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A B S T R A C T

In a continuous data stream vehicular network environment, a Traffic Congestion Detection Service (TCDS)
receives many periodic information to update and discover road segments with low speeds and high vehicular
density. The use of Cloud computing to support the massive amounts of traffic data received from multiple
vehicles significantly increases network traffic. Therefore, we propose FogJam, a Fog service to detect traffic
congestion directly at the edge of the vehicular network. In the network edge, FogJam leverages sampling and
clustering-based methods to reduce the traffic data stream transmitted by all vehicles on the network links to
the Cloud. In the Cloud, FogJam is used as a macro-control of all vehicles geographic positions, acquiring traffic
flow data to detect traffic congestion. We evaluate FogJam using OMNeT++, Veins and SUMO simulators. The
results suggest that FogJam is highly accurate in detecting traffic congestion at a lower cost, even in a high
vehicular density scenario. Furthermore, using clustering-based methods, FogJam is able to, on average, reduce
the impact on network usage by approximately 70% compared to the sampling methods, while maintaining
an acceptable level of congestion detection accuracy.
1. Introduction

Traffic congestion is a major concern in metropolitan areas, which
inevitably leads to substantial social and economic consequences. In
2019, Texas A&M University’s Transportation Institute reported that
drivers in the United States were stuck in traffic for up to 54 h in
2017 [1]. According to the 2019 Urban Mobility Report from INRIX [2],
this increased to 97 h in 2018, costing Americans nearly $87 billion
annually. Indeed, traffic congestion increases the carbon emissions and
the probability of accidents.

Despite the increase in traffic congestion over the years, congestion
and time spent in traffic considerably reduced in 2020 [3]. This is
primarily attributed to the COVID-19 pandemic that was and still is
plaguing the world. During the pandemic in Hong Kong, local travel
volume decreased by 52.3% [4]. An annual travel time decrease for all
car passengers of $5.58 billion was also observed, at 54.02% reduction
in the Pre-COVID-19 total time costs [5]. However, there has also
been a reduction in transport sharing during the pandemic due to
health safety concern, which increases the total number of vehicles
with underutilized capacity on the roads [6]. Notwithstanding the
pandemic’s unusual period, it is necessary to identify traffic congestion
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as efficiently as possible. As transportation analysts expect more intense
traffic congestion in the coming months, this analysis is essential to
address post-pandemic traffic congestion, particularly in large urban
centers [7–9].

Urban Computing is the acquisition, integration, and analysis of
a large volume of data that is continuously generated by various
sources, such as sensors, devices, vehicles, buildings, and people [10].
Along with the development of Urban Computing, sensing technologies
are becoming ubiquitous within the Intelligent Transportation System
(ITS). This has contributed to the enormous growth of continuous data
stream in the urban mobility scenario. The continuous data stream
is produced at high volume, variety, and velocity from a Vehicular
Ad-Hoc Network (VANET), which must be stored and processed to
mitigate traffic congestion in ITS [11]. According to the International
Data Corporation (IDC), the number of connected devices worldwide is
expected to reach 75 billion by 2025, generating 73.1 ZB of data. This
includes 110 million cars and 1.2 million homes connected with 5.5
billion and 200 million sensors, respectively [12,13]. Arcaro predicts
that by 2023, almost 70% of new vehicles worldwide (i.e., 90% in
the United States) will have an integrated connectivity interface to a
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cellular network, which will provide vehicular data from gateways,
software, or sensors [14]. This leads to an exponential growth in data,
increases the communication cost of the network, and the computa-
tional complexity for data orchestration (e.g., storage, processing, and
analysis) and extraction of knowledge [15,16].

Although vehicular traffic data is growing, ITS uses this valuable
mobility information from multiple vehicles to facilitate travel-related
applications, such as carpooling, public transportation, and taxis [17].
These applications require information regarding the level of road
congestion to plan travel routes and minimize travel time, collisions,
fuel consumption, and carbon emissions. Hence, a Traffic Congestion
Detection Service (TCDS) is widely used in ITS to discover areas with
high vehicle density, primarily facilitated by the low speed of vehicles.
TCDS uses a large amount of situational vehicular traffic data (e.g., ve-
hicle position, vehicle speed, and vehicle acceleration) to characterize
traffic flow congestion [11,18,19].

One way to provide a global view of traffic congestion, including
the condition for each road segment, is by using a Cloud-like service,
i.e., a macro-control service based on the geographic position of all
vehicles [11,20–24]. However, some urban areas can have millions of
vehicles transmitting continuous traffic information data to the Cloud,
which can significantly increase the network traffic. Both communica-
tion cost and the management of continuous data streams are barriers
for TCDS. Although authors in [20,21,24] have proposed approaches
to reduce data transmissions and minimize communication overhead,
it is unclear whether these works can guarantee accuracy on traffic
congestion detection with only data reduction. In addition, to the best
of our knowledge, none of the existing traffic congestion detection
services explore reduction in a continuous data stream, but rather
perform traditional batch processing in a static, offline manner.

In this work, we propose FogJam, a Fog service to detect traf-
fic congestion in VANETs. FogJam overcomes the limitations of the
state-of-the-art approaches by leveraging Fog and Cloud computing
to offer a TCDS over continuous data stream. Unlike some works
in the literature that consider data reduction in communication be-
tween vehicles and infrastructure to address the limitations of the
WAVE IEEE 802.11p communication protocol, FogJam focuses on the
communication between Fog’s IoT devices and the Cloud.

FogJam moves the distribution of computing capacity closer to ve-
hicles, reducing network traffic. The high-level view of the architecture
is illustrated in Fig. 1. The VANET layer is composed of vehicles, RSUs
(Roadside Units), road maps, and it is further related to the IEEE
802.11p vehicular network connectivity elements. FogJam does not
modify this layer, receiving traffic data transparently from RSUs. In the
Fog layer, FogJam has the Internet of Things (IoT) devices to deal with
all traffic data stream collected from the VANET layer, deploying data
reduction methods based on sampling or clustering traffic data. In this
layer, FogJam aims to reduce the amount of traffic data that is used
to detect road congestion in the Cloud. Then, FogJam uses the highest
capacity computing resources in the Cloud layer to process TCDS. To
extract value from large data volumes, processing power offered by
cloud computing is essential.

FogJam aims at detecting traffic congestion over the continuous
data stream, while reducing the data directly at the network edge.
To achieve this, FogJam deploys two different methods: (i) sampling-
based, and (ii) clustering-based. We consider the state-of-the-art meth-
ods proposed to reduce traffic data in a TCDS, and compare them with
each other. Note that these methods are adapted to support continuous
data stream. While methods based on sampling use statistical metrics
to provide traffic information for each road segment, the machine
learning (ML)-based clustering methods group vehicular data based on
the density of vehicles in a region. FogJam works incrementally and
adaptively with the traffic data stream to detect road congestion, while
reducing communication cost, i.e., the traffic data on the network links.

We outline the following strengths of our work:
2

Fig. 1. High-level view of the VANET, Fog and Cloud Architecture.

1. We propose FogJam, a Traffic Congestion Detection Service for
ITS that has a low communication cost.

2. FogJam effectively supports continuous data stream analysis in
an online mode for real-time ITS applications, such as emergency
vehicles, carpooling, public transportation, and taxis.

3. Through extensive experiments, we show that FogJam can man-
age and reduce continuous traffic data stream, while accurately
detecting traffic congestion areas and demonstrating its effec-
tiveness in a well-established simulators, i.e., OMNeT++, Veins,
and SUMO.

The remainder of the article is structured as follows: Section 2
introduces the related works. Section 3 describes the system model
and our problem formulation. The experiments and their results are
discussed in Section 4, while Section 5 provides a summary of our work
and instigates future research direction.

