to ensure fairness during
defragmentation of wavelength division multiplexed optical
networks [37]. Note that one could easily impose a differ-
ent bound on different VLinks to facilitate a differentiated
treatment of VLinks during re-optimization. Such differential
treatment can enable a variety of service level agreements
where a VLink from the highest priority class is not impacted
during re-optimization, while a VLink from best-effort class
goes through a substantially large number of re-configurations.

A. Greedy Algorithm

The greedy algorithm presented in Algorithm 3 takes the
current set of VN embeddings (C), maximum number of
iterations to perform (itmax), number of inner iterations (itinn),
Mmax, and Amax as inputs. The greedy algorithm follows a
similar flow of SA algorithm from Algorithm 2 with three ma-
jor differences, while ensuring the constraints imposed by the
two bounds we discussed. First, Algorithm 3 selects the best
neighbor in terms of FRMSF

net as opposed to selecting a neighbor
chosen based on a probability distribution in Algorithm 2.
To do so, Algorithm 3 invokes Best-Neighbor procedure that
returns the neighbor with the lowest value of FRMSF

net among
the neighbors generated by applying the actions from Table I
on a randomly selected split Y . Best-Neighbor procedure is
a modified version of Algorithm 1 that first picks a random
split Y which has been subjected to Slot Usage Limit and
has not exceeded Amax actions, and returns the neighbor with
the highest RMSF gain by applying the actions from Table
I on split Y . We do not present Best-Neighbor procedure
for the sake of brevity. If the neighbor returned by Best-
Neighbor procedure improves FRMSF

net from the current state,
Algorithm 3 takes the corresponding action and moves to the
neighbor state. Since Algorithm 3 selects neighbor in a greedy
fashion, it can get stuck to a local minima. To circumvent
this issue, Algorithm 2 has a provision to move to a worse
neighbor than the current state with a low probability as
discussed next.

The second difference of Algorithm 3 with Algorithm 2
is that Algorithm 3 moves to a worse neighbor than the
current state only when it is necessary as opposed to
stochastically moving to a worse neighbor in Algorithm 2.
This move is triggered when the neighbors of all the splits
have worse FRMSF

net values than FRMSF
net of current state. This

is achieved by incrementing a counter (it counter) when a
worse neighbor is found and comparing it counter with total
number of splits (no of splits) in line 24 – 25. When a better
neighbor is found in a particular iteration, it counter is reset
to start over (Line 12). Finally, Algorithm 3 has a terminating
condition when the number of applied actions reaches the
threshold Mmax in line 21. When such condition is reached,
Algorithm 3 returns the best neighbor found during the search.
Note that we also tried a naive greedy algorithm that chooses
a split Y on the EON link with the maximum fragmentation
and does not take a worse neighbor at any time. Such a
naive greedy algorithm gets stuck to a local minima very
soon during the search. Hence, our proposed greedy algorithm

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3: Greedy-Re-Optimize
1 function Gr-Re-Optimize(C, itmax, itinn, Mmax, Amax)
2 iterations← 0, move counter ← 0
3 action sequence← best sequence← ϕ
4 best state← current state← C
5 while iterations < itmax do
6 it counter ← 0
7 while iterationst < itinn do
8 current cost← F RMSF

net (current state)
9 < new state, action spec >← Best-Neighbor

(current state, δ,Γ)
10 new cost← F RMSF

net (new state)
11 if new cost < current cost then
12 it counter ← 0
13 Increment move counter
14 current state← new state
15 current cost← new cost
16 action sequence.append(action spec)
17 if current cost < best cost then
18 best cost← current cost
19 best state← current state
20 best sequence← action sequence
21 if move counter = Mmax then
22 return < best state, best sequence >
23 else
24 Increment it counter
25 if it counter > no of splits then
26 current state← new state
27 current cost← new cost
28 action sequence.append(action spec)
29 Increment iterationst
30 Increment iterations
31 return < best state, best sequence >

blends greedy selection of neighbors with random choice of
a split at the beginning and has the provision of selecting a
worse neighbor when needed.

VI. DRL FOR BALANCING THE TRADE-OFF BETWEEN
NUMBER OF PERFORMED RE-OPTIMIZATION OPERATIONS

AND ACCEPTANCE RATIO

In the reoptimization process, we have a trade-off be-
tween the performance improvement and the increase in
operational complexity. In other words, invoking the re-
optimization operations too frequently might cause unneces-
sary operational complexity since the re-optimization process
may involve spectrum re-configuration or lightpath provi-
sioning/termination, while not performing the re-optimization
operation in the some crucial situations can lead to a severe
decrease in the number accepted VN requests.

For this purpose, we propose a DRL-based algorithm to
determine the timing of the re-optimization operations intel-
ligently so that we can achieve a significant improvement in
acceptance ratio while keeping the number of re-optimization
operations at a reasonable level.

