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3.1 Introduction

Virtualization is instigating a revolutionary change in the networking industry,
similar to that of the computer industry in the 1980s. Indeed, before IBM com-
patibles and Windows, the mainframe computer industry in the late 1970s and
early 1980s was closed with vertically integrated specialized hardware, operating
system and applications – all from the same vendor. A revolution happened when
open interfaces started to appear, the industry became horizontal and innovation
exploded. A similar revolution is happening in the networking industry, which
previously had the “mainframe” mindset relying on vendor specific, proprietary
and vertically integrated solutions. Network Virtualization (NV) and the provision
of open interfaces for network programming are expected to foster innovation and
rapid deployment of new network services.

The idea of NV gained momentum to address the Internet ossification prob-
lem by enabling radically different architectures [1]. The current Internet suffers
from ossification, as the Internet size and rigidity make it difficult to adopt new
networking technologies [2]. For example, the transition from Internet Protocol
version 4 (IPv4) to IPv6 has started more than a decade ago, while IPv6 adoption
rate is still significantly low as reported by major service providers (i.e. less than
30% of Google users have adopted IPv6 [3]). It is becoming increasingly cumber-
some to keep up with emerging applications quality of service (QoS) requirements
of bandwidth, reliability, throughput, and latency in an ossified Internet. NV solves
the ossification problem by allowing the coexistence of multiple virtual networks
(VNs), each customized for a specific purpose on the shared Internet. Although the
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36 3 Managing Virtualized Networks and Services with Machine Learning

idea of NV originated to address the Internet ossification, NV has been adopted
as a diversifying attribute of different networking technologies, including wire-
less [4], radio access [5], optical [6], data center (DC) [7], cloud computing [8],
service-oriented [9], software-defined networking (SDN) [10, 11], and Internet of
Things (IoT) [12].

Another prolific application of virtualization in networking is the adoption of
virtualized network services through network functions virtualization (NFV).
NFV decouples network or service functions from underlying hardware, and
implements them as software appliances, called virtual network functions
(VNFs), on virtualized commodity hardware. Numerous state-of-the-art VNFs
have already shown the potential to achieve near-hardware performance [13, 14].
Moreover, NFV provides ample opportunities for network optimization and cost
reduction. First, hardware-based network or service functions come with high
capital expenditures, which can be reduced by deploying VNFs on commodity
servers. Second, hardware appliances are usually placed at fixed locations,
whereas in NFV, a VNF can be deployed on any server in the network. VNF
locations can be determined intelligently to meet dynamic traffic demand and
better utilize network resources. NFV opens-up the opportunity to simultaneously
optimize VNF locations and traffic routing paths, which can significantly reduce
the network operational expenditure. Finally, hardware-based functions are
difficult to scale, whereas NFV offers to cost-efficiently scale VNFs on-demand.
A service-function chain (SFC) is an ordered sequence of VNFs composing a
specific service [15]. For example in a typical DC network, traffic from a server
passes through an intrusion detection system (IDS), a firewall, and a network
address translator (NAT) before reaching the Internet.

Virtualizing networks and services facilitate a new business model, namely
Network-as-a-Service (NaaS), which provides a separation between the applica-
tions and services, and the networks supporting them [16]. Network operators
can adopt the NaaS model to partition their physical network resources into
multiple VNs (also called network slices) and lease them to service providers [17].
In turn, service providers use VNs to offer services with diverse QoS requirements,
without any investment in establishing and managing a physical infrastructure.
A perfect incarnation of the NaaS model is network slicing for fifth generation
(5G) mobile networks. Using network slicing, a single 5G physical network can
be sliced into multiple isolated logical networks of varying sizes and structures,
dedicated to different types of services. These “self-contained” VNs should be
flexible enough to simultaneously accommodate diverse business-driven use
cases from multiple service providers on a common network infrastructure, and
created on-demand according to the service providers’ requirements.

The benefits of virtualized networks and services come at the cost of additional
management challenges for network operators. First, a network operator has to
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3.2 Technology Overview 37

orchestrate VNs/network slices in such a way that they can coexist in a single
infrastructure, without affecting each other. Hence, smart orchestration decisions
need to be carried out to provision VNs satisfying requirements from diverse users
and applications, while ensuring desired resource utilization. This also involves
configuring a large number of virtual instances and their operating parameters.
The initial orchestration and configuration need to be adapted to cope with
time-varying traffic demands and change in network states. Second, the added
virtualization layer introduces new attack and failure surfaces across different
administrative and technological domains. For instance, any failure in the under-
lying physical resource can propagate to the hosted virtual resources, though the
reverse is not always true. Similarly, remediation and mitigation mechanism for
one VN should not jeopardize the operation of coexisting VNs. These diverse
challenges call for automated management that cannot be satisfied with the
traditional, reactive human-in-the loop management approach. The management
of VNs should be intelligent to leverage the sheer volume of operational data
generated within a live network, and take automated decisions for different
operational and management actions. Therefore, Artificial Intelligence (AI) and
Machine Learning (ML) can play pivotal roles for realizing the automation of
control and management for VNs and their services [18, 19].

AI and ML techniques have been widely used in addressing networking
problems in the last few decades [18, 19]. However, when it comes to virtualized
network management, the lack of real-world deployment of virtualized services
impedes the application of AI and ML techniques. Despite that, there has been
a recent surge in research efforts that aim to leverage ML in addressing complex
problems in NV environment. This chapter summarizes state-of-the-art research
and outlines potential avenues in the application of AI and ML techniques in
virtualized network and service management. The rest of the chapter is organized
as follows. We provide a detailed technology overview of virtualized networks and
services in Section 3.2. We present state-of-the-art research that apply AI and ML
in three core sub-areas of virtualized networks and services, namely NV, NFV, and
network slicing in Section 3.3. We conclude the chapter in Section 3.4 with a brief
summary, and outline possible research avenues to advance the state-of-the-art in
applying AI and ML for managing virtualized networks and services.

3.2 Technology Overview

Virtualization in networking is not a new concept. Virtual channels in X.25-based
telecommunication networks (e.g. ATM networks) allow multiple users to share
a large physical channel. Virtual Local Area Networks (VLANs) partition a physi-
cal Local Area Network (LAN) among multiple logical LANs with elevated levels
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38 3 Managing Virtualized Networks and Services with Machine Learning

of trust, security, and isolation. Similarly, virtual private networks (VPNs) offer
dedicated communications that connect multiple geographically distributed sites
through private and secure tunnels over public communication networks (e.g. the
Internet). Overlay networks (e.g. PlanetLab) create virtual topologies on top of
the physical topology of another network. Overlays are typically implemented in
the application layer, though various implementations at lower layers of the net-
work stack do exist. These technologies deploy narrow fixes to specific problems
without a holistic view of the interactions between coexisting VNs. Therefore, in
this section, we provide a comprehensive overview of different technologies that
enable virtualization of networks and services.

3.2.1 Virtualization of Network Functions

An Network Function (NF) is a functional block within a network infrastruc-
ture that has well-defined external interfaces and functional behavior [13]. NFs
in traditional wired networks can be classified in two categories: forwarding func-
tions and value-added functions. Forwarding functions, such as routers, switches,
and transponders, provide the functionality to forward data along a network path.
On the other hand, value-added functions, such as Dynamic Host Configuration
Protocol (DHCP), Network Address Translation (NAT), Universal Plug and Play
(UPnP), Firewall, Optimizer, and Deep Packet Inspectors (DPI), offer additional
capabilities to the data forwarding path. Similarly, NFs in mobile networks are
categorized in two classes: Radio Access Network (RAN) functions and core func-
tions. We will discuss more about RAN and core functions later when we discuss
network slicing. In this subsection, we discuss two popular methods of virtualizing
NFs as follows (a summary is depicted in Figure 3.1).

3.2.1.1 Resource Partitioning
Partitioning is a convenient method to create multiple virtual entities on a single
networking device (e.g. routers and switches) that provide forwarding functions.
Resource partitioning can be achieved either by hard partitioning (i.e. dedicated
switch ports, CPU cores, cards) or by soft partitioning (i.e. CPU execution capping,
routing, and forwarding table partitioning). Hard partitioning provides excellent
isolation, but it requires abundant hardware to implement. In contrast, soft parti-
tioned instances may not provide the highest level of isolation and security due to
their shared nature.