2. Related work

The main idea behind TCDS is to offer essential road congestion
information for other ITS services, such as planning new routes, traffic
monitoring, speed alerts, smart traffic light, and others. Therefore, sev-
eral studies attempted to improve TCDS in ITS. Regardless of whether
the Fog computing is employed or not, most works in literature focus on
traffic congestion detection without considering its impact on the net-
work infrastructure. The approaches mentioned in this section address
the basic TCDS issues.

Images and videos have also been employed to model or estimate
traffic conditions. Kumar and Kushwaha [25] and, [26] discussed traffic
congestion detection based on images captured from cameras installed
at several places in the city. Their approach uses the number of vehicles
in the image and road width to estimate traffic density. Authors in [27]
use an unsupervised ML to count the number of vehicles in an image.
However, all works, including [28–32] that are based on images and/or
videos to detect traffic congestion, inherently suffer in poor environ-
mental conditions, such as rain and mist. Besides, these approaches
require the installation of numerous cameras, which increases the
infrastructure cost.

Several studies have addressed the infrastructure cost issue [18,33–
41], by focusing on low-cost sensors to collect traffic data for of
congestion detection. In the case of Rath et al. [18], a mobile agent
embedded in a micro-controller is proposed to detect traffic congestion
and reduce the time for detecting congestion. On the other hand, Wang
et al. [40] combined the extraction of traffic event signals from social
media to GPS data to estimate traffic congestion. Seid et al. [41] used
low-cost devices combined with LoRaWAN networks to process traffic
management services. They extended the conventional coupled hidden
Markov model to integrate these two types of data. Although these
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studies are important within the sensor data collection service, they
do not show the impact of data acquisition on network communication.
Besides, these works are oblivious to the communication cost associated
with data exchange between vehicles and infrastructure.

Similarly, Ramachandra et al. [42] proposed an IoT prototype to
measure the traffic flow density using the On-Board Diagnostic (OBD)
sensor. All vehicles were equipped with an OBD device to acquire speed
data transmitted via Bluetooth to an on-board central unit (OBU). After
data acquisition, the OBUs communicate with nearby light poles (as a
RSU) using Zigbee, which sends the aggregated data to a central server
(as a Cloud-like service). The authors used a small time interval for
data transfer to minimize network usage. However, this time interval
nor the amount of data transferred over the network is specified.

Rani and Shaw [43] used fuzzy logic as a service to estimate
traffic congestion, employing technical attributes (e.g., traffic volume,
green light time, cycle time) and non-technical attributes (e.g., weather
condition, road condition, visibility). Both types of attributes are input
to the rule aggregation in the fuzzy logic process to estimate the traffic
congestion. Kangli and Zhipeng [44] proposed a traffic flow estimation
service using Fuzzy logic, which is based on the data obtained between
the vehicle’s position. They classify the traffic congestion in three
states: (i) free flow, (ii) synchronized flow, and (iii) wide movement
congestion flow. The authors in [45] proposed the CoTEC (COperative
Traffic congestion detECtion) technique, a service to optimize the
detection of vehicle traffic using Fuzzy logic. In Bauza et al. [45],
the authors proposed a mechanism based on signal messages received
from neighboring vehicles and observing the increase of re-transmitter
vehicles to perform congestion detection. The higher the number of
messages, the higher the quality of information, and the lower the
RMSE (Root Mean Square Error). Although these Fuzzy Logic works
estimate of traffic congestion at intersections of a road network, they
do not analyze the communication cost for data acquisition.

As discussed by Wang et al. [40], social media has a vast amount
of data that has been explored for traffic detection. This data describes
‘‘what happens now and where’’, which can be used to understand the
user’s mobility pattern. For example, Twitter, Foursquare, and Face-
book have geographic posting tools, which show the location of users.
Similarly, Wang et al. [46] proposed a Twitter-based railway delay
detection method that is based on topic propagation analysis of geo-
tagged tweets between railway stations. Their main goal is to predict
congestion in traffic accident events by analyzing topic propagation
using real railway network topology. This approach is efficient as it
does not use other sensors to detect traffic. However, using social
networks require a large volume of public data and processing.

On the other hand, clustering techniques have been used to par-
tition a large number of heterogeneous vehicular data into different
homogeneous groups. Lai et al. [47] proposed a cluster-based method
to process density queries in a road network. Their approach computes
the density using parameters, such as road segment length and the
number of objects on the road segment. They define a cluster as a
group of continuously moving objects close to each other. In another
clustering-based approach [48], the authors leveraged clustering al-
gorithms Expectation–Maximization (EM) and Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) to analyze traffic data
characteristics (e.g., traffic flow, density, speed). Their approach ap-
plied spatio-temporal data mining to detect potential traffic congestion
on the road. However, the authors neither analyze the communication
cost nor identify the traffic congestion source (e.g., road segment). In
contrast, FogJam records the trajectory data from vehicles represented
by the centroid of a group, providing information on the origin of traffic
congestion. Zhang et al. [49] proposed a clustering algorithm to analyze
the degree of traffic congestion based on gray relational analysis theory,
which considers multidimensional data and different clustering levels.
They used three variables for traffic flows (i.e., speed, density, and
volume) to evaluate the degree of traffic congestion. Unlike FogJam,
3

which analyzes continuous data stream from moving vehicles, cluster-
based approaches, including [50,51], assume a static dataset, working
only in batch mode. In addition, these works do not evaluate the impact
of their approach on network communication costs.

To minimize network usage and cost related to the traffic conges-
tion detection process, the authors in [20,21,24] proposed sampling-
methods that reduce the number of transmissions from vehicles to a
central server (e.g., Cloud-like service). They assumed that there are a
lot of redundant message transmissions in a TCDS. In their approaches,
each vehicle must decide when to send data (i.e., travel time on a
road segment) to the TCDS server. Kerner et al. [20] presented a
deterministic approach where the vehicles send their current traffic
data (i.e., speed) to the server when it exceeds a predefined speed-
threshold stored in the vehicles. As a more advanced traffic congestion
detection approach with data reduction, Tanizaki et al. [21] proposed
an approach, which we refer to as Rand. Rand is a TCDS used to
reduce the communication cost through a randomized update function.
In their approach, the vehicles transmit their speed to the server with
a certain probability 𝑝. As an extension of [20], Wahid et al. [24]
proposed a server update policy, which we refer to as Lim. In Lim, a
vehicle sends data to the server if the difference between the current
speed and an already stored speed in a interval time, is greater than
or equal to a threshold. Due to the similarity of the objective of these
approaches in reducing traffic data of a TCDS, we use their approaches
for comparison.

TCDS can generate a large data stream, leading to a significant
increase in communication cost. Almost all the related works presented
in this section are inconsiderate to the amount of data used for es-
timating congestion and the impact of spreading this knowledge on
communication cost. These works do not evaluate data reduction, not
even methods that perform clustering of vehicle density information
over time. Besides, to the best of our knowledge, no work was found
that provides data reduction in a continuous data stream to TCDS.
Therefore, to cope up with the limitations of traditional batch so-
lutions, which involve the processing of static datasets, we propose
FogJam, which offers low-cost, online processing of continuous data
to detect traffic congestion. It incrementally and adaptively processes
the traffic data stream, and reduces communication between Fog and
Cloud. FogJam leverages clustering techniques for data reduction and
identification of the source and severity of traffic congestion.

3. FogJam: Service model

In conjunction with Cloud computing, Fog computing improves
traffic congestion detection, which is useful for other real-time ITS
services, such as emergency vehicles, carpooling, public transportation,
and taxis. Therefore, FogJam leverages Fog computing to provide an
accurate traffic congestion detection service for VANET, which focuses
on minimizing communication cost. Fog computing reduces vehicular
network traffic by distributing computing capacity closer to the vehi-
cles. As illustrated in Fig. 2, FogJam is divided into three layers: (i)
Cloud Layer, (ii) Fog Layer, and (iii) VANET Layer.