In the proposed algorithm, after every K incoming VN
requests (e.g., K = 40), the DRL agent decides based on
the status of the substrate network whether to apply the re-
optimization operation or not. The components of the DRL
formulation are as the following:
RL steps: step l = i ∈ N is when K × i VN requests have

arrived, so each step represents arrival of K VN requests.
RL state space: the state sl ∈ {−1,+1}|E|×|S| describes
whether each spectrum slot in each SLink of the EON is
occupied (+1) or not (−1). |E| is the number of SLinks and
|S| is the number of spectrum slots in each SLink.
RL action space: binary action al ∈ {0, 1} determines
whether in step l the re-optimization operation should be
performed (al = 1) or not (al = 0).
RL reward: we define the reward of the DRL agent to be the
acceptance ratio of the next K incoming VN requests, plus
a negative penalty for choosing to apply the re-optimization
operation. In this way, the agent is encouraged to balance the
trade-off between the number of performed re-optimization
operations and the overall acceptance ratio of the VN requests.
So, we have rl = δl− c×al, where δl is the ratio of accepted
VN request between steps l and l + 1, and c is the chosen
penalty as the cost of performing a re-optimization operation.
RL episode: each training episode should be a certain duration
of EON operation, possibly starting with an empty EON and
then allocating/deallocating VN requests that dynamically ar-
rive and depart according to some specific life times. We have
described the training episode in our experiments specifically
in Section VII.

As the DRL algorithm, we choose the Soft Q-Network
(SQN) method [20], which is a modification of the well-
known Deep Q-Network (DQN) method that adds an entropy
regularizer to the standard Markov Decision Process (MDP)
formulation, and is shown to be more robust, less likely to
overfit, more sample efficient, and handles the exploit-explore
balance better than DQN [20], [38], [39]. Since we are dealing
with a discrete (binary) action space, the SQN would be a very
suitable RL algorithm for our problem.

A high-level overview of the SQN’s interaction with the
EON environment is depicted in Fig. 2, and its training
procedure is described in Algorithm 4. At each training step,
the agent observes the status of the EON’s SLinks as the
current state s, and decides whether to invoke re-optimization
or not (binary action a). Then, after K incoming VN requests,
the status of the substrate network is considered as the next
state s′, and the reward value can be calculated as described
before. The experience (s, a, s′, r) is stored in a memory
referred to as the replay (or experience) buffer. For updating
the SQN according to the (soft) Bellmam equation, instead of
only using the latest experience, a mini-batch is sampled from
the experience buffer and used for updating the neural network
to prevent oscillations in the action values. This technique of
using a large buffer of past experience and sampling training
data from it is called experience replay [40], and allows to
learn from individual experience multiple times and in general
make a better use of experience. This procedure is repeated
for the next states and for multiple iterations (episodes) until
the convergence of the DRL agent.

VII. EVALUATION

A. Simulation Setup

We implement the algorithms presented in Section VII-B
using C++. We consider a fully-flexible EON using Nobel

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: SQN Training
1 initialize the SQN weights
2 for each training episode do
3 wait for the first K VNs to arrive
4 observe current state s
5 while episode is not finished do
6 select action a and execute it
7 wait for the next K VNs to arrive
8 calculate reward r
9 observe new state s′

10 add (s, a, s′, r) to experience buffer
11 sample mini-batch of experiences from buffer
12 for each experience in mini-batch, perform gradient

update for the SQN by the soft Bellman equation
13 update state s← s′

14 end of episode
15 end of training

Fig. 2: Overview of the DRL agent’s interaction with the EON
environment

Germany topology (17 nodes and 26 links) from the SNDlib
Repository (available at http://sndlib.zib.de). Each EON link
has 4THz spectrum bandwidth divided into 160 slots of
25GHz. To emulate a live EON, we develop a discrete
event simulator. The simulator loads the EON with VNs by
simulating VN arrival and departure events and allocating
and releasing spectrum slots to virtual links accordingly.
In our simulator, VN arrival rate (VNR) follows a Poisson
distribution with varying means (4-20 VNs per 100 time
units) and VN life time is exponentially distributed with a
mean of 500 time units. The number of VNodes vary from
2 to 6 and number of VLinks vary from 3 to 15 (randomly
chosen). When a VN arrives, the simulator embeds the VN
using the algorithm proposed in [8]. This simulator generates
snapshots of the EON’s current occupation at different time
instances in which a varying number of VNs are embedded.
To analyse the performance of the compared algorithms in
terms of RMSF reduction, we take different snapshots of the
EON at different utilizations (varying from 30% to 60%). For
each network utilization, we pick five random snapshots. For
each snapshot, we independently run the compared variants
five times and take the output of the run that achieves the
best defragmentation. Finally, we report the average (with

maximum and minimum as errorbars) of the best performances
of each five different snapshots.

Then, to analyse the performance of applying re-
optimization in terms of acceptance ratio, we run a similar sim-
ulation and after every K = 40 incoming VN requests, accord-
ing to the chosen time selection strategy, we decide whether to
perform our re-optimization operation (Gr−Re−Optimize)
on the EON or not. We have reported the acceptance ratio
and number of re-optimization operations of different time
selection strategies in Section VII-F.

We trained the DRL agent for around 6000 episodes of only
simulations with V NR = 12 (other VNR values are not used
during training). Each training episode was running the sim-
ulation for 5, 000 time units; since we have V NR = 12 and
K = 40, around 600 VNs will arrive during the simulation and
the training episode will have around 15 RL steps (as defined
in Section VI). Fig. 3 shows the reward of the DRL agent
during the training episodes. We can see in the figure that after
a certain number of training episodes, the aggregated reward
of the DRL agent in an episode has significantly improved
compared to the beginning where the DRL’s actions are mostly
chosen at random. This shows that the agent gradually learns
the most effective times to invoke re-optimization and also
not to perform too many re-optimizations due to the negative
penalty we have considered for each re-optimization operation.