A hard partitioned router, called a Logical Router (LR), can run across proces-
sors on different cards of a router device. All the underlying hardware and software
resources, including network processors, interfaces, and routing and forwarding
tables, are dedicated to an LR. Examples of LR are “protected system domains”
by Juniper Networks, or “logical routers” by Cisco Systems. Hardware partitioned
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Figure 3.1 Technologies for virtualizing network functions with examples.

routers are mainly deployed in Points of Presence (PoP) of network carriers to save
space and power, and reduce management overhead. Similarly, VLANs divide a
physical switch into multiple logical switches by grouping ports on a switch. How
a switch does grouping is implementation dependent, but a common solution is
for the switch to tag each frame with a VLAN ID as it arrives on a port. When
the frame is sent to another port, only the ports configured with the VLAN ID
carried in the frame will output the packet. A VLAN can also span multiple inter-
connected switches using the IEEE standard 802.1Q. The limitation of VLAN is its
low scalability, primarily due to a maximum of 4094 VLANs in a layer-2 network.
To support a larger number of VLANs in a broadcast domain, VXLAN has been
developed for large multi-tenant DC environments. In the optical domain, mul-
tiflow transponders can be used to create a number of subtransponders from the
hardware resource pool [6]. These subtransponders can be used to carry different
flows arriving from a single router interface by using flow identifiers.

Examples of soft partitioning include Virtual Routing and Forwarding (VRF)
that allow multiple instances of routing and forwarding tables to co-exist within
the same router. The various routing and forwarding tables may be maintained
by a single process or by multiple processes (e.g. one process for each routing and
forwarding table). Routing protocols should understand that certain routes may be
placed only in certain VRFs. The routing protocols manage this by peering within
a constrained topology, where a routing protocol instance in a VRF peers with
other instances in the same VN. Another example of soft partitioning is FlowVisor
that slices the flowspace of OpenFlow switches based on OpenFlow match fields,
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40 3 Managing Virtualized Networks and Services with Machine Learning

such as switch port, MAC addresses, and IP addresses. FlowVisor basically acts
as a proxy between OpenFlow switches and controllers, and intercepts messages
between them. By abstracting the OpenFlow control channel, FlowVisor provides
mechanisms for bandwidth, switch CPU, and flowspace isolation.

3.2.1.2 Virtualized Network Functions
The main idea of VNFs is to decouple the physical network equipment from the
functions that run on them. A VNF is an implementation of an NF that is deployed
on virtual resources, such as a virtual machine (VM) or container [13]. A single
VNF may be composed of multiple internal components, and hence it could be
deployed over multiple VMs/containers, in which case each VM/container hosts
a single component of the VNF.

For instance, a virtual router (vRouter) is a software function that implements
the functionality of a layer 3 IP routing in software. The underlying physical
resources are shared with other co-hosted VMs. In a well-implemented vRouter,
users can see and change only the configuration and statistics for “their” router.
Examples of vRouter include Alpine Linux, Mikrotik RouterOS, Brocade vRouter,
Untangle, and Vyatta. Similarly, a virtual switch (vSwitch) is a software emulation
of a physical switch that performs functions, such as traffic switching, multiplex-
ing, and scheduling. It detects which VMs are logically connected to each of its vir-
tual ports and uses this information to forward traffic to the correct VMs. Examples
of vSwitch include Open vSwitch, Cisco Nexus 1000v, and VMware virtual switch.
Due to the diversity of value-added NFs, different kinds of VNFs may exist based
on different network layers. Even for each kind of NF, there may be multiple
implementations with different features by various vendors. For example, the vir-
tual NAT implemented by VMware provides a way for VMs to communicate with
the host, while the one implemented by NFWare is extended to the carrier-grade
level. For a comprehensive list of VNF products, the reader is referred to [14].

There are pros and cons of deploying a VNF on top of a VM or container. In
case of VMs, the entire operational function of a VM is completely isolated from
that of the host and other guest VMs. Hence, VM-based virtualization enforces a
stronger isolation among VMs and the physical machine, and is regarded as a more
secure and reliable solution. However, VM-based virtualization suffers from scal-
ability and performance issues, due to the overhead of emulating a full computer
machine within a VM. In contrast, containers do not need hardware indirection
and run more efficiently on top of host OS, whereas each VM runs as an indepen-
dent OS. Hence, containers can be used to deploy VNFs in a more flexible and
agile manner but with a reduced level of isolation and security. Recently, uniker-
nels have emerged as lightweight alternatives that take the best of both VM- and
container-based virtualization. Unikernels usually package the VNFs with only
the required libraries, unlike VMs that provide an entire guest OS.

 10.1002/9781119675525.ch3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119675525.ch3 by U

niversity O
f W

aterloo D
ana Po, W

iley O
nline L

ibrary on [27/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



�

� �

�

3.2 Technology Overview 41

 Link virtualization

Virtualization of

higher layers

Wireless

Physical layer

partitioning

Wired Labeling Tunneling

TDM, FDM,

OFDMA, CDMA
TDM, WDM

MPLS, LSP,

VLAN, VXLAN

802.1Q, L2TP,

GRE, IPsec,

L3VPN

Figure 3.2 Link virtualization technologies with examples.

3.2.2 Link Virtualization

Link virtualization technologies enable creation of virtual links that can connect
physical or virtual NFs. A virtual link can consist of a single physical link or can
encompass a sequence of physical links forming a path. In this subsection, we dis-
cuss two popular technologies of virtualizing network links as follows (a summary
is depicted in Figure 3.2).

3.2.2.1 Physical Layer Partitioning
Using various multiplexing technologies, a wired (e.g. fiber, copper cable) or wire-
less (e.g. wireless spectrum) physical medium can be split into distinct channels
or time slots. A set of channels or time slots are then assigned to a virtual link
with a specific bit rate such that the sender and receiver of the virtual link get the
illusion that they own the physical medium. The type of multiplexing technique
depends on the physical medium properties, the associated constraints and
impairments. For example, a wireless link can be partitioned using time division
multiplexing (TDM), frequency division multiplexing (FDM), or code division
multiple access (CDMA). A combination of different multiplexing techniques
can also be applied to achieve higher bandwidth, such as for broadband wireless
networks. For example, orthogonal frequency-division multiple access (OFDMA)
can be described as a combination of FDM and TDM multiple access, where
the resources are partitioned in both time and frequency domains, and slots
are assigned along the OFDM symbol index, as well as OFDM subcarrier index.
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42 3 Managing Virtualized Networks and Services with Machine Learning

In fiber-optic communications, wavelength-division multiplexing (WDM) is a
technology that multiplexes a number of optical carrier signals onto a lightpath
(i.e. a set of concatenated optical fiber links) by using different wavelengths (i.e.
colors) of laser light. This is similar to FDM, since wavelength and frequency
communicate the same information. Physical layer multiplexing provides hard
partitioning and better isolation among virtual links, since physical medium
resources are assigned in a dedicated manner to virtual links.

3.2.2.2 Virtualization at Higher Layers
At higher layers (e.g. link, network, or application layers), link resource partition-
ing is achieved by allocating a specific bandwidth (i.e. transmission bit rate, link
capacity) to a virtual link. Such partitioning can be enforced by rate-limiting or
allocating an appropriate amount of link queues and link buffers. Since virtu-
alization at higher layers is achieved through soft-partitioning of link resources,
isolation between virtual links is especially critical. To ensure isolation among vir-
tual links, two popular methods include: (i) labeling and (ii) tunneling.

Labeling involves specifying certain fields (e.g. tags, IDs, etc.) in the packet
header that serve for identification and isolation of virtual links. For instance,
VLANs apply tags to network packets and handle these tags in switches – creating
the appearance and functionality of network traffic that is physically on a single
network but acts as if it is split between separate VNs. VLANs can be used
to distinguish data from different VLANs and to help form data paths for the
broadcasting domain. Similarly, Multiprotocol Label Switching (MPLS) and
label switched path (LSP) technologies can be used to specify the path that data
packets take. In MPLS, labels identify virtual links (paths) between nonadjacent
NFs. This requires MPLS capable routers (e.g. label-switched routers) to forward
packets to outgoing interface based only on label value, unlike using IP addresses
in traditional routers.