Analyzing Fig. 2, we can see that there are three layers that work
together to perform the monitoring of traffic jams. First, in the VANET
Layer, we have a RSU that collect data from vehicular traffic. Next, the
Fog Layer is responsible for processing data received from the VANET
Layer and implementing the data reduction methods proposed in this
work. Fog Layer is also responsible for dealing with data from different
roads forming a subset that represents the traffic situation in a certain
radius. Then, the data reduced are sent to the Cloud Layer where the
decisions can be made based on the subset received from Fog Layer.

Thus, while the Cloud Layer analyzes traffic data to extract road
congestion information, the Fog Layer focuses on traffic data reduction,
and the VANET Layer generates traffic information. All service model
parameters are shown in Table 1.
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Table 1
Table of the service model parameters.
Cloud parameters Description

𝑅 = {𝑟11 ,… , 𝑟𝑗𝑖 ,… , 𝑟𝑓𝑐 } Set of computing resources in the Fog-Cloud hierarchy
𝑐 Resource id
𝑟𝑗𝑖 .𝐵 Associated Bandwidth Vector
𝑠𝑎𝑣𝑔𝑖 average speed
𝑠𝑚𝑎𝑥𝑖 maximum allowed road speed
𝑑𝑖 density on the road
𝐿𝑂𝑆|𝑊 = {𝑤1 , 𝑤2 ,… , 𝑤𝑖} Set of level of service
𝐷 Set of traffic data

Fog parameters Description

𝐴 = {𝑎1 , 𝑎2 ,… , 𝑎𝑓 } Set of services deployed by the fog devices
𝐹 = {𝑓1 , 𝑓2 ,… , 𝑓

|𝐹 |

} Set of fog device id
𝑞 Traffic flow given by speed and density
𝑆 = {(𝑆1 , 𝜏1), (𝑆2 , 𝜏2),…} Continuous data streams
𝜏 Timestamp
𝛥 Interval time
𝛾 Sliding-window size

VANET parameters Description

𝐺 = (𝑉 ,𝐸) Directed and weighted graph
𝑉 = {𝑣1 ,… , 𝑣

|𝑉 |

} Set of intersections
𝐸 = {𝑒1 ,… , 𝑒

|𝐸|

} Set of road segments connecting the intersections
𝑈𝑜,𝑝 = {𝑒1 ,… , 𝑒

|𝐸|

} Ordered set of road segments in the route with origin 𝑜 and destination 𝑝
𝑁 = {𝑛1 , 𝑛2 ,… , 𝑛

|𝑁|

} Set of vehicles
𝑀𝑖 = {𝑃(𝑥,𝑦),𝑛𝑖𝑑 } Beacon message
𝑃(𝑥,𝑦) Vehicle’s position (x ← latitude and y ← longitude)
𝑛𝑖𝑑 Vehicle’s identification
𝑅𝑆𝑈 = {𝑟𝑠𝑢1 ,… , 𝑟𝑠𝑢

|𝑅𝑆𝑈 |

} Set of RSUs
Fig. 2. FogJam: A Low-cost Communication Service for Detecting Traffic Congestion
in Continuous Data Stream.

3.1. Cloud layer

The uppermost layer is the Cloud Layer, which is composed of
computing resources that are used to process the traffic congestion
detection service. The Cloud-Fog computing resources are represented
by the overall set of computing devices 𝑅 = {𝑟11, 𝑟

1
2,… , 𝑟𝑗𝑖 ,… , 𝑟𝑓−1𝑐−1 , 𝑟

𝑓
𝑐 },

with 1 ≤ 𝑖 ≤ 𝑐 and 1 ≤ 𝑗 ≤ 𝑓 , where 𝑐 and 𝑓 are the indices repre-
senting the unique identification number for Cloud and Fog resources,
respectively. Each cloud resource 𝑟𝑗𝑖 ∈ 𝑅 has a connectivity vector 𝐵
representing the available bandwidth with every resource in the Fog,
4

i.e., 𝑟𝑗𝑎.𝐵[𝑟
𝑓
𝑏 ] ≥ 0 and 𝑟𝑗𝑎.𝐵.[𝑟

𝑗
𝑎] = ∞,∀𝑟𝑗𝑎, 𝑟

𝑗
𝑏 ∈ 𝑅. If 𝑟𝑗𝑎 and 𝑟𝑓𝑏 are

unreachable, then 𝑟𝑗𝑎.𝐵[𝑟
𝑓
𝑏 ] = 𝑟𝑓𝑏 .𝐵[𝑟

𝑗
𝑎] = 0.

TCDS is executed in the Cloud Layer, and is responsible for detecting
congestion level on the roads. In this way, acting as an extension of Fog,
Cloud has a centralized view of the road infrastructure, and provides
road congestion information for other ITS services to enable decision-
making in an orchestrated manner across the vehicular environment.
TCDS running in the Cloud receives traffic data from the Fog with
information about the position, density, and speed of vehicles. TCDS
uses this information to calculate the traffic conditions 𝑤𝑖, where 𝑊 =
{(𝑤1, 𝜏1), (𝑤2, 𝜏2),… , (𝑤

|𝑊 |

, 𝜏
|𝑊 |

)} represents a set of traffic condition
𝑤𝑖 over the time 𝜏𝑖. And, 𝑊 ∶ 𝐸 ⟶ 𝑅∗

+, that is, each 𝑤𝑖 is addressing
the traffic condition at time 𝜏𝑖 for each road segment 𝑒𝑖.

For TCDS, we adopted the traffic congestion classification defined
by the Highway Capacity Manual (HCM) [52]. HCM was created by the
United States Transportation Research Board in the form of mathemat-
ical equations to estimate traffic Level-Of-Service (LOS). This provides
a reference to classify the traffic condition based on the resultant factor
of the following equation:

𝑤𝑖 = 1 −
𝑠𝑎𝑣𝑔𝑖

𝑠𝑚𝑎𝑥𝑖 × 𝑑𝑖
∣ 𝑑𝑖 > 0, (1)

where 𝑠𝑎𝑣𝑔𝑖 , 𝑠𝑚𝑎𝑥𝑖 , and 𝑑𝑖 represent the average speed, maximum allowed
road speed, and traffic density, respectively, for 𝑒𝑖. Each 𝑤𝑖 is used to
detect high traffic density areas combined with low speeds, providing
information about congestion, its location and severity. As shown in
Table 2, there are six different LOS, providing a reference that is used to
describe the conditions of traffic flow. Each of these levels represent the
minimum and the maximum speed based on the maximum road speed
limit. We included color references to facilitate the understanding of a
heat map.

All congestion information (i.e., 𝑤𝑖) for each road segment 𝑒𝑖 is
stored in the LOS matrix, as illustrated in Fig. 3. Each row represents
a road segment 𝑒𝑖, while each column indicates the corresponding
timestamp 𝜏𝑖.

TCDS in the Cloud Layer is shown in Algorithm 1. The algorithm
aims to obtain the traffic classification condition for each road. TCDS
algorithm first joins the data streams from all Fog nodes into a single
stream, offering a global view of the road congestion at the Cloud. After
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Table 2
Traffic condition 𝑤𝑖 classification.

Road weight (𝑤𝑖) LOS Traffic flow classification

[0, 0.15] A Free-flow
[0.15, 0.33] B Reasonably free-flow
[0.33, 0.50] C Stable-flow
[0.50, 0.60] D Approaching unstable-flow
[0.60, 0.70] E Unstable-flow
[0.70, 1.00] F Breakdown-flow

Fig. 3. LOS Congestion information Matrix.

all road segments are visited, the traffic condition is calculated based
on Eq. (1). Then, the entire set of traffic conditions 𝑊 is stored in the
LOS congestion information matrix (cf. Fig. 3). It is worth mentioning
that the set 𝐷 containing several traffic data streams can be obtained
using data reduction methods deployed by Fog nodes in the Fog Layer.