Fig. 3: Episode rewards of the DRL agent trained with the
VNR12 scenario

B. Compared Variants for Slice Embedding Re-optimization

1) SA-baseline: This variant represents SA-Re-Optimize
algorithm (Algorithm 2) with a huge number of iterations for
itmax and ittemp. The values of T0 = 100 and ρ = 0.99 for
Algorithm 2 are chosen as best performing ones from multiple
trials. This variant also uses Slot Usage Limit as δ = 10%
and Neighborhood Limit as Γ = 10% for Algorithm 1 chosen
based on trials. SA-baseline is used to show convergence of
SA-Re-Optimize algorithm, and it provides a feasible lower
bound for the re-optimization problem.

2) SA-Re-Optimize: This variant shows the performance of
SA-Re-Optimize algorithm (Algorithm 2) with a fixed number
of total iterations i.e., itmax = 1000, ittemp = 1000 and T0 =
100 and ρ = 0.99.

3) Gr-bounded: This variant represents Gr-Re-Optimize
algorithm (Algorithm 3). In this case, we set Mmax = 500
and Amax = ∞ in Algorithm 3. We also vary Mmax and Amax
to show sensitivity of Algorithm 3.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

4) SA-SOA: Simulated Annealing State-of-the-art (SA-
SOA) is a variant that represents the scenario where we
minimize our cost function FRMSF

net (i.e., Eqn. (2)) by using
the SA-based defragmentation mechanism presented in [30].
To the best of our knowledge the work in [30] is the closest
to SA-Re-Optimize algorithm (Algorithm 2). The mechanism
presented in [30] is not specific to any cost function, therefore,
we use our cost function instead of theirs for a fair comparison.

C. Compared Approaches for Time Selection of the Re-
optimization Operations

1) Freq-Re-Optimize: In this approach, the re-optimization
operation is frequently performed on the EON after every K =
40 incoming VN requests. This approach yields the highest
number of re-optimization operations in our experiments.

2) Less-Freq-Re-Optimize: This approach is a less frequent
version of Freq-Re-Optimize, where the re-optimization oper-
ation is performed on the EON after every K2 > K incoming
VN requests (e.g., K2 = 4×K).

3) Thr-Re-Optimize: In this approach, the re-optimization
operation is invoked whenever the RMSF metric exceeds a
predefined threshold value.

4) Window-Re-Optimize: In this approach, the times for
performing the re-optimization operations are chosen based on
the algorithm presented by [33]. In this algorithm, after each
time interval ∆t, the temporary blocking probability during the
latest ∆t is calculated and if it exceeds a pre-defined thresh-
old, the re-optimization process is invoked. Moreover, after
performing a re-optimization operation, based on the behavior
of the calculated blocking probabilities in the previous time
intervals, ∆t will be increased or decreased to adopt to the
current status of the network.

5) DRL-Re-Optimize: In this approach, after every K = 40
incoming VN requests, our trained DRL agent decides whether
to invoke the re-optimization process or not based on the
current status of the EON.

D. Performance Metrics

• RMSF Reduction: It is the reduction of fragmentation
achieved by an algorithm in terms of RMSF (FRMSF

net)
from the RMSF of the given snapshot before re-
optimization. It is defined as (1 - (the ratio of FRMSF

net
of the EON after re-optimization to FRMSF

net of the EON
before re-optimization)). The desired value of RMSF
Reduction is 1 but that is not practically achievable.
However, the closer RMSF Reduction is to 1, the more
defragmentation is achieved through re-optimization (e.g.,
roughly, RMSF reduction of 0.95 means that 95% frag-
mentation has been reduced compared to the fragmenta-
tion before re-optimization).

• Slot Ratio: It is the ratio between the total spectrum
slot usage by the VNs after re-optimization and the total
spectrum slot usage by the VNs before re-optimization.
Slot Ratio smaller than 1 means that spectrum occupation
has decreased after re-optimization.

• Action Count: It is the total number of sequential actions
adopted by an algorithm to reach its re-optimized state.

• Number of Actions per VLink: It is the average number
of actions applied on each VLink by an algorithm to reach
its re-optimized state.

• Acceptance Ratio: Ratio of the number of accepted VN
requests to the total number of requests during an episode
of the simulation.

• Number of Re-optimization Operations: Total number of
performed re-optimization operations during an episode
of the simulation.

100 101 102 103 104 105 106

Number of Actions

0

250

500

750

1000

1250

1500

1750

2000

R
M

S
F

Fig. 4: Convergence of Algorithms

E. Discussion of Results on RMSF Reduction

1) Comparison of Different Algorithms: Fig. 4 shows that
convergence of the compared variants in terms of RMSF
(FRMSF

net) values of the EON against number of actions for a
specific snapshot with 60% utilization. This figure shows that
SA-baseline converges to a feasible lowerbound if it is allowed
to run for a sufficiently long time. On the other hand, SA-Re-
Optimize does not converge to a steady value but achieves
an RMSF very close to SA-baseline’s lowerbound despite
being run for a fixed number of iterations. Similarly, SA-SOA
diverges initially but reaches to an RMSF value closer to the
lowerbound through a large number of steps. In comparison
to SA based approaches, Gr-bounded decreases RMSF of the
EON sharply and achieves an RMSF close to SA-baseline’s
lowerbound even by applying a limited number of actions.

