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Abstract
Traffic classification is essential in network management 
for a wide range of operations. Recently, it has become 
increasingly challenging with the widespread adoption 
of encryption in the Internet, for example, as a de facto 
in HTTP/2 and QUIC protocols. In the current state of 
encrypted traffic classification using deep learning (DL), 
we identify fundamental issues in the way it is typically 
approached. For instance, although complex DL models 
with millions of parameters are being used, these models 
implement a relatively simple logic based on certain header 
fields of the TLS handshake, limiting model robustness 
to future versions of encrypted protocols. Furthermore, 
encrypted traffic is often treated as any other raw input for 
DL, while crucial domain-specific considerations are com-
monly ignored. In this paper, we design a novel feature engi-
neering approach used for encrypted Web protocols, and 
develop a neural network architecture based on stacked 
long short-term memory layers and convolutional neural net-
works. We evaluate our approach on a real-world Web traffic 
dataset from a major Internet service provider and mobile 
network operator. We achieve an accuracy of 95% in service 
classification with less raw traffic and a smaller number 
of parameters, outperforming a state-of-the-art method by 
nearly 50% fewer false classifications. We show that our DL 
model generalizes for different classification objectives and 
encrypted Web protocols. We also evaluate our approach on 
a public QUIC dataset with finer application-level granular-
ity in labeling, achieving an overall accuracy of 99%.

1. INTRODUCTION
Traffic classification is quintessential for network opera-
tors to perform a wide range of network operation and
management activities. This includes capacity planning,
security and intrusion detection, quality of service (QoS)
assurance, performance monitoring, volumetry, and
resource provisioning, to name a few. For example, an
enterprise network administrator or Internet service pro-
vider (ISP) may want to prioritize traffic for business critical 
services, identify unknown traffic for anomaly detection, or 
perform workload characterization for designing efficient
resource management schemes to satisfy performance and 
resource requirements of diverse applications. Depending
on the context, misclassification on a large scale may result 
in failure to deliver QoS guarantees, high operational
expenses, security breaches, or even disruption in services.

Encrypted communication between clients and servers 
has now become the norm. Most prominent Web-based 
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services are now running over hypertext transfer protocol 
secure (HTTPS). On the other hand, to improve security 
and quality of experience (QoE) for end users, new Web pro-
tocols (e.g., HTTP/2 and QUIC) have emerged, which over-
come various limitations of HTTP/1.1. Using a real-world 
mobile traffic, we estimate that around 32% of all HTTPS 
sessions already use HTTP/2 as their underlying protocol. 
However, HTTP/2 features, such as payload encryption, 
multiplexing and concurrency, resource prioritization, 
and server push, add to the complexity of traffic classifica-
tion. While a large body of literature harnesses the power 
of machine learning (ML) for different traffic classification 
objectives (e.g., service- and application-level, QoE predic-
tion, security), there exist various limitations that must be 
addressed for its practical usage.

For instance, the particular nature of encrypted traf-
fic is not taken into account in many state-of-the-art 
approaches, which affects their performance and effi-
ciency when applied to encrypted protocols. Due to a lack 
of standard framework for traffic classification, numer-
ous works in traffic classification (e.g., Lopez-Martin,9 
Yao16) pick their classes somehow arbitrarily, which are 
often inconsistent in granularity. Furthermore, many 
approaches (e.g., Lotfollahi,10 Rezaei,11 Wang,14 Zou17) use 
datasets with a mixed set of protocols that are often easily 
distinguishable using header signatures, making it unre-
alistic to justify the use of computationally expensive ML 
models. In some cases (e.g., Brissaud6), traffic classifica-
tion approaches rely on clever techniques to guide the 
models based on expert domain knowledge that can be 
jeopardized by small variations in the protocol.

Another important issue is that some protocol exten-
sions, such as the server name indication (SNI) in trans-
port layer security (TLS), can essentially reveal the server’s 
identity, allowing for trivial classification of many traffic 
flows based on the server name. In this case, it can be argued 
that expensive and complex models are being used to learn 
a relatively simple logic, similar to those of a server name 
to label look-up table, which can be implemented deter-
ministically. All of these issues call for a more comprehen-
sive study of how deep traffic classification models behave 
on encrypted traffic, especially emerging Web protocols 
due to their ubiquity. They also underline the importance 
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of encrypted Skype traffic (e.g., Bonfiglio4). This is particu-
larly interesting as Skype operates on non-standard port 
numbers. DL introduced new opportunities in traffic clas-
sification by making it possible to feed large fine-grained 
feature vectors such as raw traffic to models, as opposed 
to aggregated statistics over entire sessions that required 
manual feature extraction efforts.