Algorithm 1: TCDS: Traffic Congestion Detection Service
Require: Sets of (reduced) traffic data 𝐷 from all Fog nodes

∈ 𝐹 in the time interval 𝛥𝑡
Ensure: Set of traffic congestion information (𝐿𝑂𝑆)
1: Initialize 𝐿𝑂𝑆 = 0
2: 𝐷 ⋈ 𝐷𝑓1 , 𝐷𝑓2 ,…
3: for all new road segment 𝑒𝑖 ∈ 𝐷 do
4: if (𝑒𝑖 is visited) then
5: 𝑒𝑖 = 𝑒𝑖+1
6: else if (𝐷𝑒𝑖 ⊆ 𝛥(𝜏𝛼 ,𝜏𝛽 )) then
7: 𝑒𝑖 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
8: 𝑠𝑎𝑣𝑔 = 𝐷.𝑒𝑖.𝑠𝑎𝑣𝑔()
9: 𝑠𝑚𝑎𝑥 = 𝐷.𝑒𝑖.𝑠𝑚𝑎𝑥()

10: 𝑑𝑖 = 𝐷.𝑒𝑖.𝑑𝑒𝑛𝑠𝑖𝑡𝑦()
11: 𝑤𝑖 = 1 − 𝑠𝑎𝑣𝑔𝑖

𝑠𝑚𝑎𝑥𝑖 ×𝑑𝑖
∣ 𝑑𝑖 > 0;

12: 𝑤𝑖.𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑤𝑖.𝑣𝑎𝑙𝑢𝑒 (cf. Table 2)
13: 𝐿𝑂𝑆 = (𝑤𝑖.𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝜏𝑖)
14: end if
15: end for
16: return (𝐿𝑂𝑆)

3.2. Fog layer

In the Fog Layer, FogJam receives all traffic data stream from the
VANET Layer and implements data reduction based on sampling or
clustering of the vehicular data. To accomplish this, there are Fog
devices connected to the RSUs, which are used to execute traffic data
reduction service. Let 𝐹 = {𝑓1, 𝑓2,… , 𝑓

|𝐹 |

} be a set of Fog devices
connected to RSUs in the Cloud-Fog infrastructure. Also, let 𝐴 =
{𝑎1, 𝑎2,… , 𝑎𝑓 } be a set of data reduction services running in the Fog
devices.

The primary objective of FogJam is to minimize the cost of commu-
nication over the LTE/5G network that connects the Fog devices to the
Cloud. FogJam operates at the network edge with two main functions:
(i) handle traffic flow information made up of continuous data stream,
and (ii) employ sampling and clustering methods to reduce the amount
of traffic flow that is used to detect road congestion.
5

Fig. 4. Data stream processing in FogJam.

3.2.1. Continuous data stream
Each Fog device is continuously receiving data streams from several

RSUs. All of these data streams are joined into a single Data stream.
Data streams (𝑆) are sequences of unlimited tuples generated contin-
uously over time. 𝑆 = {(𝑆1, 𝜏1), (𝑆2, 𝜏2),…}, where 𝑆 is an infinite
sequence of elements (i.e., vehicular traffic information), and the time
is given by 𝜏 ∈ 𝑅∗

+ = {𝑥 ∈ 𝑅|𝑥 ≥ 0}. FogJam processes 𝑆, clustering and
reducing the traffic data as new input traffic data becomes available.

To handle the temporal characteristics of 𝑆, we partitioned the
sequence of elements into a series of segments 𝑆′ = {𝑝1, 𝑝2,… , 𝑝

|𝑆′
|

}
according to a sliding-window size 𝛾. Then, the 𝜏-th window is refor-
mulated to a micro batch facilitating FogJam processing. Only the most
recent 𝑆 with a fixed 𝑔𝑎𝑚𝑚𝑎 size is maintained at 𝐷 in the sliding-
window. The elements in the sliding-window follow a first in, first out
(FIFO) scheduling method, which considers elements from the current
period (𝜏𝑖) up to a period in the past (𝜏𝑖−𝑗), where 𝑖 is the begin and
𝑗 the end of the time interval 𝛥. The abstraction of stream processing
performed by FogJam in 𝛥 is shown in Fig. 4, where 𝑛𝑖 represents the
identification of each vehicle in a RSU coverage.

The gray elements in Fig. 4, i.e., the set of vehicles {𝑛1, 𝑛2,… , 𝑛𝑖}
and the set of RSUs {𝑟𝑠𝑢1, 𝑟𝑠𝑢2,… , 𝑟𝑠𝑢𝑗}, are part of the VANET Layer.
Each vehicle 𝑛𝑖 sends a traffic data stream {𝑆𝑖} to 𝑅𝑆𝑈𝑗 in its coverage
area. All traffic data streams are joined through a ⋈ operation, and the
resultant stream {𝑆𝑗} is forwarded to the closest Fog device. The red
elements in Fig. 4 indicate the methods employed by FogJam in the
Fog Layer. The first step of processing in this layer is to join all traffic
data from all RSUs through a ⋈ operation. Although it is possible to
forward this joint data stream {𝑆} directly to the Cloud, two types of
traffic data reduction are implemented: (i) based on sampling, and (ii)
based on clustering.

3.2.2. Sampling methods
We leverage an adaptation of the sampling method from Tanizaki

et al. [21], which we denote as 𝑅𝑎𝑛𝑑. Rand was adapted to accom-
modate a continuous data stream, and partitioning the data into a
sliding-window. In the original work, only a static dataset was used
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in batch mode. In brief, 𝑅𝑎𝑛𝑑 uses a randomized update function in
hich the vehicles transmit their speed data only when a probability
is less than 1. Thus, for each time interval (𝛥𝑡), the randomization

ondition is checked, and when this condition is true, the data is
ransmitted. A function of p gives the randomization condition. It is
he time measured between the beginning of the vehicle exceeding the
peed limit for the first time and the transmission of the revised speed
o the Cloud. Therefore, it is the sum of this time, considering two
onsecutive vehicles, multiplied by the probability 𝑝 ∗ (1 − 𝑝)𝑖−1.

Following adaptation made for 𝑅𝑎𝑛𝑑, we also use the sampling
ethod from Wahid et al. [24], which we denote as 𝐿𝑖𝑚. 𝐿𝑖𝑚 only

ends the current traffic data to the Cloud when the speed of the vehicle
xceeds a predetermined threshold value (𝑇 ) that is already stored in
he vehicles. This decision is given by 𝑠, which is the difference between

the current speed (𝑠𝑐𝑡𝑛𝑖 ) and the previous speed (𝑠𝑝𝑛𝑖 ) of a vehicle 𝑛𝑖. If 𝑠 is
greater than or equal to 𝑇 in 𝛥, the data is sent to the Cloud, otherwise,
t is discarded. Hence, the vehicle forwards the traffic data to the Cloud
hen (𝑠𝑐𝑡𝑛𝑖 − 𝑠𝑝𝑛𝑖 ) ≥ 𝑇 , i.e., 𝑠 ≥ 𝑇 .

We also compare against two simple methods to cater to a continu-
us data stream environment: (i) a naive sampling method called 1𝑡𝑜2,
hich uses a rate of [1 ∶ 2], i.e., one out of two data is always sent to the
loud, and (ii) a straightforward algorithm Baseline (cf. Algorithm 2).
aseline deals with traffic data without data reduction, i.e., it forwards
ll the traffic data collected from the VANET Layer to the Cloud Layer.