Tunneling is a popular method for link virtualization that has been adopted by
many different technologies, such as VPN and VLAN. It ensures isolation of traf-
fic from multiple VNs transported over a shared network. It also provides direct
connection between network devices that are not physically adjacent. Tunneling
is performed by using encapsulation and occasionally encryption techniques. A
number of different tunneling technologies exist, including IEEE 802.1Q, Layer 2
Tunneling Protocol (L2TP), Generic Routing Encapsulation (GRE), Internet Pro-
tocol security (IPsec), and layer 3 virtual private network (L3VPN).

3.2.3 Network Virtualization

As discussed in the previous two subsections 3.2.2.1 and 3.2.2.2, both NFs and
links can be independently virtualized while being oblivious to each other. It is
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3.2 Technology Overview 43

also possible to virtualize only NFs and use non-virtualized links to connect VNFs
and vice versa. In contrast, NV seeks to create slices of a network, i.e. VNs at
the particular networking layer. For instance, a VN in the IP layer comprises of
vRouters/vSwitch and overlay IP links connecting them, whereas a VN in the opti-
cal layer connects multiflow transponders through optical lightpaths. It should be
noted that a given VN should have its own resources, including its own view of the
network topology, its own portions of link bandwidths, dedicated CPU resources in
NFs, and its own slices of CPU, forwarding/routing tables in switches and routers.
Such a holistic NV can be achieved through network hypervisors that abstract the
physical network (e.g. communication links, network elements, and control func-
tions) into logically isolated VNs [11]. A number of network hypervisors, such
as OpenVirteX, FlowVisor, OpenSlice, MobileVisor, RadioVisor, and Hyper-Flex,
have been developed for different network technologies. The reader is referred to
[11] for a more comprehensive survey of NV hypervisors.

3.2.4 Network Slicing

Network slicing extends the concept of NV in the context of 5G mobile networks
from two perspectives. First, a 5G network slice is an end-to-end (E2E) VN that
spans multiple technological and administrative network segments (e.g. wireless
radio, access/core transport networks, Multi-access Edge Computing [MEC] and
central DCs), whereas a traditional VN concerns only one particular network tech-
nology, such as wired transport or wireless network. Examples of network slices
are shown in Figure 3.3 where the dark gray network slice goes all the way to
the central DC, and dotted light gray network slice terminates at the central office
of a mobile network. E2E perspective of network slices offer more opportunities
to optimize the deployment of network slices, and meet fine-grained QoS require-
ments. Second, network slicing allows to virtualize RAN and core NFs, and include

DU

: network slice 1

DU

CU

SMF

AMF
AMF

Control

Cache Server
SMFUPF

: network slice 2
: Switch : Compute Units : Optical Transceiver

RAN

MEC

Central Office
Transport Network

Internet

Central DC

Figure 3.3 Examples of network slices.
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44 3 Managing Virtualized Networks and Services with Machine Learning

them within a network slice that are typically not considered by conventional VNs.
Virtualizing RAN and core NFs enable a more flexible way of creating, operating,
managing, and deleting network slices on-demand. It also allows to deploy these
VNFs with the appropriate capacity at the right place, to meet stringent require-
ments (e.g. E2E latency) imposed by 5G services.

Let us now discuss more about RAN and core NFs. The most common RAN
functions responsible for baseband processing are: Service Data Adaptation Pro-
tocol (SDAP), Radio Resource Control (RRC), Packet Data Convergence Protocol
(PDCP), Radio Link Control (RLC), Medium Access Control (MAC), and Physical
(PHY) layer functions. In traditional mobile networks, Baseband Units (BBUs),
co-located with antennas, are responsible for performing RAN NFs. However, in
5G RAN architecture, these NFs are envisioned to be virtualized and placed on
commodity servers deployed either at antenna sites or MECs. Due to the strict
timing requirements of some NFs, the RAN NFs are grouped in two entities: Cen-
tral Unit (CU) and Distributed Unit (DU) [20]. DU hosts time-critical functions,
such as MAC, RLC, and PHY, and serves a number of mobile users within the DU’s
coverage. On the other hand, CU may host time-tolerant functions, such as SDAP,
PDCP, and RRC, and can serve multiple DUs. Both DU and CU can also be con-
sidered as aggregated VNFs and deployed on VMs/containers on servers located
at antenna sites or MECs.

Similarly, a new core network architecture for 5G mobile networks, namely the
Next Generation (NG) core, that separates the current Evolved Packet Core (EPC)
functions into more fine-grained NFs has been proposed [20]. The most prominent
NFs in NG core are as follows: Access and Mobility Management Function (AMF),
Session Management Function (SMF), Policy Control Function (PCF), User Plane
Function (UPF), and Unified Data Management (UDM). These core NFs can also
be considered as VNFs and easily deployed in a virtualized environment. The ben-
efit of this service oriented RAN and core architecture is that it allows for sharing of
fine-grained VNFs among network slices without compromising the performance
and QoS requirements. For instance in Figure 3.3, dark gray and dotted light gray
network slices share CU and UPF NFs while using completely dedicated RAN and
core NFs and their application functions (e.g. cache, control, or server). Similarly,
the control plane functions, such as RLC, MAC, AMF, and PCF, can be shared
between slices while using dedicated UPFs, including PDCP and UPF. Finally, the
network slices that require the highest level of security (e.g. public safety or first
responder’s slice) may use dedicated VNFs not shared with others.

3.2.5 Management and Orchestration

SDN has the potential to simplify network configuration and reduce management
complexity. In contrast to today’s networks, where control and forwarding
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3.2 Technology Overview 45

functions are tightly coupled and embedded within each network device (i.e.
switches and routers), SDN accumulates the control functionality in a logically
centralized and programmable control plane, which is decoupled from the for-
warding plane. The control plane is implemented in software (i.e. SDN controller)
on one or more dedicated computer servers, has a global network view, and
provides a unified interface to configure and control the network. On the other
hand, packet forwarding remains the responsibility of the switches/routers and is
implemented on commodity hardware.

Management and Orchestration (MANO) is quintessential to unlock the full
potential of NV, which includes seamless operation and efficient delivery of
services. OpenStack is an open source cloud computing platform that controls
large pools of virtual resources to build and manage private/public clouds.
However, with the advent of NFV, OpenStack has become a crucial component
in NFV MANO, as a Virtualized Infrastructure Manager (VIM). It is responsible
for dynamic management of network function virtualization infrastructure
(NFVI) hardware resources (i.e. compute, storage, and networking) and software
resources (i.e. hypervisors), offering high availability and scalability. OpenStack
also facilitates additional features in NFVI, including service function chain-
ing and network slicing. Open Platform for Network Function Virtualization
(OPNFV), a carrier-grade, open source platform also leverages OpenStack as its
VIM solution [21].

Open Network Automation Platform (ONAP) and Open Source MANO (OSM)
are two prominent NFV MANO initiatives. ONAP, a open source project hosted
by the Linux Foundation, offers real-time, policy-driven orchestration of both
physical and virtualized NFs, to facilitate efficient and automated delivery of
on-demand services and support their lifecycle management. All ONAP com-
ponents are offered as Docker containers, allowing for custom integration in
different operator environments. It also allows for integration with multiple
VIMs, VNF managers, and SDN controllers. ONAP primarily consists of two
components: (i) design-time and (ii) run-time, each having subcomponents.