We can broadly categorize the typical features employed 
in the traffic classification literature for modeling traffic into 
the following groups: (i) Flow statistics: A standard flowmeter, 
such as CICFlowMeter,8 yields the mean, standard deviation, 
minimum, maximum, of packet lengths, IATs, TCP flag counts, 
flow durations, number of packets, number of bytes, etc. 
These statistics constitute a feature vector for each flow and 
have been employed since the early traffic classification litera-
ture. (ii) Raw bytes: The actual flow bytes from packet headers 
and payloads have grown in popularity with the advent of DL. 
Their appeal is the leveraging of data in the rawest form, as done 
in more conventional applications of DL such as computer 
vision. (iii) Time series: Following a fixed-size, a packet-level 
feature through all packets in a flow can yield a dynamic-sized 
time series feature representing the flow. For example, the 
sizes of the packets in a flow are a valid time series feature.

Aceto et al.1 evaluate numerous DL approaches for the 
classification of mobile application traffics, using a pro-
prietary dataset. They argue that there is no silver bullet, 
when it comes to the choice of a neural network for traffic 
classification. However, one-dimensional CNN and LSTM 
networks typically perform well due to the sequential nature 
of network traffic. Lopez-Martin et al.9 combine LSTM and 
CNN layers for service classification on a time series (i.e., 
feature type iii). However, their classes are inconsistent in 
granularity and the model is essentially classifying proto-
cols for some labels. The authors also show that traditional 
methods (i.e., based on lightweight ML models) are inferior 
to DL models in accuracy, by a significant margin. The high 
accuracies reported for traditional models in other works 
often pertain to different classification tasks (e.g., QoS) or 
mixed-protocol datasets (e.g., Williams15).

Bronzino et al.7 explore classification and regression 
models for inferring important QoS metrics of encrypted 
video traffic. The authors make use of traditional ML models 
such as linear regression, support vector regression, deci-
sion tree (DT), and random forest (RF) regressors, as well 
as RF classifiers. They leverage a carefully crafted set of sta-
tistical features (i.e., feature type i) to effectively predict the 
target metrics (i.e., playback startup delay and resolution) in 
detecting video resolution. However, their feature engineer-
ing is tailored for a specific task and does not generalize to 
various traffic classification objectives.

Rezaei et al.11 leverage CNN and CNN-LSTM architectures 
with certain adjustments to achieve high classification per-
formance. Their focus, like ours, is on encrypted Web traffic 
such as HTTPS. However, their dataset also contains non-
encrypted traffic. For their CNN-LSTM model, the authors 
model the traffic sessions as a series of flows. From each 
flow, the first six packets are fed raw to the flow-level model 
(i.e., feature type ii). Their dataset is comprised of real-world 
mobile traffic, including SSL and TLS flows, with application 

of developing general frameworks and guidelines for how 
encrypted Web traffic should be treated as a data type for 
future research in traffic classification.

In this paper, we leverage deep learning (DL) for service 
classification (e.g., video streaming, social media, Web 
mail) with a focus on new encrypted Web protocols, that 
is, HTTP/2 and QUIC, and overcome the abovementioned 
limitations. Unlike many works in this area, we focus exclu-
sively on encrypted Web traffic and explore the challenges 
of unleashing the full potential of DL to find complex pat-
terns that are innate to each traffic class. We occlude parts 
of the input that the DL model can use to learn a lazy and 
unsophisticated logic, and instigate how encrypted traffic 
should be treated differently from general raw ML input, 
for example, images. We also place emphasis on a feature 
set that generalizes the applicability of the model for varied 
encrypted Web traffic classification objectives.

We propose a novel feature engineering approach for 
encrypted traffic classification that focuses on protocol-
agnostic aspects of the encrypted Web traffic. In our 
approach, we make use of standard flow statistics, the traffic 
shape with respect to packet sizes, inter-arrival times (IATs), 
and direction, along with raw bytes from the TLS handshake 
packets. This is in contrast to most DL approaches for traf-
fic classification, where the full raw traffic is fed to the DL 
model. We show the proposed feature set to be a better fit 
for the classification of encrypted traffic. We also develop a 
neural network architecture based on convolutional neural 
network (CNN) and stacked long short-term memory (LSTM) 
layers that are highly effective in leveraging the extracted fea-
tures for distinguishing between different traffic classes. Our 
DL model identifies and correlates useful traffic traits, while 
being lighter in the number of trainable parameters and less 
likely to overfit, compared with the existing methods.