Fig. 5 compares different algorithms in terms of the perfor-
mance metrics introduced before. In Fig. 5(a), RMSF reduction
decreases for larger initial network utilization. This is rational
since a highly utilized EON offers less room to re-optimize.
Fig. 5(a) also shows that SA-Re-Optimize closely approximates
SA-baseline, and both achieve great performance by reducing
more than 90% fragmentation in the given snapshots. On the
other hand, Gr-bounded and SA-SOA achieve lower reductions,
yet reductions consistently remain within 10% of SA-baseline.
Gr-bounded, despite using limited number of actions, achieves
higher or equal RMSF reduction than SA-SOA in all cases
except for the snapshots with the highest utilization (60%).
Even in the constrained snapshots of high utilization, Gr-
bounded reduces more than 80% fragmentation in the EON.
If not properly designed, defragmentation algorithms might
lead to an increase in spectrum slot usage. Our proposed
approaches (SA-baseline, SA-Re-Optimize, and Gr-bounded)
succeed instead in decreasing slot usage compared to the slot
requirement of given snapshots (see Fig. 5(b)) thanks to Slot
Usage Limit (δ) in Algorithm 1. Note instead that, in the

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

(a) RMSF Reduction

(b) Slot Usage Ratio

Fig. 5: Performance of different algorithms

case of SA-SOA that does not employ any Slot Usage Limit,
defragmentation requires more than 20% additional spectrum
slots (while this increase is avoided by our algorithms).

Note that RMSF reductions of SA based approaches (SA-
baseline, SA-Re-Optimize, and SA-SOA) in Fig. 5(a) require a
huge number of re-configuration actions to converge to the
most optimized final state (see Fig. 6(a)), in the order of
100’s of thousands, which makes their application impractical
in a realistic operational settings. In contrast, Gr-bounded
achieves more than 80% reduction on fragmentation with no
additional spectrum usage by employing only up to 500 re-
configuration actions (on average, 2 to 3 actions per VLink),
making Gr-bounded a more practical solution to be leveraged
by a network operator. Finally, Fig. 6(b) shows the distribution
of different actions from Table I adopted by SA-Re-Optimize,
SA-SOA, and Gr-bounded. According to this figure, usage of
action R1 comprises the major percentages, while the proposed
re-configuration actions (R3 − R5) have been used in more
than 20% cases of SA-Re-Optimize and Gr-bounded. We also
observe that the action R4 which causes disruption has been
used very rarely in case of Gr-bounded.

2) Analysis of Gr-bounded: Fig. 7 shows the impact of
varying Mmax (Maximum number of actions) on the perfor-
mance of Gr-bounded with Amax = ∞ and for different
values of initial network utilization. Fig. 7 also compares the

(a) Action Count

(b) Action Distribution

Fig. 6: Actions taken by different algorithms

performance of Gr-bounded having different Mmax bounds
with the best possible re-optimized state that could be achieved
by SA-Re-Optimize in limited number of steps (Mmax = 1000).
Fig. 7(a) shows that Gr-bounded, even with the smallest Mmax
(Mmax = 100) achieves 20-30% more defragmentation than
the SA-Re-Optimize with Mmax = 1000. We also observe that
SA-Re-Optimize with Mmax = 1000 could not even reduce
RMSF more than 50% in any case. The reason for such
poor initial performance of SA-Re-Optimize is that it allows
to move to a worse neighbor with a high probability during
the initial stages of SA search that diverges SA-Re-Optimize
within Mmax = 1000 actions. Such behavior is fundamental to
the SA algorithm and, for this reason, SA-Re-Optimize cannot
be used in a practical setting where the number of actions is
limited. Another takeaway from Fig. 7 is that RMSF reduction
of Gr-bounded increases drastically when the value of Mmax
goes from 100 to 300 and RMSF reduction stabilizes for
Mmax ≥ 500. This justifies our choice of Mmax = 500 for
the other evaluations of Gr-bounded. Finally, Fig. 7(b) shows
that Gr-bounded applies on average one action to each VLink
when Mmax is low (Mmax = 100). For SA-Re-Optimize, we
keep the best re-optimized state within Mmax = 1000 that
can be reached with lower number of actions per VLink.
After reaching the best re-optimized state, SA-Re-Optimize
diverges to worse solutions, and hence we ignore those actions
justifying the lower number of per-VLink actions. This figure
also shows that average number of actions per VLink increases
with the increase in Mmax and decreases when network uti-

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

(a) RMSF Reduction

(b) Action Count per VLink

Fig. 7: Performance of Gr-bounded by varying Mmax

lization increases. This is due to the fact that, as utilization
increases, snapshots have more VLinks, and the same total
number of actions are distributed among more VLinks thus
reducing number of actions per VLink.