ONAP’s design-time component offers a service design and creation (SDC)
environment, that supports OASIS Topology and Orchestration Specification for
Cloud Applications (TOSCA), for describing resources and services (i.e. assets),
along with their associated policies and processes. Its run-time component exe-
cutes the policies prepared in the design-time, which pertain to monitoring, data
collection, analytics, service orchestration, etc. ONAP leverages the Closed Loop
Automation Management Platform (CLAMP), to enable lifecycle management of
VNFs and automate E2E deployment processes. In contrast, OSM is an European
Telecommunications Standards Institute (ETSI) initiative to offer cost-effective
and automated delivery of services. Both ONAP and OSM conform to the ETSI
NFV Reference architecture. A comparative evaluation of ONAP and OSM, with
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respect to features and performance gaps, is provided in [22]. Authors in [23, 24]
propose an architecture for network slice management on top of ONAP, while
[25] enhances OSM (along with OpenStack and OpenDaylight SDN controller) to
enable service deployment across a multi-domain infrastructure.

3.3 State-of-the-Art

3.3.1 Network Virtualization

The embedding of VNs into substrate networks is a critical aspect of NV. The
virtual network embedding (VNE) is a resource allocation problem that involves
embedding virtual nodes and links to substrate nodes and links, respectively. For
successful network embedding, it is paramount that resources are allocated effi-
ciently. VNE is a well-studied problem that has been proved to be NP-hard [26, 27].
As a result, several linear programming algorithms, mixed integer programming
algorithms, as well as heuristic algorithms have been proposed in the research lit-
erature. Most of the proposed heuristic algorithms solve the problem in two stages:
(i) node embedding first and (ii) link embedding next. In the first stage, substrate
nodes are ranked based on a specific metric (e.g. availability) and a greedy node
mapping strategy is applied where mapping is decided by rank results. In the sec-
ond stage, the virtual links are usually mapped to the shortest path that has enough
bandwidth resources between nodes. On the other hand, linear programming and
mixed integer programming algorithms are used to solve the VNE problem in a
single stage, by simultaneously mapping nodes and links.

The majority of VNE solutions perform static mappings and resource allocations
i.e. they do not consider the remapping of embedded VNs by migrating virtual
nodes and/or links or adjusting the resource allocated to the VN, as new requests
are received, or the network load, traffic pattern changes. Indeed, this is counterin-
tuitive, considering the dynamic nature of Internet traffic. The proven inefficiency
of static resource allocation motivated the emergence of dynamic solutions. ML,
in particular reinforcement learning (RL), have been proven particularly efficient
for solving the dynamic resource allocation problem, considering the higher com-
plexity of the problem compared to static VNE. Table 3.1 provides a summary of
the state-of-the-art that addresses VNE and resource allocation.

Mijumbi et al. [28] address the dynamic resource allocation problem using an
RL-based approach. They model the substrate network as a decentralized system
of Q-learning agents, associated to substrate nodes and links. The agents use
Q-learning to learn an optimal policy to dynamically allocate network resources
to virtual nodes and links. The reward function encourages high virtual resource
utilization, while penalizing packet drops and high delays. The agents ensure that
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Table 3.1 Summary of the state-of-the-art for virtual network embedding.

References Problem/objective Features ML technique

[28] Dynamic resource allocation
to achieve high resource
utilization and QoS

Virtual resource
substrate resource

RL with
Q-learning

[29] Dynamic resource allocation
to achieve high resource
utilization and QoS

Virtual resource
substrate resource

RL with ANN

[30, 31] Node mapping to achieve
high revenue-to-cost ratio

CPU
bandwidth
topological features

RL with ANN

[32] Node mapping to achieve
high revenue-to-cost ratio

CPU
bandwidth degree

RL with RNN

[33] VNE admission control CPU
bandwidth
topological features

RNN

[34] Substrate subgraph extraction
to speed up VNE process

CPU
bandwidth
topological features

Hopfield
network

[35] Node mapping to achieve
high acceptance ratio, high
revenue-to-cost ratio, and
load balancing

CPU
bandwidth
embedding status

Deep RL
with GCN

while the VNs have the resources they need, at any given time only the required
resources are reserved for this purpose. Simulations show that the RL-based
dynamic resource allocation significantly improves the VN acceptance ratio, and
the maximum number of accepted VN requests at any time, in comparison to the
static approach. The approach also ensures that VN’s QoS requirements, such as
packet drop rate and virtual link delay, are not affected.

In a subsequent work [29], Mijumbi et al. leverage artificial neural networks
(ANNs) and propose an adaptive resource allocation mechanism, which unlike
the Q-learning-based solution in [28], does not restrict the state-action space.
Similar to [28], resource allocation decisions are made in a decentralized fashion
by RL agents associated to each substrate node and link. Each agent relies on
an ANN whose input is the status of the substrate node (respectively link) and
embedded virtual nodes (respectively links), and that outputs an allocation action.
An error function that evaluates the desirability of the ANN output is used for
training purposes. The objective of the error function is to encourage high virtual
resource utilization, while penalizing packet drops and high delays. Simulations
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48 3 Managing Virtualized Networks and Services with Machine Learning

show that the ANN-based RL solution outperforms the Q-learning-based solution,
which is attributed to a state-action space expressed at a finer granularity.

In [30, 31], Yao et al. build on the intuition that network requests follow an
invariable distribution, such that if an embedding algorithm works well for
historical VN requests, it is likely to have the same performance for incoming
VN requests. They propose in [30] a two-phased VNE algorithm i.e. a policy
gradient RL-based node-mapping phase, followed by a breadth-first search for the
shortest paths between the selected host nodes in the link-mapping phase. The
node-mapping agent is implemented as an ANN. It is trained with historical net-
work data and tuned using policy gradient based on the average revenue-to-cost
ratio metric. The agent’s goal is to observe the current status of the substrate
network and output node mapping decisions. The status of the substrate network
is represented by a matrix that combines topological features and resource usage
extracted from every substrate node. In [31], this matrix is further reduced using a
spectrum analysis method. The reduced matrix is combined with a reduced form
of the substrate network adjacency matrix. Perturbation is applied to the resulting
matrix every time an embedding occurs, in lieu of systematic updates for reduced
complexity. Simulations show that the model devised in [31] outperforms the
original model from [30].

More recently, Yao et al. [32] explore replacing the ANN node-mapping agent
with a Recurrent Neural Network (RNN), after formulating VNE as a time-series
problem. The intuition is that node embedding is a continuous decision process.
The RNN agent, implemented as a seq2seq model, is trained with historical
network data and fine tuned using the policy gradient algorithm based on the
long-term average revenue-to-cost ratio metric. Simulation results show an
improvement compared to the original model from [30] in terms of request
acceptance ratio, long-term revenue and long-term revenue-to-cost ratio.

In [33], Blenk et al. study the online VNE satisfiability problem. They propose an
RNN-based classifier that, for a given VN request, outputs whether the embedding
is possible or not. The model is meant to run prior to the VNE algorithm per se,
as an admission control procedure. The goal is to save time and resources that
might be wasted trying to satisfy an embedding request that cannot be satisfied,
at least not in an acceptable time, in the current state of the substrate network.
The authors additionally devise a novel, relatively low-complexity representation
of the substrate network, as well as VN requests that combine topological features
and resource usage. Simulations show that their classifier is highly accurate and
significantly reduces the overall computational time for the online VNE problem,
without severely impacting the performance of embedding.

In their continued effort to speed up and improve rigorous online VNE
algorithms, Blenk et al. [34], leverage Hopfield networks to devise a VNE
preprocessing mechanism that performs search space reduction and candidate
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3.3 State-of-the-Art 49

subgraph extraction. More precisely, the designed Hopfield network computes
a probability for each substrate node to be part of the candidate subgraph for a
given embedding request. A rigorous VNE algorithm is then used to find the final
embedding solution within the extracted subgraph. Simulations show that the
proposed preprocessing step improves the runtime and/or performance of most of
the tested online VNE algorithms, depending on the parameters of the Hopfield
network, which have to be determined beforehand.

Yan et al. [35] build on recent advancements in deep learning and propose a
deep RL solution to the node mapping problem, to reduce the overall runtime
of the VNE algorithm. The authors focus on the static allocation of substrate
resources. They use Graph Convolutional Networks (GCN), for the learning agent
to extract spatial features in the substrate network and find the optimal node
mapping. The learning agent is trained using a parallel policy gradient approach,
which is shown to converge faster and perform better than sequential training. In
addition to rewarding higher acceptance ratio and revenue-to-cost ratio, the used
reward signal also encourages policy exploration and is shown to lead to higher
performance than more traditional reward functions. The proposed deep RL
solution is shown to outperform state-of-the-art non-ML embedding algorithms.