We use a real-world mobile traffic dataset from an ISP 
and demonstrate that our approach has an edge over the 
state-of-the-art in service classification over encrypted Web 
traffic. Using our model based on stacked LSTM layers, we 
achieve an accuracy of over 95% for classification exclusively 
over HTTPS (i.e., HTTP/1.1 and HTTP/2 over TLS), outper-
forming Rezaei 11 by a significant margin of nearly 50% fewer 
false classifications. We also show that our approach gen-
erally achieves higher accuracies as it is less prone to over-
fitting. Furthermore, the variation of our model that uses 
CNN layers instead of stacked LSTM requires lower train-
ing time while still achieving a higher accuracy compared 
with the state-of-the-art one. We also showcase that our DL 
model generalizes for a finer classification granularity, that 
is, application-level classes. Furthermore, we show that our 
model adapts to a different encrypted Web protocol, that is, 
QUIC, by simply changing the training data. We achieve 
an accuracy of 97% in application-level classification and an 
accuracy of 99% on a public QUIC dataset.12

2. RELATED WORKS
Traffic classification using ML started in the early 2000s to 
distinguish between protocols (e.g., DNS, SMTP, and HTTP) 
in a network trace. Soon, the attention shifted toward more 
challenging traffic classification tasks, such as classification 
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labels. The authors report high classification accuracy, 
which drops for exclusively HTTPS traffic. In their post hoc 
analysis, the authors identify the importance of different 
parts of the TLS headers to their model by masking different 
portions of the input and evaluating its impact on the model 
accuracy. They uncover that the model does in fact heavily 
fit to cipher info and the SNI field, to the point that the accu-
racy of the model significantly drops when SNI records are 
occluded. Due to its high relevance, we use Rezaei11 for com-
parison of our model to the state-of-the-art one.

3. METHODOLOGY
3.1. Feature engineering
Numerous works in DL-based traffic classification feed raw 
traffic bytes to a neural network model. Indeed, DL models 
are powerful enough to extract meaningful features from 
raw input on their own, provided a sufficiently large dataset. 
The notion of leveraging raw traffic bytes as model input is 
inspired from more conventional domains of DL, such as 
computer vision. However, as with the adoption of DL in any 
new domain, there are important considerations in traffic 
classification based on domain-specific knowledge of the 
task and the nature of data.

An important distinction between network traffic and 
images is encryption, which is becoming the norm in ordinary 
Web usage. A traffic flow or packet is often almost completely 
encrypted, except for the initial handshake and some of the 
header fields that are transmitted in plain text. Therefore, in 
the computer vision analogy, a traffic flow is like an image 
that is completely obfuscated except for a small area in it. 
Any effort to consume the encrypted portions of the traffic 
as the classification model input is essentially an attack on 
the established encryption algorithms, such as advanced 
encryption standard (AES), which is unrealistic.

Furthermore, it is crucial to consider what the DL 
model is exactly learning during training. For example, 
in an insightful post hoc analysis, Rezaei et al.11 show that 
the accuracy of their DL model completely degrades when 
the SNI field or TLS cipher info is masked. This implies 
that typical neural network models trained on raw traf-
fic basically implement a look-up table, which predicts a 
class based on the server’s identity exposed by certain TLS 
extensions. We refer to the parts of the traffic that expose 
the server’s identity as canary features.

There are three major drawbacks in relying on canary 
features: (i) An expensive deep neural network is used for 
implementing a relatively simple logic, which can be per-
formed deterministically with a very low computational 
overhead. (ii) The performance of the DL model is highly 
dependent on seeing large amounts of traffic from all rel-
evant servers in a service category (e.g., traffic from all video 
streaming platforms) in training. In other words, the model 
is not really learning anything about the nature of video 
flows in general. (iii) The availability of these identifiers of 
the server (e.g., plain-text SNI field) in-the-clear is crucial 
for the utility of the DL approach. If the SNI field becomes 
outdated or encrypted in the future versions of TLS, which 
is not unlikely with the advent of encrypted SNI, the entire 
DL method can lose its effectiveness.

Our input to the DL model combines all three types of 
features, described in Section 2. As summarized in Figure 1, 
it is comprised of (i) TLS handshake header bytes, (ii) flow 
time series, and (iii) flow statistics.