Let us now discuss the impact of varying Amax (Maximum
number of actions per-VLink) on the performance of Gr-
bounded with Mmax = 500 and for different values of
initial network utilization. Recall from Section V, Amax = x
means that a VLink can go through at most x number
of re-configuration actions during the whole re-optimization
process. Fig. 8(a) shows that Gr-bounded with Amax = 1
achieves the lowest RMSF reduction as it allows a single
re-configuration action for all the splits of a VLink. Such a
conservative version of Gr-bounded still reduces more than
60% fragmentation using the smallest number of actions as
shown in Fig. 8(b). As we loosen the constraint of Amax (by
increasing its value), a VLink can be re-configured more than
once offering more opportunities to re-optimize. Hence, RMSF
reduction increases for increasing Amax. Such gain is more
prominent for smaller values of Amax while smaller increases
in RMSF reduction are observed for Amax ≥ 6. This is due to
the fact that the other limit of Maximum number of actions
(Mmax = 500) dominates in Gr-bounded for Amax ≥ 6. Similar
observations apply to the total number of actions in Fig. 8(b).
Another takeaway from Fig. 8(b) is that action count increases
with the increase in utilization of snapshots. This is expected
as a snapshot with higher utilization has more VLinks that

(a) RMSF Reduction

(b) Action Count

Fig. 8: Performance of Gr-bounded by varying Amax

requires more actions to be applied.

F. Discussion of Results on Different Re-optimization Time
Selection Strategies

Fig. 9 shows the acceptance ratio and number of re-
optimization operations of different time selection approaches
for different values of VNR. As shown in Fig. 9(a), applying
the greedy re-optimization operation on the network (Freq-Re-
Optimize) leads to considerable improvement in the acceptance
ratio compared to the case with no re-optimization, and this
improvement is more significant for lower VN arrival rates
(8% for V NR = 20 and 15% for V NR = 4). This shows
that there is a high correlation between the fragmentation
level (RMSF) of the EON and its capability to accept more
traffic, and reducing RMSF is a very suitable indirect approach
for increasing the acceptance ratio when there is no priori
knowledge of the future VN requests.

Moreover, we can see that the acceptance ratio of our
proposed DRL-Re-Optimize is very close to the Freq-Re-
Optimize case, while performing much fewer re-optimization
operations (one-third on average, as shown in Fig. 9(b)).
This means that our RL algorithm has successfully detected
the most crucial moments for performing the re-optimization
process to achieve a high degree of performance improvement
with limited number of re-optimization operations. More-
over, the figure shows that other time selection strategies
with similar number of re-optimization operations as our RL
algorithm (namely, Less-Freq-Re-Optimize, Thr-Re-Optimize,

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

and Window-Re-Optimize) have a much lower acceptance
ratio than our RL-based algorithm. Among the compared
approaches, Window-Re-Optimize has the worst performance,
since it considers the blocking probability in the latest time
window as the metric for estimating the level of fragmentation
in the network, while blocking probability depends also on the
overall link utilization of the EON. As a result, this method
can lead to only invoking the re-optimization when the overall
link utilization is high, which might not be the optimum
strategy. Furthermore, Thr-Re-Optimize has a slightly better
performance than Less-Freq-Re-Optimize, because it takes into
account the RMSF metric for determining the right times
for performing re-optimization, as opposed to Less-Freq-Re-
Optimize that simply invokes the operations in fixed intervals.
As we mentioned earlier, the DRL agent for this evaluation is
only trained in simulations with V NR = 12, however, we can
see in Fig. 9 that it performs well for other VNR cases that
have not been seen during training as well. We will evaluate
the generalization capability of our DRL algorithm in the next
section with more details and experiments.

(a) Acceptance Ratio

(b) Number of Re-optimization Operations

Fig. 9: Performance of different time selection strategies for
different VNRs

G. Generalization Capability of the DRL Algorithm

Since real-life application scenarios might be different than
our simulation environment, we would desire a generalizable
DRL agent that does not overfit on the specific characteristics
of our training environment, and is applicable to different
scenarios that differ in distribution from those generated in
our training setup. To analyze this aspect of our proposed
algorithm, we evaluate the DRL agent on scenarios that were

TABLE II: Acceptance ratio (A.R.) and number of re-
optimization operations (#Oper.) of RL agents trained with
different VNR scenarios evaluated in different VNR cases
(e.g., RL4 is an agent that is only trained with V NR4
scenario).

VNR/ RL Agent RL4 RL12 RL20

VNR4 A.R. = 81.5%
#Oper. = 2

A.R. = 81.3%
#Oprations = 2

A.R. = 80.8%
#Operations = 2

VNR12 A.R. = 39.4%
#Oper. = 6

A.R. = 40.2%
#Oper. = 5

A.R. = 39.7%
#Oper. = 5

VNR20 A.R. = 27.2%
#Oper. = 9

A.R. = 27.1%
#Oper. = 8

A.R. = 27.5%
#Oper. = 8

unseen during training, both in terms of VNR value and life-
time distribution, as described below:

1) Different VNR Values: We already showed in Section
VII.C that the DRL agent trained only with the V NR12 case
performed well on other VNR scenarios. For further evalua-
tion, here, we have trained two other DRL agents trained with
V NR4 and V NR20 scenarios (named RL4 and RL20) and
reported their performance on different VNR cases in Table II.
We can see that for each VNR case, the agent that is trained
specifically for that VNR case has the highest acceptance ratio
(e.g., RL12 and V NR12). However, the degradation in their
performance for VNR cases that differ from the one they
were trained for seems to be insignificant, specially for RL12
and RL20 agents. For example, the difference in acceptance
ratio of RL12 and RL20 in different cases never exceeds
0.5%. However, we can see that the RL4 agent has a slightly
worse performance compared to the other two agents, since
the number of steps in each episode of training RL4 is much
smaller than the other two agents. Therefore, we can argue that
agents trained with high VNR values are more generalizable
in comparison.