3.3.2 Network Functions Virtualization

3.3.2.1 Placement
Placement of SFCs can have varying objectives, such as minimizing the cost of
placement, cost of operation (e.g. licensing fee, energy consumption), service-level
agreement (SLA) and QoS requirements. This problem is known to be NP-hard,
making it difficult or even prohibitive to solve it optimally for large problem
instances. Furthermore, heuristics tend to be inefficient in the face of high
number of constraints and changes in network dynamics [36, 37]. Recently,
RL has been explored to facilitate SFC placement in virtualized environments.
Traditional RL maintains a Q-table to store policies (i.e. Q-values), and the RL
agent uses feedback from the environment to learn the best sequence of actions
or policy to optimize a cumulative reward. However, it does not scale for large
state-action space [38]. In contrast, deep RL leverages Neural Networks (NNs) to
learn the Q-function that map states, actions to Q-values. Deep RL can be classi-
fied into value-based, such as deep Q-learning network (DQN), and policy-based
approaches. Table 3.2 provides a summary of the state-of-the-art that addresses
NFV placement.

In [39], Pei et al. translate QoS requirements as a penalty when failing to serve
a service-function chain request (SFCR) in VNF placement. They employ double
deep Q-learning network (DDQN) that includes two NNs, one for selecting state,
action and the other for evaluating the Q-value. Once the DDQN has been trained,
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Table 3.2 Summary of the state-of-the-art for ML-based placement in NFV.

References Problem/objective Features ML technique

[39] Minimize operational cost
and penalty for rejecting
SFCR

CPU, memory,
bandwidth

Deep RL with DDQN

[40] Minimize cost of
provisioning VNFs on
multi-core servers for
SFCRs

CPU RL with Q-learning
and 𝜖-greedy policy

[36] Maximize the number of
SFCs based on QoS
requirements

CPU, memory,
storage, bandwidth

Deep RL with DDPG
and MCN

[37] Minimize infrastructure
power consumption

CPU, storage,
bandwidth,
propagation delay

NCO with stacked
LSTM and policy
gradient

[38] Minimize operational cost
and maximize QoS w.r.t.
total throughput of
accepted SFCR

CPU, memory,
bandwidth, latency

Deep RL with policy
gradient

[41] Minimize discrepancy in
predicted and actual total
response time

Transmission,
propagation,
processing
times, CPU, storage

RL with Q-learning
and 𝜖-greedy policy

it can be used for VNF placement. Each action has an associated reward that
reflects the influence of the action on the network. After deployment, the DDQN
evaluates the performance of the actions and selects the highest reward action
according to a threshold-based policy, to trigger horizontal scaling. After VNF
placement, the authors use SFC-MAP [42] to construct the routing paths for the
ordering required in the SFCRs.

In contrast, to avoid expensive bandwidth consumption, Zheng et al. [40] jointly
optimize the cost of provisioning VNFs on multi-core servers (i.e. VNF assignment
to CPU core). However, there is still unpredictability in VNF deployment, such as
the random arrival of SFCRs, resources consumed and cost of provisioning. The
authors leverage Q-learning to alleviate the need to know the state transitions a
priori. They employ value iteration to select a uniform, random action, implement
it, and evaluate the reward. In this way, their approach updates the Q-table to iden-
tify the state transitions and be resilient in the face of changing rate of SFCRs. The
authors leverage an 𝜖-greedy algorithm that strikes a balance between exploration
and exploitation, and control the influence of historical experience. On the other
hand, Quang et al. [36] employ deep Q-learning (DQL) to maximize the number
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of SFCs on a substrate network, while abiding by infrastructure constraints. They
leverage deep deterministic policy gradient (DDPG), where deep NNs (DNNs) i.e.
actor and critic, separately learn the policy and Q-values, respectively. The authors
improve DDPG by using multiple critic network (MCN) for an action, where the
actor NN is updated with the gradient of the best critic in the MCN, thus improving
convergence time.

The Neural Combinatorial Optimization (NCO) paradigm is extended by
Solozabal et al. [37], to optimize VNF placement. Their NCO leverages an NN to
model the relationship between problem instances (i.e. states) and corresponding
solutions (i.e. actions), where the model weights are learnt iteratively via RL,
specifically policy gradient method. Once the RL agent converges, given a
problem instance, it returns a solution. This allows to infer a placement policy for
a given SFCR that minimizes the overall power consumption of the infrastructure
(i.e. the cost function or reward), given constraints, such as availability of virtual
resource and service latency thresholds. The constraints are incorporated into
the cost function using Lagrange relaxation, which indicates the degree of
constraint dissatisfaction. For NN, the authors employ stacked Long Short-Term
Memory (LSTM), which allows to accommodate for SFCs of varying sizes. The
authors show that the proposed agent when used in conjunction, improves the
performance of the greedy First-Fit heuristic.

In [38], Xiao et al. jointly address the following SFC deployment challenges:
(i) capturing the dynamic nature of service request and network state, (ii) handling
the different network service request traffic characteristics (e.g. flow rate) and
QoS requirements (e.g. bandwidth and latency), and (iii) satisfying both provider
and customer objectives i.e. minimize operation cost and maximize QoS, respec-
tively. For the first challenge, the authors leverage Markov Decision Process (MDP)
to model the dynamic network state transitions, where a state is represented as
the current network resource utilization (i.e. CPU, memory, and bandwidth) and
impact of current SFCs, while the action corresponds to the SFC deployment cor-
responding to an arriving service request. For the second challenge, the authors
employ policy gradient based deep RL to automatically deploy SFCs. After RL con-
vergence, it provides SFC deployment solution to each arriving request, abiding
by resource constraints. They address the third challenge by jointly maximizing
the weighted total throughput of accepted service requests (i.e. income) and min-
imizing the weighted total cost of occupied servers (i.e. expenditure), as the MDP
reward function (i.e. income minus expenditure). Via trace-driven simulation, the
authors show their approach to outperform greedy and Bayesian learning-based
approaches, providing higher throughput and lower operational cost on average.

Bunyakitanon et al. [41] define E2E service level metrics (e.g. VNF processing
time, network latency, etc.) in support of VNF placement. They account for hetero-
geneous nodes with varying capabilities and availability. The authors purport that
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their Q-learning based model generalizes well across heterogeneous nodes and
dynamically changing network conditions. They predict the service level metrics
and take actions that maximize the reward for correct predictions. The Q-values
are updated using a weighted average of new and historical Q-values. The reward
incorporates an acceptable margin of error, with the highest reward for predicting
a value that equals the actual value. They employ an 𝜖-greedy policy to strike a
balance between exploration and exploitation, starting with an equal probability
to explore or exploit. Then, they generate a random number, and compare it to the
𝜖-greedy value to steer toward exploration or exploitation. The authors show that
their model has the best performance with approximately 94% in exploration and
6% in exploitation.

3.3.2.2 Scaling
VNF resource scaling assumes an initial deployment of SFCs, with the pri-
mary objective of accommodating for the changes is service demand. Static
threshold-based scaling is relatively simple to implement, where predefined
thresholds are used per performance metric, such as CPU utilization, bandwidth
utilization, etc. For example, Ceilometer, in OpenStack Heat, can be used to
create alarms based on CPU utilization thresholds to spin up or terminate virtual
network function instances (VNFIs) [43]. However, it is not only nontrivial to
choose these thresholds, they may also require frequent updates to accommodate
for the varying service requirements. Table 3.3 provides a summary of the
state-of-the-art that addresses NFV scaling.

Static threshold-based scaling is reactive and unable to cope with sudden
changes in service demand, leading to resource wastage and SLA violations.
Moreover, over provisioning can lead to low resource utilization and high
operational costs, while under provisioning can result in service disruption and
even outage. Tang et al. [44] propose an alternative to static threshold-based
scaling mechanisms, which is SLA-aware and resource efficient. They model VNF
scaling as an MDP and leverage Q-learning to decide on the scaling policy. In
the evaluation on daily busy-and-idle and bursty traffic scenarios, their approach
outperforms static threshold-based and voting policy-based (e.g., majority of the
performance metrics have to agree to a scaling action, based on their respective
thresholds) approaches, while striking a trade-off between SLA guarantee for
network services and VNF resource consumption.