First, we include raw bytes from the handshake in our 
input to the model. However, we remove the canary features 
such as SNI and cipher info in our preprocessing, to dimin-
ish the model’s reliance on that information. Also, due to our 
focus on encrypted protocols, we assume that L5-7 payloads 
contain very little information as they are expected to be 
encrypted. Therefore, there is no utility in including entire 
packets in the DL model input and the aforementioned pay-
loads only create more ways for the model to overfit. Besides, 
packets other than the handshake packets (i.e., ClientHello 
and ServerHello messages) are redundant and expose virtu-
ally no meaningful information to the model. Thus, the raw 
traffic data for our DL model input is truncated after the TLS 
headers of the handshake packets.

Second, we steer our DL model’s focus on traffic 
aspects that are hardly affected by encryption. While the 
TLS records and extensions will evolve over time and new 
encrypted protocols will emerge with radically different 
characteristics, the traffic shape would always be available 
regardless of the underlying protocol. We hypothesize that 
the traffic flow time series of packet sizes, directions, and 
IATs contain useful information for service classification, 
as they are relatively independent from the implementa-
tion details of the protocol. Though it is possible to design 
strategies to obfuscate such information, it would have 
a negative impact on bandwidth, latency, and QoS, as it 
entails sending redundant traffic or delaying packets to 
manipulate the time series. Therefore, it is unrealistic that 
there would be enough motivation for introducing such 
measures in ubiquitous Web protocols. By combining 
these features with raw bytes, we can create a powerful fea-
ture set that can be used for learning the nature of traffic, 
as well as identifying useful parts of the secure protocol’s 
headers for identifying applications.

Lastly, traditional flow statistics measured by stan-
dard flowmeters can also assist the model in traffic clas-
sification. Examples of traditional features include mean, 
standard-deviation, and median of packet sizes, number of 
different TCP flags, duration of the flow. These features have 

Figure 1.  TLS headers from the handshake, flow time series, and 
standard flow statistics as the DL model input.
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been used for a variety of traffic classification tasks for over 
two decades and continue to be a simple yet powerful tool 
for distinguishing between different classes of traffic. This 
also allows for our overarching methodology to general-
ize for works such as Bronzino,7 where a set of features are 
picked by domain experts for a particular traffic classifica-
tion or regression task.

The combination of handshake features and flow time 
series was first proposed by Anderson2 to detect mali-
cious traffic. Aside from the use of statistical features as a 
third input, a key distinction between our approach and 
Anderson2 is the use of DL to extract useful features of the 
handshake, while they require a domain expert to cherry-
pick them for the TLS protocol. Though our research is 
focused on encrypted Web protocols and mostly revolves 
around TLS, our feature engineering methodology is pro-
tocol-agnostic. Regardless of a protocol’s implementation 
details, it is expected to have a negotiation or handshake seg-
ment, while the rest of the traffic would be fully encrypted. 
This segment will make up the only raw inputs to the model. 
The flow time series; that is, traffic shape and timing, as well 
as flow statistics, will always be available in IP. Therefore, 
the model will have to be retrained and specialized for new 
protocol versions as they evolve, but our overarching feature 
engineering methodology will still be applicable.

3.2. Model architecture
Our neural network architecture reflects the structure of the 
features presented earlier. As shown in Figure 2, our neural 
network model separately processes the flow time series, 
the TLS handshake headers, and the standard flow statistics 
as inputs. Each of the three inputs is fed to a separate set 
of neural network layers, and the output of those layers is 
later concatenated and passed through additional fully con-
nected layers to produce the final prediction.

The raw handshake bytes are fed to a deep one-dimensional 
CNN with max-pooling layers in between. The structure of 
these layers is quite standard and a one-dimensional equiva-
lent of commonly used computer vision models, which has 
proven effective on network traffic.10, 11 We only feed the first C 
bytes of up to three ClientHello and ServerHello packets from 
the flow to the model. In our experiments, C = 600, which 
is picked through a hyper-parameter search. We did not 

notice a disadvantage in omitting the rest of the traffic, which 
has strong implications for future research in this area.

The flow time series has three channels: (i) IAT, (ii) size, 
and (iii) direction. In our experiments, we found that a 
stacked LSTM architecture preceded by a dense layer is 
extremely effective in processing the flow time-series fea-
tures, while one-dimensional CNNs are also viable (cf. 
Section 4.2). In our implementation, we use a stack of three 
LSTM layers going through the flow time series in both 
directions. We also include flow statistics extracted using 
CICFlowMeter. Since these features do not have a natural 
ordering or sequentiality, a fully connected network is used 
to ingest them.

One of the major advantages of our feature engineer-
ing is the ability to include information about a large 
number of packets without substantially increasing the 
model size. In a classic raw input approach, it is nor-
mal to include the first b bytes of the first k packets of 
a flow to the model. The size of the input grows linearly 
by increasing k, which can create a super-linear increase 
in the number of model parameters and quickly lead to 
overfitting. In contrast, our model limits the raw traffic to 
the handshake packets and uses a lightweight represen-
tation with only three channels for the other packets of 
the flow. This allows the model’s scope to grow and con-
sider hundreds of packets without a significant impact 
on its complexity. The outputs from these three parts 
(i.e., flow time series and statistics, and TLS headers) are 
concatenated and passed through multiple additional 
dense layers, which yields the output of the network as a 
softmax layer.

Our early experiments showed that the models are highly 
prone to overfitting. This is not surprising considering 
the fact that the number of parameters in the model to be 
trained is in the order of millions. It is not uncommon for 
traffic classification models to be trained on datasets that 
have an order of magnitude fewer entries than the number 
of trainable parameters in the model. To overcome the prob-
lem of overfitting, we use very high dropouts (i.e., up to 50% 
at some layers), especially in the final dense layers. As show-
cased in Section 4.2, our feature engineering itself has a tre-
mendous effect in lowering the chance of overfitting when 
compared with the conventional raw traffic input.

Figure 2. Tripartite neural network architecture.
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recently released by Rezaei et al.12 It comprises of 3637 
flows, classified into Google Docs, Google Drive, Google 
Music, Google Search, and YouTube. This is natural as 
Google is currently the primary advocate for the QUIC pro-
tocol’s adoption in the industry. The dataset is relatively 
balanced, with no class being twice as large as the others. 
Furthermore, it is partly generated by human users and 
partly via automated agents.

For comparison, we implement the CNN and CNN-LSTM 
models proposed by Rezaei et al.,11 which have shown good 
performance in application-level traffic classification. The 
authors model the input as a series of flows, which can be 
thought of as a user session. The CNN model operates on 
the flow level; that is, the first 256 bytes of the first six pack-
ets of a single flow in the series are fed to a deep CNN. The 
CNN model is very similar to the header part of our model 
(cf. Figure 2). On the other hand, the CNN-LSTM model 
receives the session (i.e., a time series of flows) as its input, 
and essentially makes the CNN model time-distributed 
over the flows of each session and labels the entire session. 
Similar architectures have been employed over the years for 
encrypted traffic classification,1, 14 making it an ideal baseline 
to compare our model against.

4.2. TLS classification at service level
We start by evaluating the performance of our feature 
engineering approach and DL model architecture on the 
Orange’20 dataset. The data is pre-processed according to 
Section 3.3 and comprises of TLS flows only. We compare 
our DL model against the state-of-the-art CNN and CNN-
LSTM architectures, showing a clear advantage and assert-
ing our contributions.

Our model is trained using the Adam optimizer for 40 
epochs, with 20% of the dataset used for validation. The 
learning rate is set to 0.001 at first and reduced every 10 
epochs. The results of the experiment are shown in Figure 3,  
with an overall accuracy and weighted average F1-score 
of 95.56% and 95.58%, respectively. Figure 3b shows the 
per-class precision, recall, and F1-score of our model. The 
F1-score is over 94% for all classes, which implies very 
good stability despite the highly imbalanced classes in the 
dataset. This can be attributed to the upsampling strat-
egy employed during training. As a baseline, a C4.5 model 
is trained on statistical flow features. C4.5, among other 
DT-based algorithms, is a popular choice in traditional traf-
fic classification5, 13 but only achieves an accuracy of 81.39%, 
as shown in the table here. We attribute the disadvantage 
of the traditional approach in part to its sole reliance on 
high-level statistics and not being able to make distinctions 
based on more fine-grained details of the traffic shape. 
Furthermore, the advantage of our model is clear when 
compared against the UCDavis CNN model, as shown in 
the table here. When evaluated on the Orange’20 dataset, 
the UCDavis CNN model in Rezaei11 achieves an accuracy of 
91.09% after 20 epochs, which is 4.5% lower than our tripar-
tite model in Figure 2. This is a significant gain in perfor-
mance with 50.39% reduction in false classifications.

In Figure 4, we highlight the training progress to reason 
about this performance gain. The figure shows validation 

3.3. Data preprocessing
We design our preprocessing to be performed in a distrib-
uted fashion using Apache Spark. We begin by extracting 
the flows (i.e., 5-tuples of src/dst IP/port and protocol) via 
standard flowmeter such as YAF. We then filter flows with 
TLS packets, as we are only interested in encrypted Web 
traffic. Basic flow information, such as the flow start and 
end times, packet count, byte count, flow time series, are 
then extracted along with the statistical features, which 
are computed using CICFlowMeter and stored as meta-
data. The SNI domain name is also stored to assign class 
labels based on a look-up table. Next, we group the flows 
having the same TLS session ID together. If TLS session ID 
does not exist, time proximity, and NAT-aware IP and port 
numbers are used. For each unlabeled flow f, we check 
other flows in the same session as f and use their label for 
f. Often in multi-flow TLS sessions, only the first flow con-
tains the SNI record. The flows can then be vectorized into 
a time series of binary information as follows: (i) mask IP 
addresses by injecting zeroes even if they are already ran-
domized, (ii) remove TLS cipher information, (iii) mask 
the SNI record, and (iv) truncate to MTU size or zero-pad 
the packet bytes—ensure fixed vector size. Finally, the raw 
traffic bytes are written to binary files, with each entry hav-
ing an array of vectorized bytes from up to three handshake 
packets. We include flow statistics and a time series of 
maximum length 1024 with the three channels for packet 
sizes, directions (±1), and IATs for each entry as well.

4. EVALUATION
4.1. Datasets
Orange’20 dataset.  The primary dataset used in our 
work is provided by Orange S.A., a major ISP in Europe. 
The dataset was collected on July 11, 2019, for about 80 
minutes, from the ISP’s mobile network. For privacy con-
cerns, the IP addresses are masked and the packet pay-
loads are removed with the exception of TLS headers. 
The entire dataset has more than 800K unlabeled flows, 
where ∼300K are TLS flows and of interest to us. We use 
the SNI field to label the TLS flows with the following ser-
vice categories: (i) chat, (ii) download, (iii) games, (iv) mail, 
(v) search, (vi) social, (vii) streaming, and (viii) Web. Each 
domain name from the SNI field is matched against a set 
of regular expressions that are either carefully handpicked 
(i.e., by monitoring the traffic of prominent Web sites and 
mobile apps, e.g., Netix, YouTube, and AppStore), or gath-
ered from a dataset of categorized domain names, such 
as the Blacklists UT1 dataset.3 For certain providers (e.g., 
Google and Facebook), extra care must be taken, as simi-
lar sub-domains may be shared between multiple service 
categories. A total of 119,565 out of the 343,228 TLS flows 
are labeled, using our approximate labeling scheme, with 
both manually picked URLs and the UT1 dataset. Note that 
not all TLS sessions can be identified, as the application-
layer protocol negotiation (ALPN) and next protocol nego-
tiation (NPN) records may not be available. Therefore, we 
end up with a highly imbalanced distribution of service 
categories in the labeled dataset.

UCDavis QUIC dataset.  The QUIC dataset has been 
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epoch), which is close to our competitor model despite 
being much more accurate. LSTM networks are notorious 
for being computationally expensive to train, and stacked 
LSTM layers are even more so. Nevertheless, as model 
training is often a one-time investment and with the rapid 
advancement of computational hardware, this is a reason-
able cost for higher classification accuracy.

We attribute the superior performance of our model to 
the flow aspect of our feature engineering and the stacked 
LSTM layers. In fact, the flow time series, despite being a 
simple feature set to model the traffic, is quite effective 
by itself. In the table here, we also showcase results of our 
model variation with all the other inputs and their corre-
sponding layers removed, except the flow time series. We 
refer to these models as Flow-only. In this case, the stacked 
LSTM and deep one-dimensional CNN architectures 
achieve an accuracy of 86.51% and 73.17%, respectively. 
Although being inferior in performance to models that also 
include raw traffic as input, it is important to note that the 
flow time series features will always be available regard-
less of how the encrypted protocols evolve. These features 
enable a model to learn about the nature of traffic catego-
ries themselves, rather than fingerprinting a particular set 
of servers. Therefore, for all future research, we instigate the 
use of these flow features as a baseline for evaluations.

It is important to note that the UCDavis CNN model 
depicts a high misclassification between the streaming and 

loss, training loss, and accuracy at the end of each training 
epoch. Evidently, the UCDavis CNN model quickly overfits 
to the dataset. This is primarily due to a larger raw traffic 
input, only a part of which is actually useful to the model. 
After 12 epochs, the training accuracy is perfect, while the 
validation performance fails to improve. In contrast, the 
validation and training accuracies converge very well in the 
case of our model, as our feature engineering only provides 
the useful information for encrypted flows (i.e., handshake 
and flow shape). The implications of these results are signifi-
cant. Despite having access to twice the number of packets, 
the competitor UCDavis CNN model is far less effective, as 
all meaningful information lies in the handshake. Exposing 
a larger chunk of the raw traffic to the UCDavis CNN model 
simply confuses the model and provides more ways to overfit.

The accompanying table depicts the performance of 
other variations of our model. We replace the Stacked 
LSTM (SLSTM) layers in the original model (cf. Section 
3.2) with a deep one-dimensional CNN, which is also a rea-
sonable network for consuming a one-dimensional time 
series. Though inferior to stacked LSTM, the accuracy and 
F1-score of the resultant model are 94.43% and 94.37%, 
respectively. Nevertheless, it has a clear advantage over 
the UCDavis CNN model, which only processes raw traf-
fic, with 37.77% less false classifications. The advantage of 
employing CNNs on the flow time series side of the model, 
however, is in higher training speed (232 vs. 2584 seconds/

Figure 3. Service-level confusion matrix and per-class precision, recall, and F1-score for our model’s evaluation on the Orange’20 dataset. 
Our classifier consistently achieves +94% F1-score across all classes.
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Performance comparison of TLS flow classification models (*C4.5 time is reported for entire training).

W Avg precision (%) W Avg recall (%) W Avg F1-score (%) Accuracy (%) Epoch time (s)

Full model (SLSTM) 95.62 95.56 95.57 95.56 2584
Full model (CNN) 94.54 94.42 94.37 94.43 232
Flow-only model (SLSTM) 86.71 86.51 86.56 86.51 1814
Flow-only model (CNN) 76.77 73.17 73.76 73.17 211
UCDavis CNN11 91.09 91.06 91.04 91.05 168
UCDavis CNN-LSTM11 89.74 89.72 89.73 89.72 245
Traditional baseline (C4.5) 81.56 81.39 81.41 81.39 18*
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A rather surprising result in the table here is the perfor-
mance of the UCDavis CNN-LSTM model.11 The UCDavis 
CNN-LSTM model is time-distributed over the flows of a ses-
sion and theoretically has access to more information in 
comparison with our model that processes flows indi-
vidually. However, the model’s access to full traffic bytes 
does not work in its interest, and though having more 
parameters and capacity than the UCDavis CNN model, it 
overfits more severely to the data achieving a slightly less 
accuracy of around 90%. In fact, similar to the UCDavis 
CNN model, it quickly rises and achieves perfect train-
ing accuracy at around the seventeenth epoch, but fails to 
increase the validation accuracy any further.

The final insight here pertains to the HTTP version and 
how it affects the performance of our model. In Section 1, 
we mentioned that HTTP/2 brings new features to the Web, 
but at the same time complicates traffic classification. We 
evaluated our model’s performance on different subsets of 
the validation set, based on the HTTP version. Recall that 
not all flows captured in the Orange’20 dataset have the NPN 
or ALPN records available to identify the protocol used over 
TLS. The known and unknown in Figure 6 elude to this fact.

As expected, the performance of the model on HTTP/1.1 is 
higher than HTTP/2, that is, 97.75% vs. 94.91%, due to the lat-
ter being a more complex protocol with features such as mul-
tiplexing, which makes traffic classification more difficult. 
More importantly, the flows captured without the ALPN/NPN 
records are also generally harder to classify than the rest. This 
is due to the fact that there is a higher likelihood that these 
flows are captured from the middle of a session. Hence, they 
contain less information in their beginning for the model to 
leverage. It should also be noted that there are twice as many 
HTTP/1.1 flows as HTTP/2 flows in the training set. This rein-
forces the model’s better performance on HTTP/1.1.

4.3. TLS classification at application level
Many works in traffic classification (e.g., Aceto,1 Rezaei11) 
focus on application-level classification that is at a finer 
granularity than our labels in Section 4.2. While counter-
intuitive, application-level classification is often an easier 

Figure 4. Training progression, validation accuracy, and loss, while 
training our model and the UCDavis CNN.
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Figure 5. Confusion matrices for our flow-only stacked LSTM model and the UCDavis CNN model.
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social classes, where mutual providers such as Facebook 
and Twitter exist, as shown in Figure 5. This is a reoccur-
ring issue with DL models for traffic classification that only 
rely on raw TLS bytes and are more tuned toward identi-
fying a server rather than a service. The flow-only model, 
despite having access to very simplistic traffic features, 
makes fewer misclassifications between these classes and, 
when used together with the handshake bytes in our full 
model, is able to alleviate the difficulties in distinguishing 
between the two classes.



research highlights 

 

82    COMMUNICATIONS OF THE ACM   |   OCTOBER 2022  |   VOL.  65  |   NO.  10

it is good in capturing the nature of traffic. It will be an 
interesting part of future research to leverage the feature 
engineering presented in Section 3.1 in areas other than 
service- and application-level classification, such as QoS 
classification and security.

4.4. QUIC classification
We evaluated our model on the UCDavis QUIC Dataset (cf. 
Section 4.1.2), which only includes the traffic shape time 
series and not the actual network traces. To adapt to the 
dataset structure, we modified our approach by only activat-
ing the flow time-series part of the model and conducted the 
training for 20 epochs.

In evaluation, our model achieve a high validation accu-
racy (i.e., 99.37%), which is higher than the best one reported 
by Rezaei et al.12 for their CNN model (i.e., ∼98%), regard-
less of whether their semi-supervised scheme (i.e., pretrain-
ing on unlabeled data first) is carried out or not. Figure 8 
shows the result of the classification, which re-affirms that 
our proposed feature engineering is indeed a good indicator 
of the traffic class, and can adapt well to different encrypted 
Web protocols. Our model achieves high accuracies despite 
the fact that QUIC is a more challenging protocol with a 
larger encrypted portion. These results also validate the util-
ity of the stacked LSTM architecture used in the flow time 
series part of our model.

5. Conclusion
Traffic classification has become increasingly challenging 
with the widespread adoption of encryption in the Internet. 
Moreover, encrypted protocols are bound to evolve, render-
ing protocol-specific approaches futile in the future. In this 
paper, we propose a DL approach for encrypted traffic clas-
sification that focuses on protocol-agnostic aspects of the 
encrypted Web traffic. Our feature set comprises of a time 
series of packet size, direction and inter-arrival times, flow 
statistics, and raw bytes from only the TLS handshake, while 
the DL model is based on CNN and stacked LSTM layers. We 
show that raw traffic apart from the TLS handshake does not 
contribute to the DL model’s performance, but rather adds 
to its complexity and increases overfitting. Therefore, our 
feature engineering method makes use of concepts that are 
applicable to most encrypted protocols.

task, especially when the model is closed world (i.e., dataset 
entries strictly belong to one of the n known applications) or 
canary features are not occluded. If the DL model is trained 
with the objective of a look-up table for identifying servers 
themselves (cf. Section 3.1), application-level classification 
is generally easier for the model, as it does not need to learn 
what behaviors are shared between different applications of 
the same service category.

To evaluate our model in application-level classifica-
tion, we identified 19 fine-grained labels that have enough 
representative flows for the training to be consistent. These 
labels make up for 82,776 flow entries of the dataset (i.e., 
∼70%). Figure 7 depicts the result of employing our model 
by simply modifying the last softmax layer to accommodate 
19 fine-grained classes instead of the 8 service categories. 
The overall accuracy of the model is 97.08%. Despite hav-
ing more classes, the accuracy of the model is higher than 
service-level classification, due to the raw bytes part of the 
model being extremely effective in fingerprinting specific 
servers. One side effect is that the different services from the 
same provider (e.g., Facebook video and Facebook social) 
have higher cross-misclassifications, as evident in Figure 7.

A key takeaway from this experiment is that a good fea-
ture engineering approach for encrypted traffic classifi-
cation can be adapted to different classification tasks, as 

Figure 6. Impact of different HTTP versions on the performance of 
our model.
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Figure 7. Confusion matrix of our model for application-level 
classification on the Orange’20 dataset.
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We obfuscate parts of the TLS handshake (for example, 
SNI field and cipher info) that give away the server identity. 
Instead, we focus on the traffic shape and timing of packets, 
which show high potential in learning the complex nature of 
traffic among different classes. We show that our DL model 
generalizes for different classification objectives, that is, 
service- and application-level classification, and adapts to 
different encrypted Web protocols (such as, HTTP/2 and 
QUIC) by simply changing the training data. We evaluate 
our approach for service-level classification on a real-world 
mobile traffic dataset from an ISP, and show that by leverag-
ing less raw traffic and a smaller number of parameters, our 
model outclasses a state-of-the-art approach.11, 12�  
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