2) Different life-time distributions: In Fig. 10, we have
trained a DRL agent with V NR12 scenario and exponential
life-time distribution with a mean of 500 time units, and we
are evaluating the agent in scenarios with V NR4 and different
life-time distribution, namely an exponential distribution with
a mean of 300 time units, an exponential distribution with a
mean of 700 time units, and a Gamma distribution with shape
argument of 0.2 and scale argument of 1600, that simulates a
scenario where most of the life times are concentrated around a
low value while a few outliers are significantly higher than this
value. So, in these experiments, both the VNR value and life-
time distribution are different from the training environment.
We can see in the figure that the DRL method still has a higher
acceptance ratio compared to other approaches that have the
same number of re-optimization operations.

VIII. CONCLUSION
In this paper, we have addressed the re-optimization of

network slice embedding over EON with the objective to
minimize spectrum fragmentation. Given an EON with a set of
embedded VNs, the problem is to re-optimize the existing VN
embeddings by employing a series of different re-configuration
actions. We advance the state-of-the-art by addressing, for
the first time, the spectrum defragmentation problem in the
context of splitting-enabled EON and by proposing novel

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

(a) Acceptance Ratio

(b) Number of Re-optimization Operations

Fig. 10: Performance of different time selection strategies for
V NR4 and different life-time distributions

re-configuration actions that offer more opportunities to re-
optimize. Given the complex and non-linear nature of this
problem, we have proposed simulated annealing based algo-
rithm for systematically exploring its large solution space.
We also propose a greedy search mechanism to address the
practical constraint to limit the number of re-configuration
steps taken to reach a final defragmentated state. For improv-
ing the number of accepted VN request through a reasonable
number of re-optimization operations, we proposed a DRL-
based algorithm to determine the most effective moments for
invoking re-optimization.

Our extensive simulation results demonstrate that the sim-
ulated annealing based algorithm reduces more than 90%
fragmentation at the expense of employing a huge number re-
configuration actions. Our results also show that the proposed
greedy search algorithm, if we consider a scenario with limited
number of re-configuration actions, achieves better defragmen-
tation (reduces more than 80% fragmentation) than a prior
approach that employs simulated annealing. The greedy search
algorithm can impose different level of bounds on the number
of actions to be taken, enabling a fair or prioritized treatment
of VLinks during re-optimization. Moreover, our results show
that, when the number of admissible reconfiguration action
is limited (e.g., below 500), having the possibility to exploit
a comprehensive set of reconfiguration actions (involving
merging and dividing splits of a virtual link) allows to achieve
noticeable improvement in defragmentation. We also evaluated
the effect of our proposed greedy re-optimization algorithm
on increasing the network ability to accept more traffic where
the times of the re-optimization operations were chosen ac-
cording to different strategies. We showed that our proposed

DRL-based method outperformed the existing time selection
methods with the same number of re-optimization operations
up to 23% in acceptance ratio.

REFERENCES

[1] B. Yan et al., “Tidal-traffic-aware routing and spectrum allocation in
elastic optical networks,” IEEE/OSA Journal of Optical Communications
and Networking, vol. 10, no. 11, pp. 832–842, 2018.

[2] M. Hadi, M. R. Pakravan, and E. Agrell, “Dynamic resource allocation
in metro elastic optical networks using lyapunov drift optimization,” J.
of Opt. Commn. and Net., vol. 11, no. 6, pp. 250–259, 2019.

[3] Z. Zhong et al., “Provisioning short-term traffic fluctuations in elastic
optical networks,” IEEE/ACM TNet., vol. 27, no. 4, pp. 1460–1473,
2019.

[4] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5g: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[5] S. Aleksic, “Towards fifth-generation (5g) optical transport networks,”
in Proceedings of ICTON, 2015, pp. 1–4.

[6] R. Boutaba, N. Shahriar, and S. Fathi, “Elastic optical networking for
5G transport,” Springer JNSM, vol. 25, no. 4, pp. 819–847, 2017.

[7] L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over
elastic optical networks,” IEEE/OSA Journal of Lightwave Technology,
vol. 32, no. 3, pp. 450–460, 2014.

[8] N. Shahriar et al., “Achieving a fully-flexible virtual network embedding
in elastic optical networks,” in IEEE INFOCOM, 2019, pp. 1756–1764.

[9] B. C. Chatterjee, S. Ba, and E. Oki, “Fragmentation problems and
management approaches in elastic optical networks: A survey,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 183–210, 2017.

[10] H. Beyranvand et al., “An analytical framework for the performance
evaluation of node-and network-wise operation scenarios in elastic
optical networks,” IEEE TComm, vol. 62, no. 5, pp. 1621–1633, 2014.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[12] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[13] Y. Ujjwal and J. Thangaraj, “Review and analysis of elastic optical
network and sliceable bandwidth variable transponder architecture,”
Optical Engineering, vol. 57, no. 11, p. 110802, 2018.

[14] A. Pagès, J. Perelló, S. Spadaro, and J. Comellas, “Optimal route,
spectrum, and modulation level assignment in split-spectrum-enabled
dynamic elastic optical networks,” IEEE/OSA Journal of Optical Com-
munications and Networking, vol. 6, no. 2, pp. 114–126, 2014.