Proactive scaling leverages service demand and/or threshold predictions to
dynamically allocate resources to SFCs. ML is an ideal technique to perform
predictions based on historical data, while ML features play a pivotal role in its
performance. Cao et al. [45] use novel ML features for scaling, which include VNF
and infrastructure level metrics. They train an NN on labeled data, to capture
the complex relationships between resource allocation, VNF performance, and
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Table 3.3 Summary of the state-of-the-art for ML-based scaling in NFV.

References Problem/objective Features ML technique

[44] Trade-off between
SLA and VNF resource
consumption

CPU, memory, storage,
bandwidth, network
users and requests

RL with Q-learning

[45] Learning resource
allocation and VNF
performance
relationship

VNF internal statistics
(e.g. request queue
size) and resource
utilization

NN, decision table,
random forest, logistic
regression, naïve bayes

[46] Meet service demands Performance
measurements (e.g.
max sustainable traffic
load) and resource
requirements
(e.g., CPU, memory)

Support vector
regression, decision
tree, multi-layer
perceptron, linear
regression, ensemble

[47] Predict VNFC resource
reliability

QoS requirements Bayesian learning

[43] Predict VNFC resource
reliability

CPU, memory, link
delay

GNN with FNNs

[48] Predict VNFIs, and
minimize QoS violations
and operational cost

Time of day, measured
traffic load at different
time units, and
changes in traffic

Multi-layer percep.,
bayesian network,
reduced error pruning
tree, random and C4.5
decision trees, random
forest, decision table

[49] Minimize average oper.
cost, SLA violation and
VNF latency w.r.t.
resizing, deployment,
off-loading

CPU, memory, QoS Deep RL with twin
delayed DDPG and
DNN

service demand. However, labeling is not only cumbersome, tedious, and error
prone but it also requires NFV domain expert knowledge. The authors prioritize
resource allocation for VNFs based on urgency and attempt to distribute load
across all instances of the VNF, using traffic forwarding rules. However, if existing
instances of a VNF cannot meet the service demand, new instances must be
spawned using VNF placement algorithms. While Cao et al. [45] show the benefit
of composite features (i.e. VNF and infrastructure level), Schneider et al. [46]
promote the use of ML for creating performance profiles that precisely capture
the complex relationships between VNF performance and resource requirement.
On the other hand, Shi et al. [47] leverage MDP to scale virtual network function
components (VNFCs). To improve MDP performance, the authors employ
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Bayesian learning and use historical resource usage of VNFCs to predict future
resource reliability. These predictions are leveraged in an MDP to dynamically
allocate resources to VNFCs, and facilitate system operation without disruption.
Their approach outperforms greedy methods in overall cost.

Mijumbi et al. [43] draw logical relationships among VNFCs in a SFC, to forecast
future resource requirements. The novelty lies in identifying relationships among
VNFCs that may or may not be ordered within a VNF. The authors leverage graph
NN (GNN) to model each VNFC in the SFC as two parametric functions, each
modeled as a feedforward NN (FNN). These pairs of FNN are responsible for learn-
ing the resource requirements of the VNFC, using historical resource utilization
information from the VNFC and its neighboring VNFCs (i.e. using the first FNN),
followed by prediction of future resource requirements of the VNFC (i.e. using the
second FNN). The authors employ backpropagation-through-time to update the
NN weights and improve prediction performance. Similar to [45], they also lever-
age VNF (e.g. CPU utilization, memory, processing delay) and infrastructure level
(e.g. link, capacity, latency) features. Their model yields the lowest mean absolute
percentage error, when the prediction window size is within the training window
size. Otherwise, the prediction accuracy suffers, requiring model retaining.

In [48], Rahman et al. use traffic measurements and scaling decisions across a
time period to extract features and define classes for ML classifiers (e.g. random
forest, decision table, multi-layer perceptron, etc.). The features represent mea-
sured service demand and its change from recent history, while classes represent
the number of VNFIs. These features and classes are used to train ML classifiers
and predict future scaling decisions. The authors leverage two classifiers, the first
predicts scaling to avoid QoS violations, while the other predicts scaling to reduce
operational cost. In the face of inaccurate scaling predictions and/or delays in
VM startup time, ML classifiers trained to reduce QoS violations stay in a state
of degraded QoS for shorter periods of time. Containerization has been shown to
reduce startup times for VNFIs and significantly improve QoS.

Roig et al. [49] use unlabeled data to decide on vertical, horizontal scaling or
offloading to a cloud, based on service requests, operational cost, QoS require-
ments and end-user perceived latency. The authors employ a parameterized action
MDP, where a set of continuous parameters are associated with each action. The
actions correspond to the user-server assignment, while the parameters identify
the scaling of VNF server resources (i.e. compute and storage). This allows for
selecting different servers for users requesting the same VNF service to increase
sensitivity to end-user perceived latency and enable asynchronous manipulation
of server resources. The authors leverage deep RL that parameterizes the policy,
and employ actor and critic NNs to learn the policy using a twin delayed DDPG.
A DNN is used to approximate the policy that optimizes the weighted average of
latency, operational cost, and QoS. Since the weights can be adjusted and used to
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update the policy, it not only performs well under constant service demand but it
also quickly adapts to variation in service requests and is resilient to changes in
network dynamics.

3.3.3 Network Slicing

3.3.3.1 Admission Control
Admission control dictates whether a new incoming slice request should be
granted or rejected based on available network resources, QoS requirements
of the new request and its consequence on the existing services, and ensuring
available resources for future requests. Evidently, accepting a new request
generates revenue for the network provider. However, it may degrade the QoS
of existing slices, due to scarcity of resources, consequentially violating SLA and
incurring penalties, loss in revenue. Therefore, there is an inherent trade-off
between accepting new requests and maintaining or meeting QoS. Admission
control addresses this challenge and aims to maximize the number of accepted
requests without violating SLA. Several research efforts, as outlined below, have
addressed the slice admission control problem from different perspectives using
ML. Table 3.4 provides a summary of the state-of-the-art for ML-based admission
control approaches in network slicing.

Bega et al. [50] present a network slice admission control algorithm that
maximizes the monetization of the infrastructure provider, while ensuring slice
SLAs. The algorithm achieves the objective by autonomously learning the optimal
admission control policy, even when slice behavior is unknown and data is unla-
beled. The authors consider two types of slices: (i) inelastic, whose throughput
should always be above the guaranteed rate, and (ii) elastic, whose throughput
is allowed to fall below the guaranteed rate during some periods, as long as the
average stays above the specified rate. Since the type of the slice, its arrival and

Table 3.4 Summary of the state-of-the-art for ML-based admission control approaches
in network slicing.

References Problem/objective ML technique

[50] Maximize monetization of
infrastructure provider, while ensuring
slice SLAs

Deep RL framework with
two different NNs

[51] Minimize loss of revenue and loss due
to penalties in service degradation

Resource prediction
and RL

[52] Maximize resource utilization while
respecting slice priorities

RL with Q-learning
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56 3 Managing Virtualized Networks and Services with Machine Learning

departure are unknown in advance, it is impossible to establish the ground truth
for the admission control problem. Therefore, the authors propose a deep RL
approach that interacts with the environment and takes decision at a given state,
while receiving feedback from past experiences. Their deep RL framework uses
two different NNs, one to estimate the revenue for each state when accepting
the slice request, and another to reject the request. The framework then selects
the action with the highest expected revenue, and the reward for the action
is fed back to RL. Through evaluation, the authors show that their proposed
algorithm performs close to the optimal under a wide range of configurations,
and outperforms naïve approaches and smart heuristics.