Algorithm 2: Baseline Algorithm
Require: Set of stream points (𝐷) containing all positional

vehicle information in the time interval 𝛥𝑡
Ensure: Set of stream points (𝐷) organized by road segment

𝑒𝑖
1: for all each road segment 𝑒𝑖 ∈ 𝐸 do
2: Initialize road segment information 𝑒𝑖 = 0
3: for all new point arrived 𝑃 ∈ 𝐸 do
4: if P is visited then
5: 𝑃𝑖 = 𝑃𝑖+1
6: else
7: 𝑃 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
8: 𝑒𝑖 = 𝑃 ← (𝑃 𝑥,𝑦, 𝑖𝑑)
9: end if

10: end for
11: end for
12: return (𝐸)

As stated before, the process of sending all the data received from
he VANET Layer to the Cloud, allows us to carry out a factual com-
arative analysis of Baseline with other data reduction methods, with
espect to traffic flow classification accuracy (i.e., 𝐿𝑂𝑆).

3.2.3. Clustering methods
In addition to sampling techniques, we also proposed two adapted-

clustering techniques to accommodate for a continuous data stream. We
leverage the density-based algorithm Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [53], and the X-Means algorithm
based on K-Means [54]. Our contribution to these clustering methods
lies in the technical and conceptual adaptation to use them in a con-
tinuous data stream environment. This enables the clustering methods
to efficiently extract the traffic condition insights ‘‘on-the-fly’’ from the
traffic data stream.

As shown in Algorithm 3, our Continuous Data Stream DBSCAN
(CDS-DBSCAN) starts by visiting an arbitrary point (𝑃 ∈ 𝐷) that has not
been visited before. Each point in 𝑃 comprises of two information, the
vehicle’s position and the vehicle’s identification. Then, all points for
each neighborhood are retrieved, and as long as the minimum number
of neighbors is satisfied, a group is formed. Otherwise, 𝑃 is deemed as
a noise. Note that this noise 𝑃 can be found as part of other clusters for
a different size of 𝜖.𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑, where 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, also known as radius,
6

defines the maximum distance between two points to be considered as
neighbors. This process continues until the density for all clusters is
determined.

Algorithm 3: CDS-DBSCAN Algorithm
Require: Set of stream points (𝐷) containing all positional

vehicle information, 𝑚𝑖𝑛𝑃 𝑡𝑠 and NeighborRadius 𝜀 in the time interval 𝛥𝑡
nsure: Set of Clusters 𝑘′ assignment for each 𝛥𝑡
1: Initialize clusters set 𝑘 = 0
2: for all new point 𝑃 arriving in the stream ∈ 𝐷 do
3: if P is visited then
4: 𝑃𝑖 = 𝑃𝑖+1
5: else
6: 𝑃 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
7: end if
8: 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡 = all 𝑃 ∈ 𝜖.neighborhood
9: if |𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡| < 𝑚𝑖𝑛𝑃 𝑡𝑠 then
0: 𝑃 = 𝑛𝑜𝑖𝑠𝑒
1: else
2: 𝑘𝑖 = 𝑘𝑖+1
3: 𝑘 = 𝑃
4: for all 𝑃 ′ ∈ 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡 do
5: if 𝑃 ′ is not visited then
6: 𝑃 ′ = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑
7: 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡′ = all 𝑃 ′ ∈ 𝜖.neighborhood
8: if |𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡′| ≥ 𝑚𝑖𝑛𝑃 𝑡𝑠 then
9: 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡 = 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡 ⊕ 𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡′

0: end if
1: end if
2: if 𝑃 ′ ∉ 𝑘 ← (𝑘 = 0, ..., 𝑘 = 𝑛) then

23: 𝑘 = 𝑃 ′

24: end if
25: end for
26: end if
27: end for
28: for all 𝑘 ← (𝑘 = 0, ..., 𝑘 = 𝑛) do
29: 𝑘′ = 𝑘.𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ⊕ 𝑘.𝑁ℎ𝑜𝑜𝑑𝑆𝑒𝑡(𝜆)
30: end for
31: return (𝑘′)

To deal with the continuous data stream environment, we adapted
DBSCAN to use a sliding-window (cf. Section 3.2.1) as a mechanism to
adjust flexible limits in the unlimited data stream, to seek a finite, but
always a variable set of tuples. In this way, the timestamp values of
the streaming tuples are checked for inclusion in a time interval (𝛥),
producing an approximate response to a query in the data stream. This
approach enables DBSCAN to analyze parts of the recent data in the
stream, instead of looking at all the history of the data stream. There-
fore, the sliding-window gathers the incoming data in a pre-specified
𝛥𝑡, and when the elapsed time is greater than the sliding-window size
𝛾, the accumulated data is processed for clustering.

After clustering, the reduction process automatically discards noise.
The next step in this CDS-DBSCAN is to reduce the amount of traf-
fic data sent to the Cloud. Therefore, based on the vehicles’ density
distribution on the road for each sliding-window 𝛾, each cluster is
transformed into a new smaller one, but maintains the similarity of
original distribution. Nevertheless, before reducing the number of el-
ements within each cluster, we choose the most representative data
point within each cluster to act as a centroid. In ordinary DBSCAN,
there is no notion of a centroid, hence, we inculcate this to provide a
central element inside the cluster 𝑘 with a reasonable distance from one
another. The goal is to choose a spread set of points (𝜆) in each cluster
with similarity (i.e., position and speed) from the centroid. As a result,
we send a subset to the Cloud that represents more relevant elements
for each cluster.

Although K-Means is widely used to identify clusters in data, it
requires the number of clusters (i.e., k-number) be to know a priori.
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Therefore, we adapted the X-Means algorithm [54], called CDS-X-
Means (cf. Algorithm 4) to work in a continuous data stream environ-
ment. As X-Means, CDS-X-Means automatically sets k-number based on
Bayesian Information Criterion (BIC) score.

Algorithm 4: CDS-X-Means Algorithm
Require: Set of stream points (𝐷) containing all positional

vehicle information in the time interval 𝛥𝑡, as well as 𝑘𝑚𝑎𝑥
Ensure: Set of clusters centroids 𝐶 = {𝑐1,… , 𝑐𝑘} assignment

for each 𝛥𝑡
1: while |𝐶𝑘| > 𝑘𝑚𝑎𝑥 do
2: for all new point 𝑝𝑖 arriving in the stream ∈ 𝐷 do
3: for all new centroid 𝑐𝑘 in the stream ∈ 𝐶 do
4: ed = Euclidean_distance(𝑝𝑖, 𝑐𝑘)
5: if ed(𝜏𝑖) < ed(𝜏𝑖−1) then
6: 𝑐𝑘 = 𝑝𝑖
7: 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑘)
8: end if
9: end for

10: end for
11: 𝑂𝑙𝑑𝐵𝐼𝐶 = 0
12: for all new cluster formed 𝑘 in the stream ∈ 𝐷 do
13: 𝑜𝑙𝑑𝐵𝐼𝐶 = 𝑙𝑜𝑔 𝑀𝑗 (𝐷) − 1

2
𝑘𝑝𝑗 𝑙𝑜𝑔 𝑛

4: end for
5: 𝑆𝑢𝑏𝑘 = 2
6: for all new cluster formed 𝑘 in the stream ∈ 𝐷 do
7: KMeans(D, 𝑆𝑢𝑏𝑘)
8: for all new cluster 𝑆𝑢𝑏𝑘 in the stream ∈ 𝐷 do
9: 𝑁𝑒𝑤𝐵𝐼𝐶 = 𝑙𝑜𝑔 𝑀𝑗 (𝐷) − 1

2
𝑘𝑝𝑗 𝑙𝑜𝑔 𝑛

0: end for
1: if 𝑁𝑒𝑤𝐵𝐼𝐶 > 𝑂𝑙𝑑𝐵𝐼𝐶 then
2: 𝑘+ = 1
3: 𝐶 = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑘)
4: end if
5: end for
6: end while
7: return (𝐶)

CDS-X-Means uses 2-Means (i.e., K-Means with k=2) as a subrou-
ine that repeatedly attempts to subdivide, while maintaining the best
esulting clusters until BIC is reached. BIC is based on the log-likelihood
f the dataset and it is computed using the following equation:

𝐼𝐶(𝑗) = 𝑙𝑜𝑔 𝑀𝑗 (𝐷) − 1
2
𝑘𝑝𝑗 𝑙𝑜𝑔 𝑛. (2)

here 𝑀𝑗 (𝐷) is the maximal likelihood of D using the model j, 𝑘𝑝𝑗
s the number of parameters of the model, and 𝑛 = |𝐷|. Note that in
lgorithm 4, we first cluster the traffic data within an interval time (𝛥𝑡)
sing 2-Means, thus creating two clusters. Then, 2-Means is executed
or each cluster of the initial clustering created. There are two centroids
or new clusters, which are based on the centroids of the original
luster. According to the BIC metric, if any of the clusters in the initial
lustering does not have a good representation of data, we replace them
ith their ‘‘sons’’. In case of no cluster being worse than their son, we

hoose a member of the cluster that best fits the data based on the
dopted metrics. This process is repeated until the number of clusters
xceed the maximum number 𝐾𝑚𝑎𝑥 that is provided as input.

Therefore, FogJam reduces the volume of data communicated over
he network, relieving the LTE/5G links between Fog and Cloud by
sing sampling and clustering methods. It helps alleviate data growth
t its source, due to its proximity to the vehicles in the VANET envi-
onment. The storage and computational complexity of the clustering
pproaches are as follows. DBSCAN needs 𝑂(𝑛), while X-Means re-

quires 𝑂((𝑛+𝐾)𝑚) of storage [55,56]. They both have a computational
omplexity of 𝑂(𝑛2).
7

Fig. 5. Network Usage vs. Number of Vehicles, IEEE 802.11p-based vehicular network.

3.3. VANET layer

We model VANET as a directed and weighted graph 𝐺 = (𝑉 ,𝐸),
where 𝑉 = {𝑣1, 𝑣2,… , 𝑣

|𝑉 |

} is the set of intersections and 𝐸 =
{𝑒1, 𝑒2,… , 𝑒

|𝐸|

} is the set of road segments connecting the intersections.
Also, let 𝑁 = {𝑛1, 𝑛2,… , 𝑛

|𝑁|

} represent the vehicles on the road. When
a vehicle 𝑛𝑖, where 𝑖 represents the 𝑖th vehicle 𝑛𝑖 ∈ 𝑁 , is driving from a
source intersection 𝑣𝑜 to a destination intersection 𝑣𝑝, an ordered set of
road segments in the route is defined as 𝑈𝑜,𝑝 = {𝑒1, 𝑒2,… , 𝑒

|𝑒|}, where
|𝑒| is the number of road segments in the route.

Each vehicle 𝑛𝑖 ∈ 𝑁 periodically sends a beacon message (𝑀𝑗) to
the nearest RSU, where 𝑖 represents the 𝑖th beacon sent by vehicle
𝑛𝑖, and 𝑀𝑗 consists of a tuple including vehicle’s position (𝑃𝑥,𝑦) and
vehicle’s identification (𝑛𝑖). A single continuous data stream is given
by 𝑆𝑖 =

∑

|𝑀|

𝑖=0 𝑀𝑖 at time 𝜏𝑖 for (𝑀 ∈ 𝑅∗
+) = {𝑖 ∈ 𝑅|𝑖 ≥ 0}. Besides,

the probability distribution is non-stationary due to the changes in the
traffic data generation process.

The VANET Layer is related to the IEEE 802.11p vehicular network’s
connectivity elements, offering a set of weighted graphs from road
information, which is based on the spatial and temporal analysis. We
consider a V2I (Vehicle-to-Infrastructure) communication model in this
paper. However, this can be extended to other communication models
that use an infrastructure to provide a global and centralized view of
traffic congestion. V2I uses IEEE 802.11p to enable wireless access in
vehicular environments (WAVE). IEEE 802.11p is based on dedicated
short-range communications (DSRC) radio technology to exchange data
between vehicles and infrastructure, i.e., RSUs. A RSU is typically
attached along roads, at intersections, or near parking spaces, and uses
beacon packets to exchange data with vehicles. A beacon is an IEEE
802.11p periodic message for exchanging situational information. RSUs
and vehicles use it in the Control Channel (CCH), typically 27 bytes in
length, but can reach up to 100 bytes [51,57,58].

To demonstrate the impact on network usage, Fig. 5 shows a toy
example of network link utilization with 100 bytes beacon, depicting
the amount of data that is transmitted from a single RSU/Fog to the
nearest LTE/5G base station (BS). Although 5G networks are provi-
sioned to support exponential growth in traffic, the regular LTE/5G
network usage in an urban environment combined with VANET data
growth, can burden the network. Note that the VANET data is impacted
by the beacon transmission frequency and the number of vehicles.

FogJam assumes a beacon frequency of 1 Hz [57] to detect traffic
congestion. The beacon frequency pertains to the number of beacons
sent per second by a single vehicle to the RSU. We also assume that
there are two modes of V2I communication to deal with traffic data.
First, the vehicle sends the traffic data directly to the LTE/5G BS,
which is forwarded to the Cloud. In this case, the BS acts as a Macro-

Cell in the Cellular architecture. Second, the RSU receives the traffic
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Fig. 6. (a) TAPAS Cologne map (b) Subset Cologne used in the simulation (c) Road Segments Chosen for Traffic Analysis.
Fig. 7. Analyzing Speed (km∕h) for Road Segment (1).
data via IEEE 802.11p and acts as a Small-Cell in the 5G Cellular
architecture. The RSUs communicate with vehicles via WAVE to collect
traffic information, such as time, speed, and vehicle location. The
acquired traffic data is forwarded to the Fog Layer.

4. Results and discussion

In this section, we evaluated the performance of the sampling
algorithms, mentioned in Section 3 (i.e., 1to2, Rand [21] and Lim [24]),
along with the clustering methods (i.e., CDS-DBSCAN and CDS-X-
Means) employed in FogJam. In addition, the Baseline algorithm [59,
60], a non-data-reducing method, is used as a baseline due to its
standardization and accuracy in detecting traffic congestion levels. This
section also presents the scenarios, simulation environment and setup,
and the results obtained for vehicle speed, 𝐿𝑂𝑆, and network analysis,
respectively.

4.1. Simulation setup

We perform evaluations using Veins [61], an open-source simulator
that implements the standard IEEE 802.11p protocol stack for inter-
vehicle communication. Veins is integrated into OMNet++ [62] to
manage the network and connectivity. We also use the Simulation of
Urban MObility (SUMO) [63], which is an open-source traffic simulator
to model and manage objects in the road scenario. This allows us to
reproduce the desired vehicle movements with random cruise speed
and interactions according to empirical data.

All experiments were performed for methods implemented in Fog-
Jam. We assume a network link between Fog and Cloud with a max
8

Table 3
Simulation parameters.

Parameters Values

Simulation Area 4.6 km2

Scenario TAPASCologne [64]
Boundary Box (12200,13000) (14500,15000)
Number of Vehicles {30, 50 and 70}
Vehicle Speed Mean: 30.05 km/h
Beacon Size 100 bytes
MAC layer IEEE 802.11p PHY
Mobility Simulator SUMO 0.32.0
Vehicular Network Simulation Veins 4.7
Discrete Event Simulator OMNeT++ 5.3
Transmission Power 20 mW
Bit Rate 6 Mbps
Beacon Transmission Rate 1 Hz

rate of 340 (KB/s). Our scenario has a single RSU with a coverage of
1 km2. The main simulation parameters are summarized in Table 3.

Our simulations use a subset of the TAPASCologne [64], which is
an open-source project that provides a large-scale dataset with high
realism for urban vehicular simulation that is based on SUMO. TAPAS-
Cologne uses a realistic map of Cologne, Germany, obtained from
OpenStreetMap,1 as shown in Fig. 6(a). Vehicles used in the simulation
share the same characteristics, such as the same size, mean, and stan-
dard deviation of speed. To perform the simulations, we used a central

1 https://www.openstreetmap.org

https://www.openstreetmap.org


Ad Hoc Networks 140 (2023) 103046M.L.M. Peixoto et al.
Fig. 8. Analyzing Speed (km∕h) for Road Segment (2).
Fig. 9. Analyzing Speed (km∕h) for Road Segment (3).
region of the data set, shown in red in Fig. 6(b), which exhibits a high
density of vehicles.

Experiments were performed to observe the behavior of six different
methods, which were discussed in Section 3. We use random routes
for each vehicle, different vehicle densities, representing the active
vehicles on the map during the entire simulation. These vehicle densi-
ties were chosen to characterize traffic congestion on the clipped road
topology of Cologne. The experiments aim to analyze the accuracy in
detecting congestion, given as LOS, and the impact on network cost.

4.2. Speed analysis

In this subsection, we analyze the behavior of the average speed
(km/h) over the normalized simulation time for the Baseline, 1to2,
Rand, Lim, CDS-DBSCAN, and CDS-X-Means methods, with different
vehicular densities. Each zone of interest is marked in Fig. 6(c) with
red circles (i.e., 1, 2, and 3), which highlights the chosen segments for
the speed analysis.

We chose road segment (1), as it is the longest, with the highest
number of intersections, and is one-way. It serves as an alternative
to highways. Road segment (2) represents a main urban artery, an
alternative route for those who travel between points 1 and 3, causing
traffic retention by derivation. Also, it is a way between regions and has
a single direction. Road segment (3) was chosen due to its intersection
with a fast transit route. It is bidirectional and has a bottleneck that can
generate traffic retention. Although we show only these three zones of
interest for speed analysis in this paper, we cover the LOS and network
analysis for the entire map.
9

Fig. 10. Traffic Congestion Detection with density of 30 vehicles/km2.

Figs. 7–9 show the average speed for road segment 1, 2 and 3,
respectively, and the impact of the sampling and clustering methods for
different number of vehicles. In general, it can be observed that 1to2
and Rand algorithms have a behavior that is similar to the Baseline,
i.e., even with a reduction of data, these approaches represent the
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Fig. 11. Analyzing LOS for a density of 30 vehicles.
Fig. 12. Traffic Congestion Detection with density of 50 vehicles/km2.

approximate average speed of Baseline. Although the minimum beacon
transmission rate indicated for TCDS is 1 Hz, the number of beacons is
higher than necessary to characterize the speed metric for this scenario.
Therefore, the small data reduction provided by these methods does not
impact the speed representation.

As aforementioned, Fig. 7 highlights a similar behavior for 1to2,
Rand, and Baseline, showing that the speeds are practically overlap-
ping. As for the clustering methods, there is a sensitive variation in
speed, shown by Fig. 7A with the Normalized Simulation Time (NST)
between 0.0 and 0.3 and by Fig. 7C with NST between 0.3 and 0.6,
which indicates a short-time traffic congestion peak. Although clus-
tering methods move further away from the original data for Fig. 7A
and Fig. 7C due to the short time the road was congested, a slight
similarity is observed in the trend between clustering techniques and
Baseline. Short-time traffic congestion peaks may not be detected with
high precision by the clustering algorithms, as the short-time interval
may not be enough to receive all the traffic data that characterize a
vehicle’s spatial density. However, due to this rapid transience, this
issue is not significant for ITS applications.

For all scenarios experimented, the Lim algorithm is furthest from
the Baseline result due to the established threshold for traffic data trans-
mission. Environments with high variations in speed cause a reduction
in accuracy for the Lim algorithm when compared to Baseline. One way
to improve Lim results would be to use a threshold representing the
average speed acquired from historical traffic data. Except for Lim and
10
CDS-X-Means, all other algorithms in Fig. 8 closely follow the behavior
of the Baseline algorithm.

According to Fig. 9 (mainly A and C), it is observed that despite
the high variation in speed, CDS-DBSCAN is capable of following the
Baseline, even with speed ranging from 0 to 30 km/h. In this scenario,
CDS-X-Means does not show good results when the density increases to
50 and 70, due to the low number of clusters created on the road map.

The speed analysis is essential to demonstrate the traffic data that
each Fog Layer algorithm provides to the Cloud. With this type of
traffic information, FogJam detects the source and classifies the level of
congestion according to its severity, given by LOS. To provide a suitable
TCDS, the algorithms must provide the correct speed tracking, which
is used in the HCM Eq. (1). If speed observations are compromised,
the reported accuracy of the traffic congestion level may also be
compromised, as we will see in the next subsection.

4.3. LOS analysis

We adopted LOS as a metric to define the level of congestion on the
roads. As explained in Section 3.1, it categorizes the traffic flow level
based on parameters, such as speed, density, and delay. We applied
the LOS metric for each algorithm with the aim to observe the level of
accuracy when we use the different data reduction processes proposed
in this work. For each data reduction approach, we need to identify
the ability of a certain algorithm to keep the representativeness face an
original dataset. Moreover, to observe the LOS behavior when applied
within the context of traffic data flow, we analyze the LOS for each
road segment chosen, and correlate it with a series of maps for different
traffic densities (i.e., 30, 50, and 70 vehicles). It is worth noting that
for each road segment, we performed a set of experiments with 10
replications for each using a 95% confidence interval.

Fig. 10 shows the LOS behavior for a density of 30 vehicles. Base-
line, 1to2, and Rand algorithms have similar LOS behavior, presenting
similar levels of congestion (cf. Table 2) in most cases. On the other
hand, although CDS-DBSCAN does not cover all congestion points due
to the low density of vehicles in this scenario, it detects most of the
congestion on the road map.

When analyzing Fig. 11, we can see that in Road 1, all algorithms
had similar behavior, showing high accuracy. In this scenario, the LOS
goes down as a function of the low density of the road. On the other
hand, Road 2 shows a loss of accuracy for the algorithms X-Means and
Lim, which occurs also in Road 3. These roads have a larger traffic flow,
which was not identified by the algorithms.

Fig. 12 shows the behavior of the algorithms when we increase
the number of vehicles on the roads to 50 vehicles per km2. Within
this scenario, while the Lim algorithm maintains a lower congestion
detection capability, we observed an improvement in the accuracy
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Fig. 13. Analyzing LOS for a density of 50 vehicles.
of CDS-X-Means, in comparison to Fig. 10. This is primarily due to
the increase in the number of data points, which results in more
clusters across the map. This increase in accuracy is also observed for
CDS-DBSCAN.

In the same manner, analyzing Fig. 13 we observe that on Road
1 the behavior is similar between the algorithms. When we analyze
Road 2, we see an increase in the traffic flow. As illustrated in Fig. 10,
the algorithms X-Means and Lim have a lower accuracy than other
algorithms. This behavior was also observed in Road 3.

When local traffic has 70 vehicles per km2 (cf. Fig. 14), we can
observe an increase in the congestion and, as a consequence, more
presence of the 𝐸 and 𝐹 weights (𝑤𝑖) of the LOS Table. In this scenario,
the Lim algorithm has shown a higher efficiency in congestion detection
than previous scenarios. This suggests that the application of this
technique is more efficient in situations with a higher concentration
of vehicles. Although CDS-X-Means has shown a slight improvement
for this scenario, it is the CDS-DBSCAN algorithm that maintains the
consistent high precision provided by LOS, accurately showing the
points and congestion levels.

Analyzing Fig. 15, we can observe that on Road 1 the behavior is
similar between the algorithms. When we analyze Road 2, we can see
a significant increase in the traffic flow, the algorithms X-Means and
Lim have a lower accuracy than other algorithms. In Road 3, we can
observe a similarity among the algorithms, with a small variation in
the accuracy of Lim.

Analyzing all three Figures (cf. 10, 12 and 14), we see Lim and
CDS-X-Means algorithms with less LOS representativeness. Lim does
not have all the traffic data necessary to accurately calculate the LOS,
with many congestion points that are not identified on the road map. In
the CDS-X-Means algorithm, only traffic data from each centroid is sent
from the Fog to the Cloud that represent the entire cluster, leading to
lack of information for traffic flow classification. It is worth mentioning
that even when CDS-X-Means has a lower LOS compared to Baseline,
it can still identify some points of congestion.

Although LOS is essential to ensure traffic flow classification, it is
necessary to understand its cost for a TCDS. Therefore, the next sub-
section discusses the cost associated with traffic data communication
between Fog and Cloud.

4.4. Network analysis

The continuous traffic data flow generated over time by vehicles is
usually large in volume, leading to network congestion, packet losses,
higher communication cost, wastage of bandwidth, and increase in
delay. Network Bandwidth (𝑁𝐵) is given by 𝑆𝐵∕𝑇 , where 𝑆𝐵 represents
the traffic data, and 𝑇 is the channel bandwidth. 𝑆𝐵 is also given
by (𝐿 + 𝜆 ), where 𝐿 is the sum of all packet sizes and 𝜆 is the
11

𝐵 𝐵 𝐵 𝐵
Fig. 14. Traffic Congestion Detection with density of 70 vehicles/km2.

average arrival rate. The higher the number of vehicles, the higher is
the consumed 𝑁𝐵. One way to approach this problem is to minimize
𝐿𝐵 subject to the constraint 𝑎𝑜 ≥ 𝑎𝑚𝑖𝑛, where 𝑎𝑜 is the accuracy
obtained, and 𝑎𝑚𝑖𝑛 is the minimum accuracy acceptable to detect traffic
congestion.

Fig. 16 shows the consumed 𝑁𝐵 for each method (i.e., Baseline,
1to2, Lim, CDS-X-Means, Rand, and CDS-DBSCAN), considering the
vehicle density for the entire simulation time. In this way, we can see
that the clustering algorithms are less costly with respect to network
communication. The Baseline provides LOS with higher network usage,
for the same reasons described above. On the other hand, the CDS-
DBSCAN, CDS-X-Means, and Rand algorithms consumed less than 50%
of network usage for all scenarios, and still maintained good LOS
detection accuracy.

When there are a higher number of vehicles in the scenario, there
are more possibilities of congestion and, consequently, more reduction
in network consumption. Lim, 1to2, and Rand algorithms are able
to reduce the network usage compared to the Baseline, but with a
higher cost than the clustering algorithms. Both CDS-X-Means and CDS-
DBSCAN reduce the traffic data by 60.85% and 75.61% compared to
the Baseline, respectively. Besides, CDS-DBSCAN reduces 28.90% more
traffic data than Rand, which is the best approach for traffic data
reduction in the literature.

On analyzing the data reduction strategies proposed in this work
facing the costs related to OPEX (Operational Expenditure), we observe
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Fig. 15. Analyzing LOS for a density of 70 vehicles.
Table 4
Network usage.

Density km2 30 50 70

Algorithm NB % NB % NB %
(KB/s) (KB/s) (KB/s)

Baseline 928.0 41.87 7.606 31.93 607.0 28.37
1to2 247.0 39.2 1.06 31.42 544.0 31.28
Rand 350.39 49.0 7.580 43.7 300.3 32.7
Lim 505.66 71.51 2.318 32.4 610.33 37.1
CDS-X-Means 183.34 0.94 8.934 2.20 816.30 1.88
CDS-DBSCAN 183.59 5.39 8.931 3.39 815.75 3.09
Fig. 16. Network Usage for Different Vehicular Density.

their practical implications from two concurrent perspectives. First,
data storage, which is related to the amount of data required by an in-
telligent transportation system to analyze and identify eventual changes
in traffic behavior. Second, communication cost, which is related to the
data traffic in the network during monitoring and management of urban
spaces. Within this context, approaches such as DBSCAN and X-Means
can contribute to reducing the communication cost once they are able
to make the same work using just a little part of the original dataset.
DBSCAN was able to reduce about 70% of the network resource use,
keeping a high level of accuracy. This strategy can represent a relevant
reduction of the traffic data costs through the network. This action
can contribute to the increase in the general quality of the service and
generate better use of this infrastructure

Fig. 16 is summarized in Table 4. CDS-DBSCAN uses the lowest
relative amount of network resources, and as shown in Figs. 10, 12 and
12
14, it is able to identify and classify the main congestion points. We can
observe the growing behavior of network usage in Baseline, due to the
increase in the number of vehicles, approaching 80% of the network
usage. Similar behavior can be observed with 1to2 and Rand in higher
vehicle density scenarios, and these methods tend to amplify network
consumption.

According to simulation results, cluster-based methods provide a
similar traffic flow (i.e., LOS) classification with less usage of the
network than other approaches, such as 1to2, Rand, and Lim. This
behavior is corroborated by a previous work [65]. In this paper, we
studied the relationship between the network usage and the number
of groups performed by DBSCAN. It was found that the increase in
the number of vehicles and, consequently, in the number of clusters,
indicates a lower number of noise points. Besides, with the increase
in the number of vehicles, the number of vehicles per cluster also
increases, proportionally reducing the amount of data sent per group.
Therefore, we show that the number of clusters, vehicular density, and
LOS is highly dependent on each other. In addition, despite the lower
network usage, the aggressiveness of the cluster-based CDS-X-Means in
reducing traffic data causes a significant loss in the LOS classification
accuracy. However, CDS-DBSCAN shows that it is possible to address
a multi-objective problem (accuracy and data reduction) for low or
high-intensity traffic congestion.

5. Conclusion

Traffic congestion or Traffic Jam is one of the biggest issues for
citizens living in large cities all over the world, leading to economic
and social issues. The traffic congestion detection systems use a large
amount of traffic data to measure the source and severity of traffic
flow, increase network costs, and overload the existing network in-
frastructure, especially from the edge of the network to the Cloud. To
overcome this issue, we have presented FogJam, a low communication



Ad Hoc Networks 140 (2023) 103046M.L.M. Peixoto et al.
cost Fog service to detect Traffic Congestion in a continuous data
stream environment.

We showed that the literature’s traditional sampling traffic data
algorithms can reduce data, but cluster-based methods increase the
amount of reduced traffic data while maintaining accuracy. Clustering
methods were employed to reduce total network usage based on vehicle
density and speed on the road. For Clustering methods, the more
density, the less proportional information is transmitted from the Fog
to the Cloud, due to the increasing number of vehicles per cluster.
Although the CDS-X-Means cluster-based algorithm has presented a
high data reduction rate, it achieved a poor result with respect to
LOS accuracy. On the other hand, CDS-DBSCAN could offer high levels
of reduction in traffic data, and efficiently recognize the source and
severity of the main congestion points on the road map, even when
the traffic is congested. FogJam using clustering-based methods was
able to, on average, reduce the network usage by approximately 70%
compared to the sampling methods, while maintaining an acceptable
level of accuracy.

In our future work, we intend to minimize the effect of cluster-based
algorithms on LOS accuracy for low traffic congestion. In this case,
there are fewer cars on the road and therefore data reduction must be
dynamic, adapting to the vehicle environment.
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