[15] F. Cugini, F. Paolucci, G. Meloni, G. Berrettini, M. Secondini, F. Fresi,
N. Sambo, L. Poti, and P. Castoldi, “Push-pull defragmentation without
traffic disruption in flexible grid optical networks,” IEEE/OSA Journal
of Lightwave Technology, vol. 31, no. 1, pp. 125–133, 2012.

[16] R. Proietti et al., “Rapid and complete hitless defragmentation method
using a coherent rx lo with fast wavelength tracking in elastic optical
networks,” Optics express, vol. 20, no. 24, pp. 26 958–26 968, 2012.

[17] T. Takagi et al., “Disruption minimized spectrum defragmentation in
elastic optical path networks that adopt distance adaptive modulation,”
in ECOC, 2011, pp. Mo–2.

[18] P. Lechowicz et al., “Fragmentation-aware algorithm with border-
ing super-channels in spectrally/spatially-flexible optical networks,”
IEEE/OSA J. of Opt. Commn. and Net., 2020.

[19] E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,”
1988.

[20] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learn-
ing with deep energy-based policies,” in International conference on
machine learning. PMLR, 2017, pp. 1352–1361.

[21] S. Taeb, N. Shahriar, S. R. Chowdhury, M. Tornatore, R. Boutaba,
J. Mitra, and M. Hemmati, “Reoptimizing network slice embedding on
eon-enabled transport networks,” in 2021 17th International Conference
on Network and Service Management (CNSM). IEEE, 2021, pp. 292–
300.

[22] J. Comellas, L. Vicario, and G. Junyent, “Proactive defragmentation
in elastic optical networks under dynamic load conditions,” Photonic
Network Communications, vol. 36, no. 1, pp. 26–34, 2018.

[23] S. Shakya et al., “Virtual network embedding and reconfiguration in
elastic optical networks,” in IEEE GLOBECOM, 2014, pp. 2160–2165.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

[24] M. Zhu et al., “Fragmentation-aware vone in elastic optical networks,”
J. of Opt. Commn. and Net., vol. 10, no. 9, pp. 809–822, 2018.

[25] S. Fernández-Martı́nez, B. Barán, and D. P. Pinto-Roa, “Spectrum de-
fragmentation algorithms in elastic optical networks,” Optical Switching
and Networking, vol. 34, pp. 10–22, 2019.

[26] R. Wang and B. Mukherjee, “Provisioning in elastic optical networks
with non-disruptive defragmentation,” IEEE/OSA Journal of Lightwave
Technology, vol. 31, no. 15, pp. 2491–2500, 2013.

[27] M. Zhang et al., “Dynamic and adaptive bandwidth defragmentation in
spectrum-sliced elastic optical networks with time-varying traffic,” J. of
Light. Tech., vol. 32, no. 5, pp. 1014–1023, 2014.

[28] S. Shakya and X. Cao, “Spectral defragmentation in elastic optical path
networks using independent sets,” in National Fiber Optic Engineers
Conference. Optical Society of America, 2013, pp. NTh1I–4.

[29] E. J. Dávalos et al., “Spectrum defragmentation in elastic optical
networks: Two approaches with metaheuristics,” IEEE Access, vol. 7,
pp. 119 835–119 843, 2019.

[30] Y. Zeng et al., “Defragmentation of flexible optical networks based on
simulated annealing,” in IEEE ACP, 2012, pp. 1–3.

[31] S. K. Singh, W. Bziuk, and A. Jukan, “Analytical performance modeling
of spectrum defragmentation in elastic optical link networks,” Optical
Switching and Networking, vol. 24, pp. 25–38, 2017.

[32] J. Kim, S. Yan, A. Fumagalli, E. Oki, and N. Yamanaka, “An analytical
model of spectrum fragmentation in a two-service elastic optical link,” in
2015 IEEE Global Communications Conference (GLOBECOM). IEEE,
2015, pp. 1–6.

[33] M. Zhang, C. You, H. Jiang, and Z. Zhu, “Dynamic and adaptive
bandwidth defragmentation in spectrum-sliced elastic optical networks
with time-varying traffic,” Journal of Lightwave Technology, vol. 32,
no. 5, pp. 1014–1023, 2014.

[34] T. Ahmed et al., “Dynamic routing, spectrum, and modulation-format
allocation in mixed-grid optical networks,” IEEE/OSA J. of Opt. Commn.
and Net., vol. 12, no. 5, pp. 79–88, 2020.

[35] G. Zhang et al., “A survey on ofdm-based elastic core optical network-
ing,” IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp.
65–87, 2012.

[36] S. B. Masti and S. V. Raghavan, “Simulated annealing algorithm for
virtual network reconfiguration,” in IEEE Euro-NF Conf. on Next Gen.
Internet, 2012, pp. 95–102.

[37] H. Duong et al., “Efficient make before break capacity defragmentation,”
in IEEE HPSR, 2018, pp. 1–6.

[38] N. Vieillard, O. Pietquin, and M. Geist, “Munchausen reinforcement
learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 4235–4246, 2020.

[39] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine,
“Composable deep reinforcement learning for robotic manipulation,” in
2018 IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 6244–6251.

[40] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine learning, vol. 8, no. 3, pp. 293–
321, 1992.

Seyed Soheil Johari is a graduate researcher at
the David R. Cheriton School of Computer Sci-
ence, University of Waterloo. He received his B.Sc.
in electrical engineering from Sharif University of
Technology in 2020. He was a recipient of the
best student paper award at IEEE/IFIP NOMS 2022.
His research focuses on the application of machine
learning techniques for data-driven management and
orchestration of 5G network slices.

Sepehr Taeb is a research assistant at the David
R. Cheriton School of Computer Science, University
of Waterloo. He received his B.Sc. in computer
engineering from Sharif University of Technology
in 2016, and the M.Math. degree in computer sci-
ence from the University of Waterloo in 2019. His
research interest includes network virtualization, op-
tical networks, and Internet of drones.

Nashid Shahriar is an assistant professor in the
Department of Computer Science at the University
of Regina. He received his PhD from the School of
Computer Science, University of Waterloo in 2020.
He was a recipient of 2020 PhD Alumni Gold Medal,
2021 Mathematics Doctoral prize, Ontario Graduate
Scholarship, President’s Graduate Scholarship, and
David R. Cheriton Graduate Scholarship with the
University of Waterloo. His research received several
recognitions, including the IEEE/IFIP NOMS 2022
Best Student Paper Award, IFIP/IEEE IM 2021 Best

PhD Dissertation Award, the IEEE/ACM/IFIP CNSM 2019 Best Paper Award,
IEEE NetSoft 2019 Best Student Paper Award, and the IEEE/ACM/IFIP
CNSM 2017 Best Paper Award. His research interests include network
virtualization, 5G network slicing, and network reliability.

Shihabur Rahman Chowdhury (S’13) is currently
a Senior Software Engineer with the Apple Knowl-
edge Platform. He received PhD in Computer Sci-
ence from the University of Waterloo in 2021. His
PhD dissertation “Resource Management in Soft-
warized Networks” was recognized by the 2021 Uni-
versity of Waterloo Alumni Gold Medal (PhD) and
the 2022 IEEE/IFIP NOMS 2022 Best Dissertation
Award. Shihabur’s research interests include various
aspects of building and managing networks and
large-scale distributed systems. His contributions to

the network management research has received several recognitions including,
the 2021 IEEE CNOM Young Professional Award, and the Best Paper
Awards at the IEEE/ACM/IFIP CNSM 2019, IEEE NetSoft 2019, and the
IEEE/ACM/IFIP CNSM 2017 conferences.

Massimo Tornatore is an Associate Professor at
Politecnico di Milano, Italy. He also held an ap-
pointment as Adjunct Professor at University of
California, Davis, USA and as visiting professor
at University of Waterloo, Canada. His research
interests include performance evaluation and design
of communication networks (with an emphasis on
optical networking), and machine learning appli-
cation for network management. He co-authored
more than 400 conference and journal papers (with
19 best-paper awards) and of the recent Springer

“Handbook of Optical Networks”. He is member of the Editorial Board of
IEEE Communication Surveys and Tutorials, IEEE Communication Letters,
IEEE Transactions on Network and Service Management and IEEE/ACM
Transactions on Networking.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

Raouf Boutaba (F’12) M.Sc. and Ph.D. degrees in
computer science from Sorbonne University in 1990
and 1994, respectively. He is currently a University
Chair Professor and the Director of the David R.
Cheriton School of Computer science at the Univer-
sity of Waterloo (Canada). He also holds an INRIA
International Chair in France. He is the founding
Editor-in-Chief of the IEEE Transactions on Net-
work and Service Management (2007- 2010) and
the current Editor-in-Chief of the IEEE Journal on
Selected Areas in Communications. He is a fellow

of the IEEE, the Engineering Institute of Canada, the Canadian Academy of
Engineering, and the Royal Society of Canada. His research interests include
resource and service management in networks and distributed systems.

Jeebak Mitra received the M.A.Sc. and Ph.D. de-
grees in electrical engineering from The University
of British Columbia in 2005 and 2010, respectively.
From 2010 to 2011, he was a Senior System En-
gineer with Riot Micro, leading the system level
design for a local thermal equilibrium baseband.
From 2011 to 2012, he was a Team Leader for
physical layer DSP design with BLINQ Networks,
Ottawa, focusing on small cell backhaul products.
Since 2013, he has been a Senior Staff Engineer with
the Huawei Technologies Canada Research Center,

Ottawa, in the areas of algorithm design and implementation for coherent high-
speed optical transceivers and flexible optical networks. His research interests
lie in the area of high-performance communication systems design focusing
on optical and wireless networks. He received the Best Student Paper Award
at the IEEE Canadian Conference in Electrical and Computer Engineering
2009. He was a co-recipient of the Best Paper Award at IEEE/ACM/IFIP
CNSM 2017 and 2019.

Mahdi Hemmati (M) received his MSc degree in
Electrical Engineering - Systems & Control from
Sharif University of Technology, Iran, in 2003 and
the PhD degree in Electrical and Computer Engi-
neering from the University of Ottawa in 2017. He
was a recipient of the NSERC Postgraduate Schol-
arship during his doctoral studies. He is currently
a Senior Staff Engineer at Huawei Technologies
Canada Research Center, Ottawa. His research in-
terests include distributed control and optimization,
fair resource allocation, and reinforcement learning

applications in network automation. He was a co-recipient of the Best Paper
Award at IEEE/ACM/IFIP CNSM 2019.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2022.3230381

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on January 10,2023 at 06:54:31 UTC from IEEE Xplore. Restrictions apply.