Raza et al. [51] address the network slice admission control problem by tak-
ing into account revenues of accepted slices, and penalties proportional to perfor-
mance degradation, if an admitted slice cannot be scaled up later due to resource
contention. The authors propose a supervised learning (SL)- and a RL-based algo-
rithm for slice admission control. The SL-based solution leverages prediction for
the incoming slice requirement, and future changes in requirement for the incom-
ing slice and all other slices currently provisioned. This facilitates identification of
possible degradation in performance upon admission, for the incoming slice or
currently provisioned slices, which results in slice rejection. On the other hand,
the RL-based algorithm learns the relationship between slice requirement and cur-
rent resource allocation, along with the overall profit. This relationship guides slice
admission policy, allowing to only accept slices that are likely to experience/create
minimal to no degradation in performance. The objective of the admission pol-
icy is loss minimization, where the loss has two components: (i) loss of revenue
due to rejecting slice requests, and (ii) the loss incurred due to penalties in service
degradation, as described in [53].

An RL-based solution for cross-slice congestion control problem in 5G networks,
which impacts the slice admission control process, is proposed by Han et al. [52].
Their solution identifies active slices with loose requirements i.e. their amount of
allocated resources can be reduced based on resource availability, slice require-
ments, and the queue state. The identified slices’ resources are then scaled down,
to make room for a larger number of higher priority slices. To achieve this, the
authors use Q-learning that can learn optimal resource reallocation strategy, by
jointly maximizing resource utilization and respecting slice priorities. The eval-
uation results show that the proposed solution is able to increase the percentage
of accepted slice requests, without negatively affecting the performance of high
priority slices.

3.3.3.2 Resource Allocation
An E2E network may simultaneously require radio, network, computing, and
storage resources from multiple network segments. An emerging challenge for
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Table 3.5 Summary of the state-of-the-art for ML-based resource allocation approaches
in network slicing.

References Resource type Problem/objective ML technique

[54] Virtual protocol stack
functions, RRU
association,
sub-channel and
power allocation

Maximize service utility
in terms of the difference
between revenue and
expense

RL with 𝜖-greedy
Q-learning

[55] VMs and bandwidth Minimize processing
delays for received
requests and resource
usage costs

RL with policy
gradient methods

[56] Service capacity
requirement

Maximize revenues in
short- and long-term
resource reallocation

ANN-based deep
learning prediction

[57] Slice bandwidth
allocation and
scheduling of SFC
flows

Maximize the weighted
sum of spectrum
efficiency and QoE

RL with Deep
Q-Learning

[58] Bandwidth or
time-slots

Maximize SSR and
spectrum efficiency

Dueling GAN-DDQN

[59] Computing, storage,
and radio resources

Maximize the long-term
average reward

RL (Q-learning, DQL,
deep double
Q-learning, and deep
dueling)

the network provider is how to concurrently manage multiple interconnected
resources. Due to the dynamic demand of services, the frequency of slice requests,
their occupation time, and requirements are not known a priori, while the
resources are limited. Hence, dynamically allocating resources in real-time to
maximize a specific objective is another challenge for the network provider.
Table 3.5 provides a summary of the state-of-the-art for ML-based resource
allocation approaches in network slicing.

Wang and Zhang [54] propose a two-stage network slice resource allocation
framework based on RL (i.e. Q-learning). The first stage performs the mapping of
virtual protocol stack functions of a network slice to physical server node. The sec-
ond stage manages remote radio unit (RRU) association, sub-channel, and power
allocation. Instead of applying one Q-learning model to solve the joint problem,
the authors use two 𝜖-greedy Q-learning models sequentially, to keep the model
scalable. The optimization goal of the proposed model is to maximize the service
utility (i.e. difference between revenue and expenditure) of the whole network,
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where the revenue comes from the service rate, and the expenditure comes from
the virtual function deployment cost and E2E delay loss. Simulation results show
that compared to the baseline schemes (e.g. minimum cost function deployment
and radio resource allocation maximizing signal to noise ratio), the proposed algo-
rithm can increase the utility of the whole system. However, there is an upper limit,
due to the limited node resources, while simulation is performed only on a few tens
of users in the system.

A deep RL approach is proposed by Koo et al. [55], which addresses the
network slice resource allocation problem by considering unknown slice arrival
characteristics, and heterogeneous SLA and resource requirements (e.g. VMs,
bandwidth, and memory). The slice resource allocation pertains to allocating
VMs and bandwidth for each slice, with the objective of minimizing processing
delays for received requests and resource usage costs. The authors formulate the
resource allocation problem as an MDP, where the constrained multi-resource
optimization problem is formulated for each service upon arrival and a batch of
services. For both types of request, RL models are trained offline to learn efficient
resource allocation policies, which are used in real-time resource allocation.
The policies are stochastic, and determine real valued resource allocations for
each slice that has large and continuous action space. The authors use policy
gradient methods as opposed to Q-learning, which cannot represent stochastic
and continuous action spaces. Simulations using both simulated and real traces
show that the model outperforms a baseline of equal-slicing strategy, which fairly
divides the resources among each slice.

Bega et al. [56] present DeepCog, a data analytics tool for cognitive manage-
ment of resources in 5G network slices. DeepCog forecasts the capacity needed to
accommodate future traffic demands of individual network slices, while account-
ing for the operator’s desired balance between resource over provisioning (i.e. allo-
cating resources exceeding the demand) and SLA violations (i.e. allocating less
resources than required). DeepCog uses an ANN-based deep learning prediction
mechanism that consists of an encoder with three layers of three-dimensional
convolutional NNs and a decoder implemented by multi-layer perceptrons. The
encoder–decoder structure is shown to predict service capacity requirement with
high accuracy, based on measurement data collected in an operational mobile net-
work. The authors claim that the structure is general enough to be trained to solve
the capacity forecast problem for different network slices with diverse demand
patterns. The capacity forecast returned by DeepCog, can then be used by oper-
ators to take short- and long-term resource reallocation decisions and maximize
revenues.

In [57], Li et al. address resource management for network slicing independently
for radio resource slicing and priority-based core network slicing. In the radio
part, resource management pertains to slice bandwidth allocation to maximize
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the weighted sum of spectrum efficiency and quality of experience (QoE). For the
core network slicing, the goal is to schedule flows to SFCs that incur acceptable
waiting times. For both of these problems, the authors leverage DQL to find the
optimal resource allocation policies, which enhance effectiveness and agility of
network slicing in a resource-constrained scenario. However, their approach does
not consider the effects of random noise on the calculation of spectrum efficiency
and QoE for radio resource slicing. To overcome this limitation, Hua et al. [58]
combine distributional RL and Generative Adversarial Network (GAN), to pro-
pose GAN-powered deep distributional Q network (GAN-DDQN). Furthermore,
the authors adopt a reward-clipping scheme and introduce a dueling structure to
GAN-DDQN (i.e. Dueling GAN-DDQN), to separate the state-value distribution
and the action advantage function from the action-value distribution. This cir-
cumvents the inherent training problem of GAN-DDQN. Simulation results show
the effectiveness of GAN-DDQN and Dueling GAN-DDQN over the classical DQL
algorithms.

Van Huynh et al. [59] propose a resource management model that allows the
network provider to jointly allocate computing, storage, and radio resources to
different slice requests in a real-time manner. To deal with the dynamics, uncer-
tainty, and heterogeneity of slice requests, the authors adopt semi-MDP. Then,
several RL algorithms, i.e. Q-learning, DQL, deep double Q-learning, and deep
dueling, are employed to maximize the long-term average reward for the network
provider. The key idea of the deep dueling algorithm is to use two streams of
fully connected hidden layers to concurrently train the value and advantage func-
tions, thus improving the training process. Simulation results show that the pro-
posed model using deep dueling can yield up to 40% higher long-term average
reward, and is a few thousand times faster compared to other network slicing
approaches. The advantage of the proposed model is that it can accommodate
adding more resources or removing some resources (i.e. scaling out or scaling in,
respectively) by considering some new events in the system state space. However,
the work of [59] overlooks the network resources that is needed for an E2E slice
provisioning.

3.4 Conclusion and Future Direction

Virtualized networks and services bring inherent challenges for network oper-
ators, which calls for automated management that cannot be satisfied with the
traditional, reactive human-in-the loop management approach. Furthermore, the
requirement for higher QoS and ultra-low latency services necessitates intelligent
management that should harness the sheer volume of data within a network,
and take automated management decisions. Therefore, AI and ML can play a
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pivotal role to realize the automation of management for virtualized networks
and services. In Section 3.3, we discuss the state-of-the-art in employing AI and
ML techniques to address various challenges in managing virtualized networks
and services, specifically in NV, NFV, and network slicing. In this section, we
delineate open, prominent research challenges and opportunities for holistic and
automated management of virtualized networks and services.

3.4.1 Intelligent Monitoring

Monitoring requires the identification of Key Performance Indicators (KPIs), such
as perceived latency, alarms, and utilization of virtualized network components
[60]. These play a crucial role in analytics to facilitate automated decision-making
for managing virtualized networks and services. It is quintessential that the
employed measurement techniques collect telemetry data with high accuracy,
while minimizing overhead. However, measurement can add significant overhead
(e.g. consumed network bandwidth, switch memory due to probing, and storage)
when a large number of virtualized network components are monitored at
regularly occurring intervals. This instigates the need for adaptive measurement
schemes that can dynamically tune monitoring rate and decide what to monitor.
ML techniques, such as regression, can facilitate adaptive monitoring by predict-
ing telemetry data that would have otherwise been measured. Another challenge
is to devise mechanisms for timely and high precision instrumentation to monitor
KPIs for virtualized networks with demanding QoS requirements, especially for
ultra-low latency services.

3.4.2 Seamless Operation and Maintenance

ML-based predictive maintenance can enable seamless operation of virtualized
networks [19]. It involves inferring future events based on measured KPIs, identi-
fying causes of performance degradation, and proactively taking preventive mea-
sures. An example of inference is to determine if a performance degradation (e.g.
increased packet loss, prolonged downtime) would lead to future QoS violations.
It is also crucial to infer causes (e.g. misconfiguration, failure) of performance
degradation in correlation with potential alarms. However, realizing this from the
enormous volume of telemetry data and stochastic nature of network events is
challenging. Data-driven approaches, including ML, can be explored to address
these problems. Once the cause for performance degradation is identified, mit-
igation workflows are needed to minimize the impact on KPIs. Deducing these
workflows and optimally scheduling their execution with minimal interruption
to the existing traffic is nontrivial. However, RL seems well suited to the problem
and should be investigated to find optimal mitigation workflows.
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3.4.3 Dynamic Slice Orchestration

In 5G mobile networks, an E2E VN slice spans multiple network segments, each of
which can have different technological and physical constraints. For instance, the
access network may have limited bandwidth and scalability to minimize cost and
energy, while the core network may not have these issues of capacity or scalability.
However, the core network may have higher latency and energy footprint due to
long geographical distances and more complex network devices. Similar trade-offs
exist between edge and central DCs, with respect to processing capacity, latency,
and energy consumption. Therefore, it will be impractical to provision a network
slice for its peak traffic demand. Hence, dynamic slice provisioning algorithms
must be investigated, where resource orchestration decisions are facilitated by ML
models for slice traffic volume prediction with temporal, spatial considerations
and QoS requirements. Such dynamic slice provisioning will be enabled by NFV
that allows for spawning on-demand virtualized NFs, and SDN controllers that
can route traffic to newly spawned NFs.

3.4.4 Automated Failure Management

Even with predictive maintenance, some failures, such as fiber cuts and device
burns are inevitable. Ability of a network provider to quickly repair a failure is
crucial to keep the network operational. Failure management involves three steps:
failure detection, localization, and identification. The goal of failure detection is
to trigger an alert after the failure has occurred. Once detected, the failed element
(e.g. the node or link responsible for the failure) must be localized in the network
to narrow down the root cause of failure. Even after localization, it might still be
complex to understand the exact cause of the failure. For example, inside a net-
work node, the degradation can be due to misconfiguration or malfunction. To
speed up the failure repair process, all three steps of failure repair should be auto-
mated. An interesting avenue of research is to develop ML models and algorithms
for automated failure detection, localization, and identification based on the data
generated in production networks. These models will decrease the mean time to
repair after failure events, thus improving the availability of a network slice or a
virtualized network/service.

3.4.5 Adaptation and Consolidation of Resources

The traffic demand and/or QoS requirement of a virtualized network or a network
slice may evolve over time, due to change in number of users and communica-
tion patterns [61]. Hence, the initial resource allocation need to be adapted to
accommodate for such changes, while causing minimal to no disruption to exist-
ing traffic. This calls for ML models to predict change in requirements in a timely
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and accurate manner, and facilitate dynamic adaptation of resource allocation.
Furthermore, over time, arrival and departure of virtualized networks or network
slices can lead to fragmentation and skewed utilization of links and processing
servers. These, in turn, can impact the acceptance of future requests and result
in unnecessary energy consumption. One way to mitigate this is by re-optimizing
bandwidth allocation and periodically consolidating VMs or containers. The solu-
tion should also output the sequence of operations (e.g. VM migration, virtual link
migration, and bandwidth reallocation) that lead to a load-balanced state. RL is an
ideal technique to generate the sequence of operations needed to reach the opti-
mized state.

3.4.6 Sensitivity to Heterogeneous Hardware

In NFV deployment or in network slices, VNFIs that reside on VMs or containers
are scaled to meet the service demands. However, the performance of VNFs is sen-
sitive to the underlying hardware [45, 46]. For example, traffic processing capabil-
ities of virtual CPUs on Intel Xeon processor differ from AMD Opteron processor
[45]. Similarly, boot up time for VMs differ across VIMs, such as OpenStack, Euca-
lyptus, and OpenNebula [43]. Nevertheless, most research assumes homogeneous
hardware, being oblivious to its impact on VNF performance. This is an oversim-
plification, which can lead to inferior ML models and inaccurate scaling decisions
in practice. Therefore, it is quintessential to develop performance profiles [46],
which incorporate the sensitivity of VNF performance on different hardware. In
case of horizontal scaling, these profiles can be leveraged to accurately gauge the
impact on performance for new VNFIs on different physical servers. Indeed, incor-
porating these profiles will increase the dimensionality of the scaling problem. A
naïve option is to incorporate hardware-sensitivity as a cost. However, building
VNF performance profiles for different hardware is cumbersome. It remains to
be evaluated how these hardware-specific performance profiles will impact the
accuracy of ML models and VNF scaling decisions.

3.4.7 Securing Machine Learning

Evidently, there has been a surge in the application of ML for managing vir-
tualized networks, ranging from placement and scaling of VNFs to admission
control in network slices. However, numerous research assumes ML itself to
be invincible. This is an unrealistic assumption, as adversaries can poison the
training data, or compromise the RL agent by manipulating system states and
policies, leading to inferior actions [62]. For example, impeding actual resource
consumption of substrate network can result in suboptimal SFC placement,
leading to resource wastage and/or SLA violations. Inherently, ML models lack

 10.1002/9781119675525.ch3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119675525.ch3 by U

niversity O
f W

aterloo D
ana Po, W

iley O
nline L

ibrary on [27/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



�

� �

�

Bibliography 63

robustness against adversarial attempts. Adversarial learning addresses this
concern by leveraging carefully crafted adversarial (i.e. fake) samples, with minor
perturbations to regular inputs [63, 64]. These can be used to inculcate robustness
into ML models against data poisoning attacks. GANs have been widely used to
generate such adversarial samples. GANs are a class of deep learning techniques
that use two neural networks, discriminator and generator, to compete with each
other for model training. However, GANs can suffer from training instability, due
to fake training data that degrades model performance [65]. Therefore, ensuring
convergence of GANs is an open research problem. Furthermore, the use of GANs
to harden RL agents against complex threat vectors is rather unexplored. Adver-
sarial deep RL with multi-agents [66, 67], trained across distributed virtualized
environments, can also help alleviate the impact of adversarial attempts.
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67 Zhang, K., Yang, Z., and Başar, T. (2019). Multi-agent reinforcement
learning: a selective overview of theories and algorithms. arXiv preprint
arXiv:1911.10635.

 10.1002/9781119675525.ch3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/9781119675525.ch3 by U

niversity O
f W

aterloo D
ana Po, W

iley O
nline L

ibrary on [27/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense




