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Abstract—As 5G and beyond mobile networks evolve, their in-
creasing complexity necessitates advanced, automated, and data-
driven fault diagnosis methods. While traditional data-driven
methods falter with modern network complexities, Transformer
models have proven highly effective for fault diagnosis through
their efficient processing of sequential and time-series data.
However, these Transformer-based methods demand substantial
labeled data, which is costly to obtain. To address the lack of
labeled data, we propose a novel active learning (AL) approach
designed for Transformer-based fault diagnosis, tailored to the
time-series nature of network data. AL reduces the need for
extensive labeled datasets by iteratively selecting the most in-
formative samples for labeling. Our AL method exploits the
interpretability of Transformers, using their attention weights to
create dependency graphs that represent processing patterns of
data points. By formulating a one-class novelty detection problem
on these graphs, we identify whether an unlabeled sample is pro-
cessed differently from labeled ones in the previous training cycle
and designate novel samples for expert annotation. Extensive
experiments on real-world datasets show that our AL method
achieves higher F1-scores than state-of-the-art AL algorithms
with 50% fewer labeled samples and surpasses existing methods
by up to 150% in identifying samples related to unseen fault
types.

Index Terms—Fault Diagnosis, Active Learning, Transformers

I. INTRODUCTION

Root cause analysis (RCA), also known as fault diagnosis,
consists in the ability to quickly and accurately pinpoint the
underlying root causes of a fault, so that network engineers
can promptly take necessary actions to rectify the problems at
their core [1]. While it represents a crucial aspect of network
Operation and Maintenance (O&M) in mobile networks, real-
izing this task is not without challenges. As mobile networks
continue to evolve towards the 5G technology and beyond,
fault diagnosis becomes an increasingly vital aspect and new
fault analysis methodologies need to be developed [2]. Current
fault diagnosis techniques can leverage real-time data analytics
to monitor network behavior, identify potential trouble spots,
and isolate their root causes [1]. Machine Learning (ML) has
become a valuable ally in this task, aiding in the automated
analysis of vast amounts of data to identify patterns and root
causes of anomalies [3]–[5].

Transformer models, among the ML approaches, have
gained significant attention for network management tasks due
to their exceptional performance in handling sequential data
and time series analysis. Studies [6]–[8] show that lightweight
Transformers can achieve state-of-the-art (SOTA) performance

in time series representation learning. Consequently, these
models have been effectively adopted for various network
management tasks, including RCA [9]–[13]. Transformers
excel in capturing long-range dependencies and relationships
within sequential data, making them particularly suited for
monitoring and analyzing network behaviors over time. Un-
like traditional ML models, which often struggle with long-
term dependencies or require complex feature engineering,
Transformers use self-attention mechanisms to automatically
learn these dependencies. This enables Transformers to more
accurately model the temporal dynamics and intricate inter-
actions in multivariate time series (MTS)-based network data,
improving performance in network management tasks.

However, despite their advantages, Transformer-based RCA
methods have a fundamental limitation: they require a large
number of labeled fault instances. The data labeling process is
time-consuming and costly as it necessitates domain experts to
annotate extensive logs of failure scenarios [4], [5]. Labeling
faulty data in mobile networks is widely recognized as a costly
and resource-intensive process due to the requirement of expert
knowledge and the complexity of network behavior. In [14],
the authors emphasize that effective fault detection in cellular
systems often involves dealing with imbalanced datasets and
high annotation costs, particularly when domain expertise
is required to accurately distinguish between subtle failure
patterns. Similarly, in the context of next-generation networks,
[15] underscores that the high cost of labeled data acquisition
is a major bottleneck in deploying ML-based solutions at
scale, motivating the use of AL to reduce annotation require-
ments while maintaining model performance. This is further
reinforced by [16], which highlights how AL techniques can
strategically select the most informative samples for labeling,
thereby significantly reducing manual effort and operational
overhead in real-world network management scenarios. Be-
yond the labeling effort itself, there are broader operational
implications of not addressing this problem. According to the
Heavy Reading 2024 5G AIOps Operator Survey [17], 29% of
operators identified data labeling and quality costs as a major
obstacle to AI deployment. Moreover, DriveNets [18] reports
that properly trained AIOps solutions can reduce network
downtime by up to 87% compared to traditional manual RCA
methods. These findings highlight the real-world impact of
effective training and, by extension, the critical need to reduce
labeling cost without sacrificing model accuracy.

To address the lack of labeled faulty data, we design a
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novel active learning (AL) approach that iteratively selects
batches of informative unlabeled data samples to be labeled
by domain experts, minimizing the total labeled data required
for satisfactory performance. In AL [19], the informativeness
of data points is determined by a query strategy. Our AL
approach proposes a novel query strategy specialized for the
case where RCA is accomplished by a Transformer model. We
leverage the high interpretability of the Transformer model,
using attention weights to create a dependency graph for each
data point. These graphs are a high-level abstraction of how
each data point is processed by the Transformer-based RCA
model. We define a one-class novelty/outlier detection task
for these graphs to determine if an unlabeled data point is
processed by the model in a novel way (compared to labeled
data points included in the previous training cycle of the
model). We use a method based on Graph Neural Networks
(GNNs) [20] that exploits random distillation, similar to [21],
to detect abnormal dependency graphs and assign high novelty
scores to them. These scores estimate the informativeness of
each unlabeled sample. We expect that by labeling samples
with high novelty scores and incorporating them into the
subsequent training cycle, we can significantly enhance the
model’s performance. Our experiments show that these novelty
scores are far more effective for selecting informative samples
compared to other AL criteria. To avoid selecting similar
or redundant samples, which leads to lack of diversity in
each selected batch [19], [22], we use Determinantal Point
Processes (DPP) [23] to select a batch of samples with high
novelty scores that are also diverse and disparate in the input
space.

Furthermore, our AL method should adapt to the dynamic
nature of network faults and anticipate the emergence of
new fault types not present in the initial labeled dataset.
A critical aspect of an AL method for fault diagnosis is
its ability to identify samples associated with these unseen
fault types within the unlabeled dataset, enabling continuous
model improvement. Our experimental results indicate that
our proposed AL method significantly outperforms SOTA AL
methods in identifying such unseen fault types.

We show the effectiveness of our proposed AL approach
through comprehensive experimental evaluation on two public
real-world datasets, one generated in a 5G core network [24]
and the other produced in a Network Function Virtualization
(NFV)-based test environment that simulates a 5G IP core
network [25]. The following summarizes our contributions:

• We develop a novel AL approach to minimize the total
labeled data needed for fault diagnosis. Our AL strategy,
tailored for the case where fault diagnosis is accom-
plished by a Transformer model, uses the Transformer’s
interpretability to determine if the model processes an
unlabeled data point in a novel way. This novelty mea-
surement is the primary criterion for assessing the infor-
mativeness of each sample.

• Through comprehensive experiments on two real-world
datasets, we show that our AL method achieves higher
F1-scores than SOTA AL algorithms with 50% fewer
labeled samples, significantly reducing labeling costs.

• In further experiments, we systematically exclude sam-

ples of a particular fault type from the labeled dataset to
evaluate various AL methods on their ability to identify
unseen fault types in the unlabeled dataset. Our results
show that our AL method outperforms SOTA AL ap-
proaches by up to 150% in selecting samples associated
with unseen fault types.

II. BACKGROUND

A. Transformer Model for MTS Classification

As described earlier, we assumed fault diagnosis is per-
formed by a Transformer model that considers fault diagnosis
as an MTS classification problem. Recently, several works
have proposed using Transformers for MTS classification [6],
[7], achieving SOTA performance on numerous benchmarks.
In this subsection, we describe the details of the architecture
and training process of such a Transformer-based MTS clas-
sification model, following [6], [7]. These details are essential
for grasping the methodology of our proposed AL method.
It is important to note that our primary focus in this paper
is on developing the AL method rather than optimizing the
Transformer architecture for fault diagnosis. For this reason,
we adopt the same design as [6], [7] for the Transformer model
architecture, ensuring consistency with existing benchmarks.
As described by [7], the Transformer MTS classification
model comprises two parallel Transformer encoders [26]. The
first encoder, called the temporal encoder, learns temporal
relationships among different time steps. The second encoder,
called the metrical encoder, captures the explicit relationships
among different performance metrics. The output embeddings
learned by these two encoders are then used to predict the
classification target.

The temporal encoder’s architecture is based on the well-
known Transformer model described in [26], designed to
capture temporal dependencies among time steps. The input
to a Transformer encoder is a series of tokens. In the temporal
encoder, for the input data xn = {x1,n, x2,n, . . . , xT,n},
each xt,n ∈ RP is an input token, resulting in T tokens.
The encoder computes a dα-dimensional token embedding
h
(0)
{t,xn} ∈ Rdα from each input token xt,n via a linear projec-

tion layer (positional encodings are also added to each token
embedding to provide positional information to the encoder
about the ordering of the input tokens). The token embeddings
are then updated through Lα attention layers, with the output
of each layer l denoted as h

(l)
{t,xn}. The final embeddings

h
(Lα)
{t,xn} are utilized for determining the classification target.
The metrical encoder, similar in architecture to the tem-

poral encoder, is designed to learn relationships among
different performance metrics. For the input data xn =
transp([S1

n, S
2
n, . . . , S

P
n ]), each Sp

n ∈ RT is an input token,
resulting in P tokens. The encoder generates a dβ-dimensional
token embedding z

(0)
{p,xn} ∈ Rdβ from each input token Sp

n

through a linear projection layer. These embeddings are refined
through Lβ layers, with the output of each layer l denoted as
z
(l)
{p,xn}. The final embeddings z

(Lβ)

{p,xn} are used alongside the
temporal encoder’s final embeddings to predict the classifica-
tion target. One option is to concatenate all the embeddings
and feed them to a Multi-Layer Perceptron classifier. Another
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option is to use a single-head attention layer decoder to predict
the classification target from the embeddings. We chose the
latter in our implementation as it yielded better performance.

Following [6] and [7], the Transformer model includes three
attention layers (Lα = Lβ = 3) with encoder dimensions set
to 128 (dα = dβ = 128), making it highly lightweight (with
around 300,000 learnable parameters). To utilize unlabeled
samples, the temporal and metrical encoders are pre-trained
on the entire dataset using a self-supervised task as per [6].
After pre-training, both encoders and the decoder are jointly
fine-tuned on the labeled dataset, training the Transformer in
a semi-supervised manner. However, our results indicate that
pre-training has an insignificant effect on performance due to
the domain-specific patterns in our MTS data, which are not
effectively captured through pre-training on unrelated tasks.

B. Pool-Based Active Learning

In pool-based AL [19], the learner is provided with a large
pool of unlabeled samples X (0)

U = X(U) and a small initial
labeled set (X (0)

L ,Y(0)
L ) = (X(L), Y (L)). The learning process

proceeds in cycles. At each iteration c, a classification model
(e.g., our Transformer-based RCA model) is trained using the
current labeled set and potentially the unlabeled data as part
of a semi-supervised framework.

A query strategy is then applied to select a batch b(c) ⊂ X (c)
U

of m informative samples to be labeled. The newly labeled
samples (b(c),Y(c)

b ) are added to the labeled set, and removed
from the unlabeled pool. The updated sets are given by:

X (c+1)
L = X (c)

L ∪ b(c), Y(c+1)
L = Y(c)

L ∪ Y(c)
b ,

X(c+1)
U = X (c)

U \ b(c). (1)

If the initial labeled set contains NL samples and the unlabeled
pool contains NU , then after c iterations the labeled and unla-
beled sets will contain N c

L = NL+c×m and N c
U = NU−c×m

samples, respectively. This iterative procedure continues until
a performance threshold is met or the labeling budget is
exhausted.

III. RELATED WORKS

Data-driven Network Fault Diagnosis: Data-driven ap-
proaches are widely used for network fault diagnosis to
tackle modern network complexities. Some methods create
abstraction models to capture relationships between network
metrics and events for effective fault cause analysis [27], [28].
However, these techniques often fail to generalize to com-
plex, virtualized beyond-5G networks with dynamic topologies
[5]. Some data-driven fault localization methods label fault
instances based on their root cause, framing it as a multi-
classification problem [3], [5]. For example, [3] performs RCA
for wireless network failures as a time-series classification
problem using temporal, directional, attributional, and interac-
tional features. However, these methods often require abundant
labeled faulty samples to achieve a good performance. More
recently, few-shot learning has been utilized for fault diagnosis
to mitigate the scarcity of labeled data [29], [30]. However, we
assume the availability of ample unlabeled data samples in our

problem, making AL and semi-supervised learning more suit-
able than few-shot learning. Nonetheless, to achieve significant
performance improvements in semi-supervised learning, an
adequate number of labeled samples is still required because
the specific patterns and dependencies in our MTS network
data for fault diagnosis are often highly domain-specific, and
pre-training on unrelated tasks may not capture these nuances
effectively. This highlights the importance of AL in efficiently
leveraging both labeled and unlabeled data.
Transformer Models in Network Management: The appli-
cation of Transformer models in network management has
been explored extensively in recent literature, showcasing
significant advancements. For instance, [10] proposes Simba,
a framework combining GNNs and Transformers for anomaly
detection and RCA in 5G networks. The work in [9] de-
velops a dual attention-based federated learning model for
wireless traffic prediction. [11] deploys a Transformer model
to enhance data inference and long-term prediction in sparse
mobile crowdsensing. Authors in [13] introduce the Multi-
Task Transformer for simultaneous traffic characterization and
application identification. [12] presents FlowTransformer, a
flexible framework for Transformer-based Network intrusion
detection systems. These studies demonstrate the significant
impact of Transformers on network management.
Deep Active Learning: Different query strategies in AL liter-
ature incorporate various criteria for selecting the most infor-
mative samples for annotation. Most strategies are uncertainty-
based (e.g., [31], [32]), choosing samples where the classi-
fication model is least confident in predicting their labels.
However, deep learning models are often overly confident,
making uncertainty-based measures like softmax probabilities
or entropy unreliable for sample selection [19]. On the other
hand, diversity-based strategies (e.g., [22]) focus on selecting
samples that maximize diversity, ensuring that selected sam-
ples represent a wide range of variations or different regions
in the input space. However, they are model-agnostic (task-
agnostic), i.e., they do not explicitly consider the relevance or
usefulness of the selected samples for the specific task at hand
and might ignore domain-specific characteristics of our fault
diagnosis problem [33]. Hybrid strategies combine diversity-
based AL with other criteria but still primarily focus on
uncertainty measurements, which are unreliable as explained
earlier. More advanced deep AL methods like VAAL [34] and
TA-VAAL [33] use adversarial training to separate labeled
and unlabeled distributions in a learned latent space. While
effective in vision tasks, they assume that the latent space
is stable and discriminative — an assumption that breaks
down in MTS data from (e.g., mobile) network deployments,
where faults may manifest in subtle, noisy, or overlapping
ways. Moreover, the effectiveness of such strategies often
deteriorates when the latent space does not align with the
semantic structure of the task.

Moreover, the potential of using AL to reduce reliance on
labeled data in network management tasks remains largely un-
explored. Few studies have applied AL in this area, and those
that do (e.g., [16], [35]) mostly rely on simplistic uncertainty-
based approaches, which are often ineffective and unsuitable
for the MTS nature of network data. Crucially, existing deep
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AL methods treat the model as a black box and do not
exploit architectural features such as the attention mechanism
in Transformers, which provide rich interpretability signals
about how the model processes each input. To address the
limitations of existing AL approaches, we propose a novel AL
method for Transformer-based fault diagnosis tailored to MTS
network data that is both task-oriented and diversity-aware: it
leverages the interpretability of the Transformer to incorporate
the unique characteristics of the fault diagnosis task in select-
ing relevant samples and uses DDP to ensure diversity in the
selected batches for annotation. This represents a key research
gap. Our proposed AL approach addresses this by constructing
attention-based dependency graphs that capture both temporal
and metrical relationships as seen by the Transformer model.
We then perform graph-level novelty detection to identify
structurally novel inputs and combine this with DPP-based
batch selection to ensure diversity. This results in a task-aware,
model-informed, and diversity-conscious AL strategy that is
well-suited for RCA tasks in mobile networks.

IV. PROBLEM STATEMENT

In this work, we perform fault diagnosis based on the values
of multiple performance metrics collected from the network
over a time window around the fault occurrence. Our training
data consists of N fault events, and for each event we have P
metrics periodically monitored over a time window of size T .
Examples of these metrics include general measurements like
CPU utilization and packet rates of different network functions
(NFs), or specific metrics related to a NF functionality, such as
call success ratio. The time window should encompass time
steps before and after a critical Key Performance Indicator
exceeds (or falls below) a threshold, or when the anomaly
detector in the network detects an anomaly [1].

For each fault event n ∈ {1, 2, . . . , N}, we have the data
sample xn = [x1,n, x2,n, . . . , xT,n], where each xt,n ∈ RP is
a vector of size P containing the values of all P monitored
performance metrics at time step t ∈ {1, 2, . . . , T}. Thus,
the training data X is the collection of these N samples:
X = {x1, x2, . . . , xN}. Let Sp

n = [Sp
1,n, S

p
2,n, . . . , S

p
T,n] be a

time series representing the values of metric p ∈ {1, 2, . . . , P}
during the time frame of the n-th fault event (Sp

t,n is the
value of metric p at time step t). We can also represent
the data sample xn as the collection of these time series:
xn = transp([S1

n, S
2
n, . . . , S

P
n ]), where transp denotes the

transpose operation. The root cause of each fault event n is
represented as yn, belonging to the set R = {r1, r2, . . . , rκ},
which contains the κ possible root causes of different fault
scenarios. Examples of possible root causes for different fault
scenarios include the failure of a specific node, packet loss
due to congestion in a particular link, or inadequate resource
allocation in a specific NF [24].

The training dataset X is divided into the labeled dataset
X(L) = {x(L)

1 , x
(L)
2 , . . . , x

(L)
NL

} with NL samples, and the
unlabeled dataset X(U) = {x(U)

1 , x
(U)
2 , . . . , x

(U)
NU

} with NU

samples. For the labeled dataset X(L), we know the root
causes of every data sample, i.e., we have the labels Y (L) =

{y(L)
1 , y

(L)
2 , . . . , y

(L)
NL

}. We assume fault diagnosis is per-

formed by a semi-supervised Transformer classification model
that learns the mapping from each data sample xn to its label
yn utilizing the training dataset (basically, the Transformer
model performs fault diagnosis as an MTS classification
problem as each data sample is defined as the collection of
multiple time series over a specific time window). In practice,
most training samples are initially unlabeled, with only a small
amount labeled [16], i.e., NL ≪ NU or even NL ≈ 0. How-
ever, our classification model requires an adequate number
of labeled samples to effectively learn to map the monitored
metrics to the fault root causes. Therefore, we need to select
some unlabeled samples and acquire their labels with the help
of domain experts. To minimize labeling costs and resources,
our goal is to develop an AL method to iteratively select the
most informative samples for labeling.

In our pool-based AL setting [19], at each cycle (iteration)
c, we have the unlabeled dataset (pool) X (c)

U and the labeled
dataset X (c)

L with corresponding labels Y(c)
L . The goal is to

choose a batch of informative samples from X (c)
U , acquire their

labels, and add them to X (c)
L and Y(c)

L . Initially, X (0)
U = X(U),

X (0)
L = X(L), and Y(0)

L = Y (L). At each iteration c, we train
our (semi-supervised) Transformer-based classification model
on X (c)

U , X (c)
L , and Y(c)

L . We then use a query strategy to
select a batch b(c) ⊂ X (c)

U with m samples (|b(c)| = m).
We query the labels of b(c) with the help of domain experts
(denoted by Y(c)

b ). The newly labeled samples are added
to X (c)

L and removed from X (c)
U : X (c+1)

L = {X (c)
L , b(c)},

Y(c+1)
L = {Y(c)

L ,Y(c)
b }, X (c+1)

U = X (c)
U \b(c). As X (0)

L has NL

samples, the dataset X (c)
L at iteration c > 0 will have N c

L =

NL + c ×m labeled samples (X (c)
L = {x(L)

1 , x
(L)
2 , . . . , x

(L)
Nc

L
),

and X (c)
U will have N c

U = NU − c × m samples (X (c)
U =

{x(U)
1 , x

(U)
2 , . . . , x

(U)
Nc

U
). This iterative process repeats until the

model reaches a desired performance or we exhaust our
labeling budget. So, our main objective is to design a robust
query strategy within this AL setting that effectively selects
the most informative samples from the unlabeled dataset for
labeling.

We adopt the standard pool-based active learning framework
described in Section II-B. At each iteration c, the data is
partitioned into: (i) a labeled set (X (c)

L ,Y(c)
L ), and (ii) an

unlabeled pool X (c)
U . The goal is to iteratively select a batch

of m informative samples b(c) ⊂ X (c)
U via a query strategy

and obtain their labels Y(c)
b from domain experts.

The selected samples and their labels are added to the
labeled set:

X (c+1)
L = X (c)

L ∪ b(c), Y(c+1)
L = Y(c)

L ∪ Y(c)
b ,

X(c+1)
U = X (c)

U \ b(c). (2)

This process repeats until a stopping criterion (e.g., target
accuracy or budget exhaustion) is met.

V. PROPOSED AL APPROACH FOR FAULT DIAGNOSIS

In this section, we introduce our AL method for selecting
informative and diverse samples for annotation.
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Fig. 1: Our AL approach: Global Dependency Graphs (GDGs)
are created for all samples using Transformer’s attention
weights. A novelty detection problem on the GDGs calculates
novelty scores for unlabeled samples. DDP then selects a
diverse batch with high novelty scores for annotation.

A. Our proposed AL Query Strategy

To directly address the research gaps identified in Section
III, we propose a novel AL query strategy specifically de-
signed for Transformer-based RCA on MTS data from mobile
networks. As discussed in the Related Works section, existing
deep AL methods—such as uncertainty-based, diversity-based,
and adversarial approaches—typically assume access to stable
latent representations and treat the model as a black box.
These assumptions do not hold in our setting, where the high-
dimensional, noisy, and overlapping nature of MTS network
data undermines embedding consistency, and the complexity
of fault behaviors demands model-specific insight. Our ap-
proach addresses these limitations by leveraging the internal
structure of the Transformer model: we extract and interpret
the attention weights to construct dependency graphs that
capture how the model internally reasons about each input
sample. By performing graph-level novelty detection on these
representations, we identify unlabeled samples that are not just
different in input space but are processed in fundamentally
novel ways by the model. This model-aware and task-specific
strategy fills the gap left by prior work, which does not exploit
the interpretability of attention mechanisms for guiding query
selection. To further ensure that the selected batch is non-
redundant and structurally diverse, we integrate DPP into our
sampling process. The following subsections describe each
step of our AL strategy in detail.

1) Constructing Dependency Graphs for Each Data Sam-
ple: The Transformer-based fault diagnosis model predicts
the root cause of each input sample by applying multiple

attention layers in its temporal and metrical encoders. The
attention scores calculated by the different attention layers
provide insights into the model’s focus and the relevance of
different input tokens, enabling analysis of dependencies and
reasoning during prediction. To abstract this information, we
construct a graph for each sample that describes the temporal
and metrical dependencies among the different time steps and
performance metrics from the attention scores in the encoders.
We refer to this graph as the global dependency graph (GDG).

For example, consider the l-th attention layer in the temporal
encoder. For the input sample xn, this layer updates the
output token embeddings of the previous layer h

(l−1)
{t,xn}, t ∈

{1, 2, ..., T} into the new token embeddings h
(l)
{t,xn} by calcu-

lating the attention weights a
(l)
{t1,t2,xn} per the query, key, and

value vectors calculation of the attention mechanism [26] :

q
(l)
{t,xn} = W

(l)
{q,α}h

(l−1)
{t,xn} (3)

k
(l)
{t,xn} = W

(l)
{k,α}h

(l−1)
{t,xn} v

(l)
{t,xn} = W

(l)
{v,α}h

(l−1)
{t,xn} (4)

u
(l)
{t1,t2,xn} =

√
M√
dα

transp(q
(l)
t1,xn

)k
(l)
t2,xn

(5)

a
(l)
{t1,t2,xn} =

exp(u
(l)
{t1,t2,xn})∑T

t=1 exp(u
(l)
{t1,t,xn})

(6)

In the above equations, M is the number of heads in the
multi-head attention mechanism, and W

(l)
{q,α}, W

(l)
{k,α}, and

W
(l)
{v,α} are dq × dα parameter matrices (dq = dα

M ). The
function exp(.) denotes the exponential function. For each
t1 ∈ {1, 2, . . . , T} and t2 ∈ {1, 2, . . . , T}, the attention
weight a(l){t1,t2,xn} ∈ [0, 1] determines the relationship between
time steps t1 and t2 in layer l of the temporal encoder for
input sample xn. Note that in a multi-head attention layer,
these attention weights are calculated M times in parallel and
averaged across all M heads. From these attention weights, we
construct the weighted attributed dependency graph G

(l)
{α,xn} =

{V(l)
{α,xn}, E

(l)
{α,xn},F

(l)
{α,xn}}. V(l)

{α,xn} is the set of nodes, each
corresponding to one time step in the time window of input
sample xn (|V(l)

{α,xn}| = T ). E(l)
{α,xn} is the set of edges, where

node vi ∈ V(l)
{α,xn} is connected to node vj ∈ V(l)

{α,xn} by the

directed edge e{i,j} ∈ E(l)
{α,xn} only if the attention weight

a
(l)
{i,j,xn} is larger than a predefined threshold thrα:

e{i,j} =


a
(l)
{i,j,xn}, if a(l){i,j,xn} > thrα

0, otherwise

(7)

The value of thrα should be chosen to ensure the graph
G

(l)
{α,xn} retains information about strong relationships among

time steps while removing noisy, insignificant attention
weights. In our experiments, we set thrα to maintain around
20% of all possible edges. F (l)

{α,xn} is the set of node features

in the graph G
(l)
{α,xn}. Let fi ∈ F (l)

{α,xn} be the node features of

node vi ∈ V(l)
{α,xn}. fi describes that node vi belongs to the i-th

time step of the l-th layer of the temporal decoder. We encode
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these three categorical information (which encoder, which time
step, and which attention layer) using one-hot encoding and
consider the result as the node features for each node vi.

Similarly in the metrical encoder, for each input sample
xn and attention layer l ∈ {1, 2, ..., Lβ}, we construct the
dependency graph G

(l)
{β,xn} = {V(l)

{β,xn}, E
(l)
{β,xn},F

(l)
{β,xn}}.

Here, each node vi ∈ V(l)
{β,xn} corresponds to one of the P

performance metrics in the metrical encoder. The set of edges
and the set of node features are defined similarly to those
of the temporal encoder. For creating the graph connections,
the threshold thrβ is used to keep only the main connections
among the performance metrics.

For an input sample xn, we have obtained Lα dependency
graphs from the temporal encoder and Lβ dependency graphs
from the metrical encoder. We define the GDG graph Gxn =
{Vxn , Exn ,Fxn} for the data sample xn as the disjoint union of
all the constructed dependency graphs, containing the overall
information regarding the temporal and metrical dependencies
among the different time steps and performance metrics:

Gxn = G
(1)
{α,xn} ⊕ ...⊕G

(Lα)
{α,xn} ⊕G

(1)
{β,xn} ⊕ ...⊕G

(Lβ)

{β,xn}
(8)

Generating the GDGs is not computationally expensive, as
the attention matrices are produced in a single feed-forward
pass of the Transformer. Creating the dependency graphs is
simply a matter of applying a threshold to these matrices.

2) One-class Novelty Detection for the Dependency
Graphs: The GDG graphs can be considered as a high-level
information about how different data samples (fault events) are
processed by the Transformer model to determine the target
class (the root cause of the fault). For cycle c of our AL
procedure, let us define GDG

(c)
L = {G

x
(L)
1

, G
x
(L)
2

, . . . , G
x
(L)

Nc
L

}
as the dataset that contains the GDG graphs of all the
data samples in our labeled training dataset X (c)

L . (G
x
(L)
i

is

the GDG of sample x
(L)
i ∈ X (c)

L .) Similarly, GDG
(c)
U =

{G
x
(U)
1

, G
x
(U)
2

, . . . , G
x
(U)

Nc
U

} would be the dataset of the GDGs

of all the data samples in our unlabeled training dataset X (c)
U .

In our proposed query strategy, we aim to find unlabeled
samples whose GDG graph has a different structure com-
pared to GDG graphs of the labeled samples. Such unlabeled
samples are processed in a novel way by the fault diagnosis
model (compared to the standard patterns observed during
training), and we expect that, by acquiring their labels and
including them in the next training cycle of the model, we
can significantly improve the model’s performance.

For identifying such unlabeled samples, we design a one-
class graph-level novelty detection algorithm for the GDGs.
In this novelty-detection problem, the dataset GDG

(c)
L is

considered as the normal dataset, and our goal is to learn
a scalar novelty (abnormality) score s

x
(U)
i

for each GDG

graph G
x
(U)
i

∈ GDG
(c)
U from the unlabeled dataset. A higher

novelty score indicates the data point is more likely to be a
novelty/anomaly compared to the majority of GDGs in the
labeled dataset GDG

(c)
L . GNNs [20] have achieved SOTA

performance in many graph data analysis tasks. Recently,
authors of [21] proposed a GNN-based graph novelty detection

approach based on random distillation of graphs’ node repre-
sentations. Motivated by the SOTA performance of the work
in [21] on many graph anomaly detection benchmarks, we
developed a modified version of their algorithm to effectively
solve our novelty detection problem.
GNN-based Graph Novelty Detection Utilizing Random
Distillation: Consider Q to be a 1-hop message passing GNN
model with L aggregation layers. Let the GDG graph G =
{V,E, F} with node features fi ∈ F for each node vi ∈ V be
the input of the GNN model Q. Denote ϕℓ

vi as the output node
representation of node vi at layer ℓ of the GNN, with ϕ0

vi =
fi. The node representations ϕℓ

vi
at layers ℓ > 0 are dgnn-

dimensional vectors calculated in the GNN model as follows:

δℓvi = MESℓ({(ϕℓ−1
u , eu,vi

)|u ∈ Ne(vi, G)}) (9)

ϕℓ
vi

= UPDℓ(δℓvi
, ϕℓ−1

vi ) (10)

Where Ne(vi, G) represents the immediate neighbors of node
vi in graph G, eu,vi is the weight of the edge between node vi
and its neighbor node u. δℓvi is the message to node vi at layer
ℓ, MESℓ and UPDℓ are message and update functions at
layer ℓ. These functions define how information is propagated
and updated across the nodes and edges in the GNN model
and are typically implemented by neural networks. Different
choices of these functions lead to various GNN architectures.
For our problem, we use the Graph Convolutional Network
(GCN) architecture [20] as the GNN model. In GCN, the mes-
sage function aggregates information from neighboring nodes
by computing a weighted sum of their features and the update
function then combines the aggregated information with the
current node’s features to generate an updated representation.
After L layers of message passing, ϕL

vi is used as the final
representation of node vi.

In our distillation-based novelty-detection algorithm, we
create a fixed, randomly-initialized target GNN model Qta

with Lta aggregation layers and a predictor GNN model
Qpr with Lpr aggregation layers. Both models have dgnn-
dimensional node representations, but Lta is larger than Lpr

(the predictor model has fewer layers and parameters than the
target model). The parameters of the target GNN are randomly
initialized and kept fixed/frozen. Denote the final node repre-
sentations produced by the target GNN as ϕLta

{vi,ta} and those

by the predictor GNN as ϕLpr

{vi,pr} for each node vi. We train the
predictor model to generate final node representations similar
to those produced by the random target network. For an input
GDG graph G = {V,E, F}, the loss function for training the
predictor GNN is defined as:

loss(G,Qta, Qpr) =
1

|V |
∑
vi∈V

||ϕLta

{vi,ta} − ϕ
Lpr

{vi,pr}||2 (11)

The Euclidean distance ||ϕLta

{vi,ta} − ϕ
Lpr

{vi,pr}||2 is used as
the distillation function to measure the difference between
the two node representations. We train the predictor model
on the GDG

(c)
L dataset using the described loss function

loss(G,Qta, Qpr). We denote the trained/optimized predictor
model as Q∗

pr. After training, for each unlabeled GDG graph
G

x
(U)
i

∈ GDG
(c)
U , its novelty score s

x
(U)
i

is calculated based
on the loss value of the trained predictor model:
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s
x
(U)
i

= loss(G
x
(U)
i

, Qta, Q
∗
pr) (12)

The key intuition is that our training forces the predictor
model’s node representations to closely match the correspond-
ing node representations of the fixed random target model
for GDG graphs in the GDG

(c)
L dataset. Consequently, graph

patterns well-represented in GDG
(c)
L yield a low loss value

(prediction error). For an unlabeled GDG graph G
x
(U)
i

∈
GDG

(c)
U , a high novelty score s

x
(U)
i

indicates that it does not

conform to the regularity information that exist in GDG
(c)
L .

This novelty score is the main criterion for the informativeness
of unlabeled data samples in each cycle.

Our distillation-based novelty detection algorithm differs
from [21] in that their target and predictor GNN models share
the same architecture and parameter count, which contradicts
distillation learning principles. In distillation learning [36], a
smaller student model is trained to mimic a larger teacher
model’s behavior to transfer knowledge in a compressed form
(in our problem, the target and predictor GNNs are the teacher
and the student models, respectively). By incorporating more
aggregation layers in the target network (Lta > Lpr), we
address this limitation and effectively learn the regularity
information of the labeled dataset. In our implementation, we
set dgnn = 64, Lta = 3, and Lpr = 2 for both datasets.

3) Selecting a Diverse Batch of Samples with High Novelty
Scores Utilizing DPP: One way of choosing the batch b(c)

would be to greedily select the top-m unlabeled samples with
the highest novelty scores. However, such a greedy approach
may result in the selection of similar or redundant samples,
leading to a lack of diversity in the selected batch [19]. To
address this issue, we first create a candidate dataset X (can) =
{x(can)1 , x

(can)
2 , ..., x

(can)
w×m} that consists of w×m samples from

X (c)
U such that their GDG graphs have the highest novelty

scores (X (can) ⊂ X (c)
U , w > 1). We then select a diverse batch

b(c) ⊂ X (can) using DPP [23]. The parameter w > 1 balances
the diversity of the samples and of their novelty scores.

DPP has recently been applied to select subsets with specific
properties from larger nominee datasets in various ML appli-
cations, such as documentation abstraction, anomaly detection
[37], and AL [38]. In our problem, the nominee dataset is
X (can) (with w × m samples), and we aim to choose a
subset b(c) ⊂ X (can) with |b(c)| = m samples, prioritizing
diversity. To create the desired subset, DPP constructs a
(w×m)×(w×m) kernel matrix ∆ for the X (can) dataset. The
subset b(c) is chosen to maximize det(∆b), where det(∆b) is
the determinant of the principal minor ∆b (∆b is a submatrix
of ∆ that only includes entries related to the samples in b(c)).

Since we are interested in a diverse batch of samples with
large novelty scores, we construct the kernel matrix ∆ by
defining its entries ∆{i,j} as follows:

∆{i,j} = s̄
x
(can)
i

× s̄
x
(can)
j

× Sim(x
(can)
i , x

(can)
j ) (13)

Where s̄
x
(can)
i

and s̄
x
(can)
j

are the normalized values of the
novelty scores s

x
(can)
i

and s
x
(can)
j

, respectively (s
x
(can)
i

is the

novelty score of the GDG graph of the sample x
(can)
i , and

normalization is done based on the largest novelty score

in the candidate dataset). The function Sim(x
(can)
i , x

(can)
j )

calculates the similarity between samples x
(can)
i and x

(can)
j .

For our multivariate time series dataset, we use the Extended
Frobenius Norm (Eros), a PCA-based similarity measure [39]
ranging from 0 to 1, with 1 being the most similar. The pair-
wise similarities Sim(x

(can)
i , x

(can)
j ) make DPP prefer dissim-

ilar samples [23], while the novelty scores s̄
x
(can)
i

and s̄
x
(can)
j

encourage DPP to select samples with high novelty scores by
boosting their diagonal entries [37]. If the kernel matrix entries
are only similarity measurements (Sim(x

(can)
i , x

(can)
j ), the

determinant of a submatrix correlates with sample diversity.
Scaling up entries with novelty scores makes a submatrix’s
determinant larger if its samples have higher novelty scores.
Thus, the submatrix with the largest determinant will have a
diverse set of samples with high novelty scores [37]. We use
the greedy algorithm in [23] to find this submatrix.

B. Computational Complexity

Let N denote the number of unlabeled samples, H the
number of attention heads in the Transformer encoder, and
T the sequence length (i.e., time steps per sample). Our ac-
tive–learning query cycle comprises three stages. (i) Attention-
graph construction: extracting attention weights and building
a dependency graph per sample requires O(N ·H · T 2) time,
because each head computes pairwise attention scores over
the T tokens. (ii) Graph-level novelty detection: we compare
every unlabeled graph with the labeled pool. If M is the size
of the labeled set and Gd the cost of a single graph–distance
computation, this step costs O(N ·M · Gd). (iii) DPP batch
selection: we use a greedy algorithm for approximate DPP-
based selection [23], which selects a batch of size k from a
similarity kernel over the top-n novel graphs in O(n·k2) time.
Hence, the overall per-round complexity is:

O
(
N ·H · T 2 + N ·M ·Gd + n · k2

)
.

In practice, stage (i) piggy-backs on attention already com-
puted during inference, stage (ii) can be parallelised across
CPU/GPU cores, and the AL routine is executed intermittently
on a candidate subset, keeping runtime manageable for pro-
duction deployments.

VI. EVALUATION

In this section, we start by describing the two datasets used
in our experiments. We then detail the SOTA AL approaches
that serve as benchmarks for comparison against our proposed
AL method. Following this, we evaluate the performance of
different AL approaches when applied to the Transformer-
based fault diagnosis model. Next, we conduct an ablation
study to highlight the importance of creating the GDG graphs
in our AL method for identifying the most novel and in-
formative unlabeled samples. Moreover, we compare the AL
approaches in their ability to identify and select samples from
unseen fault types. Finally, we compare the Transformer-based
MTS classification model with alternative MTS classification
methods to emphasize the importance of Transformer-based
fault diagnosis and the effectiveness of our proposed AL
method designed for this purpose.
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Fig. 2: The 5G3E dataset’s system [24]. Fig. 3: Network topology of the ITU dataset [25].

A. Datasets

Our focus in this work is on automating fault diagnosis
in 5G and beyond mobile networks, with an emphasis on
the 5G core network, where timely and accurate RCA is
critical for service continuity. To evaluate our method, we
use two publicly available datasets that offer complementary
coverage of 5G fault diagnosis scenarios. The ITU dataset is
designed specifically for the 5G core and is collected from
an NFV-based testbed that emulates a 5G IP core network. It
includes real-world core-related faults such as node failures,
interface down events, and packet-level impairments across
individual VNFs. In contrast, the 5G3E dataset captures faults
in an end-to-end virtualized 5G network, including CPU
overload, congestion-induced packet loss, and link failures, all
of which directly impact 5G core components and services.
Both datasets provide multivariate time-series measurements
and annotated fault root causes, making them well-suited
for evaluating our active learning strategy and Transformer-
based RCA model. Their fault diversity, time-series nature, and
coverage of both core-specific and broader network scenarios
enable robust performance benchmarking and generalizability
analysis.
5G3E Dataset: 5G3E is a public dataset for beyond-5G
network automation experiments [24]. Generated in a 5G end-
to-end system using NS3 and a realistic virtualized 5G network
software stack, it employs user traffic data from a mobile
network provider to replicate real-time user data transmitted
to the network. Figure 2 illustrates the physical model of the
system. Three powerful servers in a triangular configuration
replicate four sites, while a cluster of four servers forms the
5G core. Data on network components is collected periodically
during data transfers. The dataset includes numerous time-
series from monitoring 5G network operations, such as radio,
computing, and network components, and covers features like
radio front-end metrics, server OS data, and network function
metrics. Fault scenarios (CPU overload, packet loss, link
failures, and bandwidth limitations) are injected at various
severity levels to generate faulty instances. Fault diagnosis
for this dataset is an MTS classification problem with 22
target classes, distinguishing different faults and their severity
levels (eight severity levels for CPU overload and packet loss,
four severity levels for bandwidth limitation, and two different
scenarios of link failures, totaling 22 target classes). Each data
sample includes values of the collected metrics over 20 time

steps during a specific fault injection. The training data has
10,000 samples, and the test data include 5,000 samples. The
training and test datasets are completely balanced, containing
an equal number of samples for each class.
ITU Dataset: Our second dataset is from the “ITU AI/ML in
5G” challenge [25], generated in an NFV-based testbed simu-
lating a 5G IP core network. The target topology of this NFV
testbed is shown in Figure 3. It includes five Virtual Network
Functions (VNFs): two IP core nodes, two internet gateway
routers, and a router reflector, each implemented on a separate
VM. The dataset includes diverse performance metrics per
VNF per minute, such as CPU utilization and network packet
rates. The following fault scenarios are periodically injected
into the VNFs to generate faulty samples: 1) node failures,
2) interface failures, 3) packet loss, and 4) packet delay. The
fault diagnosis method aims to distinguish these faults as an
MTS classification problem with 4 target classes. Each data
sample includes values of the metrics over 10 time steps. The
training data contains 1,812 faulty samples (54 node failure,
233 interface failure, 762 packet loss, and 763 packet delay
samples), while the test data has 1,000 samples and is fairly
balanced.

B. Compared Approaches

We compare our proposed AL method with a comprehensive
set of SOTA AL algorithms, encompassing uncertainty-based,
diversity-based, and hybrid approaches:
Greedy-AT (ours): greedily selects the top-m unlabeled sam-
ples with the most abnormal GDG graphs.
Diverse-AT (ours): selects a diverse batch of unlabeled sam-
ples with abnormal GDG graphs using DDP (Section V-A3).
Ent-GN [32]: an uncertainty-based query strategy considering
the model’s gradient norm as the informativeness criterion.
VAAL [34]: formulates AL as a mini-max game, similar to
Generative Adversarial Networks (GANs).
TA-VAAL [33]: a modified VAAL incorporating also label
information and classifier loss in the mini-max game.
Coreset [22]: a diversity-based strategy defining AL as a core-
set selection problem.
MC-dropout [16], [31], [35]: an uncertainty-based method us-
ing dropout as a Bayesian approximation of model uncertainty.
Badge [40]: a hybrid strategy incorporating both predictive
uncertainty and sample diversity.
Rand: selects a batch of unlabeled samples at random.
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Fig. 4: Comparison of AL query strategies on the 5G3E and ITU datasets, depicting mean F1-scores with shaded regions
representing standard deviations.

C. Experimental Results

For evaluating the AL methods on the two datasets, we start
with a training dataset in which only 5% of the samples are
labeled, chosen at random. In each cycle of the AL proce-
dure, a batch of unlabeled samples is chosen for annotation
according to the different AL query strategies. We consider
three different batch sizes: 1%, 5%, and 10% of the entire
training dataset. In each AL cycle, we report the F1-score of
the semi-supervised Transformer classification model trained
on the updated dataset.

Figure 4 shows the obtained F1-scores of different query
strategies for the two datasets with batch sizes of 1%, 5%, and
10% of the training data (the obtained F1-scores are averaged
over 10 trial runs). We can see that our proposed Greedy-
AT query strategy has outperformed the considered SOTA
AL approaches on both datasets. Moreover, by comparing
the performance of Greedy-AT and Diverse-AT, we can see
that accounting for the diversity of the samples in the chosen
batches can further improve the performance of our AL
method, especially for larger batch sizes. The results show
that, by using our AL strategy, we can significantly reduce the
number of required labeled samples. For example, in the 5G3E
dataset when the batch size is 5% of the training data, Diverse-
AT achieves an F1-score of 83.7% with only 20% of the
training samples labeled, while TA-VAAL (the best performing
approach among the existing methods) has a slightly lower F1-
score (82.9) with 45% of the training data labeled. Similarly,
in the ITU dataset, Diverse-AT achieves a higher F1-score
with only 25% of the training data labeled compared to
what TA-VAAL obtains with 45% of the training data labeled.
So, the results indicate that our AL method Diverse-AT can
accomplish a higher F1-score with even 50% less number of
labeled samples compared to the best performing SOTA AL
method on average in the two datasets.

Moreover, Figure 4 shows that most uncertainty-based
methods performed worse even than random selection (Rand).

This is because uncertainty is not a reliable criterion for sample
informativeness, and these methods do not consider sample
correlation, leading to similar and irrelevant sample selections
[22]. Conversely, diversity-based and hybrid methods Badge,
Coreset, VAAL, and TA-VAAL performed better than random
selection, with TA-VAAL being the best among them. However,
TA-VAAL still has a significantly lower F1-score compared to
our Greedy-AT and Diverse-AT query strategies.

Fig. 5: Average running time of different AL methods for
selecting a batch for annotation.

D. Running Time of Different AL Methods

In large-scale network data analysis, the paramount concern
lies in mitigating the exorbitant expenses associated with
manual labeling. The time taken for selecting samples for
annotation within our AL approach is of negligible importance
as our primary objective centers on the substantial reduction
of labeling costs. However, it might still be noteworthy to
evaluate the running time of the different AL methods in our
experiments. We report the average running time for selecting
a batch of unlabeled samples by different AL strategies in
Figure 5. The figure illustrates that uncertainty-based ap-
proaches (MC-dropout and Ent-GN) have the lowest running
time, but as discussed earlier they achieved lower F1-socre
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than even random sampling. On the other hand, TA-VAAL
and VAAL methods have the highest running time as they
need to train a GAN architecture in each cycle of the AL
procedure. The results show that our proposed AL methods
have lower running time than TA-VAAL and VAAL while
achieving significantly higher F1-scores.

It is crucial to highlight that in our AL approach, the
bulk of the computational effort is dedicated to solving the
one-class novelty detection problem using the GNN-based
knowledge distillation method. Generating the global depen-
dency graphs doesn’t incur significant computational costs
since the attention matrices can be computed through a single
feed-forward pass of the Transformer model, and deriving
the dependency graphs involves a straightforward process of
applying a threshold to these attention matrices.

E. Memory Requirements

Our AL method operates in an offline setting, where the AL
procedure, including data selection, annotation, and iterative
model training, is performed prior to deployment. Once the
AL process is complete, only the final trained Transformer-
based fault diagnosis model is deployed in the 5G network
for real-time inference. As a result, the memory and resource
requirements of the deployed Transformer model are the key
factors for evaluating practical deployment feasibility.

The Transformer model used in our approach is designed
to be lightweight, with approximately 300,000 learnable pa-
rameters. This significantly reduces the memory footprint
compared to more complex models commonly used in similar
tasks. For example, the Transformer requires only around 1.2
MB of memory to store the model weights (assuming 32-
bit floating-point representation), making it well-suited for
resource-constrained 5G and beyond mobile networks.

F. Ablation Study of Our AL Method

To demonstrate the significance of creating the dependency
graph for identifying informative unlabeled samples, we con-
ducted an ablation study comparing our Greedy-AT method
with three alternatives: 1) Encoder-Novelty: In this approach,
the concatenation of the two encoders’ outputs replaces the
GDG graph for each data point in the anomaly/novelty de-
tection problem compared to Greedy-AT. We employed two
established anomaly detection techniques for Euclidean data,
namely iForest [41] and Deep SVDD [42], to solve this
modified anomaly detection problem. 2) Matrix-Novelty: Here,
novelty detection is performed on the concatenation of all
attention matrices, serving as the equivalent of GDG graphs,
using iForest and Deep SVDD. 3) GDG-GraphEmbed: This
method conducts novelty detection on GDG graphs (similar to
Greedy-AT) using the graph kernel PK [43] to extract fixed-
size features, followed by iForest and Deep SVDD for anomaly
detection on these obtained features.

We report the performance of these alternative AL meth-
ods in Figure 6. For example, Encoder-Novelty-iForest and
Encoder-Novelty-SVDD are two versions of the Encoder-
Novelty algorithm, where anomaly detection is done by iForest

and Deep SVDD, respectively. The results show that Encoder-
Novelty performed worse than random sampling, highlighting
the importance of the interpretability of the Transformer’s
information over its latent representation in finding informa-
tive samples. Additionally, Matrix-Novelty performed simi-
larly to random sampling, meaning that to effectively dis-
tinguish unlabeled samples that are processed by the model
in a novel way, it is crucial to construct the dependency
graphs to obtain an adequate representation of the data
points’ processing patterns. Finally, we can observe that GDG-
GraphEmbed achieved competitive F1-scores compared to
Greedy-AT and significantly outperformed random sampling.
However, Greedy-AT consistently achieved higher F1-scores
than GDG-GraphEmbed, indicating that the GNN-based ap-
proach solves the graph-level novelty detection problem more
accurately than the traditional graph kernel approaches.

G. Identifying Unseen Fault Types

A crucial aspect of an effective AL method for RCA is
its ability to identify and select data samples related to fault
types not present in the current labeled dataset. In a new
set of experiments, we intentionally craft labeled datasets
encompassing samples from various fault types, deliberately
excluding a specific fault type. This allows us to evaluate AL
methods by observing whether they can intelligently select
samples from the omitted fault type.

Let FT = {ft1, ft2, . . . , ftnf
} represent the set of nf fault

types in the network. In the 5G3E dataset, this includes CPU
overload, link failure, packet loss, and bandwidth limitation:
FT5G3E = {cpu, link, packetL, bandwidth}. In the ITU dataset,
the fault types are node down, interface down, packet loss, and
packet delay: FTITU = {node, interface, packetL, packetD}. To
evaluate the AL query strategies’ ability to identify samples
from the unseen fault type fti, we create the labeled dataset
X

(L)
fti

with NL samples that includes abundant samples from
all fault types other than fti, but has no samples from the
fti fault type. We also generate the unlabeled dataset X

(U)
fti

with NU samples that contains abundant samples from all fault
types other than fti, and only has a limited number (Nft) of
samples from fault type fti (Nft ≪ NU ). This simulates a
scenario where the unlabeled dataset contains samples from a
fault type not present in the labeled dataset. We selected Nft

to be a small number deliberately making the task of selecting
samples from the unseen fault type challenging.

Given the MTS classification model, X(L)
fti

as the labeled
dataset, and X

(U)
fti

as the unlabeled dataset, we want to select
a batch b with m samples from the unlabeled dataset for
annotation according to the different query strategies. Since
the labeled dataset has no samples from fault type fti and
has numerous samples from other fault types, we want the
query strategy to choose as many samples as possible from
fault type fti. Let nfti be the number of selected samples
from fault type fti. We define rfti =

nfti

m as the ratio of
selected samples from unseen fault type fti to the total number
of selected samples. Ideally, rfti should be as close to 1 as
possible. We conducted experiments on both datasets for each
fault type being excluded from the labeled dataset. In the 5G3E
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Fig. 6: Results of the ablation study of our AL approach.

Fig. 7: Ratio of the selected samples from the unseen fault type fti for different AL methods and different unseen fault types
in the 5G3E dataset (reported in percentage).

dataset, we chose NL = 4000, NU = 6000, Nft = 300, and
batch sizes m = 500 and m = 1000. In the ITU dataset,
we set NL = NU = 1000, Nft = 50, and batch sizes
m = 100 and m = 200. These samples were chosen randomly
from all available samples in the 5G3E and ITU datasets. We
repeated the experiments 10 times for each dataset and report
the average results over these trials.
Figure 8 shows the ratio of selected samples from the unseen
fault types for experiments on the 5G3E and ITU datasets.
Due to the limited number of unseen fault type samples in
the unlabeled dataset, random sampling results in a low rfti .
Badge and Coreset also select very few samples from the
unseen fault types since they focus on diversity rather than
than choosing samples from an unseen fault type. On the
other hand, MC-dropout and Ent-GN achieved higher ratios
than random sampling, suggesting that model uncertainty helps
distinguish novel samples to some extent. TA-VAAL and VAAL
have the highest ratios among SOTA query strategies on both
datasets due to their adversarial learning. However, our results
show that TA-VAAL and VAAL are significantly outperformed

by our proposed query strategies (Greedy-AT and Diverse-AT)
in selecting the most samples from the fti fault type. This
indicates that selecting samples with the highest novelty scores
in our query strategies results in a high number of samples
from unseen fault types. Moreover, Greedy-AT obtained higher
ratios compared to Diverse-AT because Diverse-AT increases
batch diversity and selects only dissimilar samples from the
unseen fault type, as opposed to Greedy-AT.

TA-VAAL chose the most samples from the unseen fault
types among the SOTA query strategies on both datasets.
Comparing our proposed method Greedy-AT with TA-VAAL
on the 5G3E dataset, we see that for m = 500, Greedy-
AT selects 2.1x, 2.5x, 2.5x, and 2.2x more samples from the
unseen fault type when the unseen type is CPU overload,
link failure, packet loss, and bandwidth limitation, respectively
(similar performance gap is observed for m = 1000 in Figure
8). In the ITU dataset, for m = 100, Greedy-AT selects 1.8x,
2.2x, 2.1x, and 2x more samples from the unseen fault type
compared to TA-VAAL when the unseen type is node down,
interface down, packet loss, and packet delay, respectively.
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Fig. 8: Ratio of the selected samples from the unseen fault type fti for different AL methods and different unseen fault types
in the ITU dataset (reported in percentage).

Therefore, the results indicate a substantial improvement of
up to 150% in pinpointing and selecting samples related to
unseen fault types compared to the SOTA AL strategies.

It is important to note that these experiments considered
an extreme case where there are no samples from the newly
emerged fault type in the labeled dataset. We also repeated the
experiments with a new setting where a few samples from the
new fault type are in the labeled dataset. The results showed
that our AL methods significantly outperform the existing AL
approaches in this new setting as well.

H. Transformers vs. other MTS Classification Models

Even though the primary focus of our paper is on reducing
labeling costs by identifying the most informative unlabeled
samples, rather than optimizing the classification model archi-
tecture for fault diagnosis, it is still valuable to compare the
performance of the Transformer model with other state-of-
the-art MTS classification and fault diagnosis methods since
our AL method is designed for a Transformer model. For this
comparison, we evaluate the Transformer MTS classification
model against several alternatives, grouped as: 1) the network
fault cause localization algorithm NETRCA [3]; 2) ensemble-
based MTS classification methods HIVE-COTE [44], XEM
[45], and Rocket [46]; and 3) deep learning-based MTS
classification methods LSTM-FCN [47] and CDC [48]. We
refer to the semi-supervised version of the Transformer model
as Semi-Trans and the fully-supervised version (without pre-
training) as Sup-Trans. Among all the approaches, only Semi-
Trans and CDC are semi-supervised (incorporating unlabeled
samples), while the other methods are fully supervised.

Table I shows the F1-scores of these methods on the
5G3E and ITU datasets, with varying labeled training data
percentages (10% to 100%), averaged over 10 runs. The

results show that The Transformer models (Semi-Trans and
Sup-Trans) consistently outperformed other alternatives on
both datasets, underscoring their superior performance for
fault diagnosis. Moreover, comparing Semi-Trans and Sup-
Trans shows that the pre-training scheme slightly enhances
performance, especially with smaller labeled datasets.

I. Hyper-parameter Analysis

In this subsection, we analyze the impact of two new
hyper-parameters in our AL method: the threshold values
determining the number of edges in each dependency graph
(thrα and thrβ , Section V-A1) and the size of the candidate
dataset for DDP-based diverse batch selection (w, Section
V-A3).

To transform the attention matrix into a dependency graph,
we retain an edge from node vi to vj if the attention weight
exceeds a threshold (thrα for the temporal encoder, thrβ
for the metrical encoder). This preserves strong relationships
while filtering noisy, insignificant attention weights. Previ-
ously, thrα = thrβ = thr was set to retain 20% of possible
edges. Here, we vary thr to retain 10%-90% of edges. Figure
9 shows the F1-scores of Greedy-AT and Diverse-AT for
5G3E and ITU datasets (batch size = 5% of training data)
as thr changes. The figure shows that performance remains
stable for 10%-40% edges but degrades significantly with
higher edge percentages. Including too many edges makes the
dependency graphs resemble complete graphs, complicating
novelty detection and introducing noisy information, leading
to random-like sampling performance.

Moreover, for the Diverse-AT method, we create a candidate
dataset X(can) containing w × m samples (where m is the
batch size) with the highest novelty scores and apply the DDP
algorithm. Figure 10 reports F1-scores for w values ranging
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Method 5G3E Dataset ITU Dataset
100% 40% 20% 10% 100% 40% 20% 10%

Semi-Trans 88.6±0.6 80.4±0.6 76.3±0.7 67.2±0.9 92.3±0.3 80.8±0.5 72.9±0.5 67.0±0.7
Sup-Trans 88.5±0.5 79.6±0.6 75.2±0.9 65.7±0.9 92.3±0.4 79.4±0.4 71.1±0.7 65.3±0.8

HIVE-COTE 84.6±0.2 75.7±0.3 66.8±0.3 57.6±0.3 88.5±0.5 75.2±0.6 62.3±0.6 55.7±0.8
XEM 82.1±0.2 75.4±0.2 65.7±0.5 58.5±0.4 85.1±0.5 74.2±0.6 60.8±0.6 53.1±0.8

Rocket 81.6±1.2 73.2±1.4 66.6±1.7 59.8±1.5 85.3±0.9 73.8±1.1 61.0±1.2 53.7±1.2
NETRCA 80.3±0.8 70.1±1.3 62.3±1.2 57.2±1.7 84.6±0.5 74.0±0.6 58.7±0.9 50.8±1.1

LSTM-FCN 75.3±2.8 68.7±3.7 52.1±3.2 44.0±3.5 81.7±1.2 69.5±1.6 52.9±1.6 46.3±2.0
CDC 76.9±2.3 70.3±2.8 62.3±3.5 55.4±3.8 77.9±3.7 72.1±3.5 59.4±4.8 56.3±4.7

TABLE I: F1-score (mean ± standard deviation) of different MTS classification methods for fault diagnosis.

Fig. 9: The effect of the parameter thr on the performance of
our Greedy-AT and Diverse-AT methods.

Fig. 10: The effect of the parameter w on the performance of
our Diverse-AT method.

from 1 to 10. At w = 1, Diverse-AT is equivalent to Greedy-
AT. We can observe that increasing w improves diversity
and F1-scores up to w = 5, beyond which further increases
yield negligible gains. This is because samples with very low
novelty scores do not influence DDP’s output, making larger
X(can) sets unnecessary and only increasing execution time.
This trade-off can be effectively managed in our AL method.

Practitioners can tune the threshold parameters thrα and
thrβ by analyzing the sparsity or density of their time-series
attention patterns. For datasets with noisy attention maps or
weaker temporal/metrical dependencies, retaining fewer edges
(e.g., 10–20%) helps focus on the most relevant interactions.
Conversely, denser graphs (e.g., 30–40% edge retention) may
be more suitable for highly structured datasets with stable
performance metrics across time. Similarly, the candidate
multiplier w can be set in proportion to the dataset size and
expected fault type diversity: larger datasets or those with
more heterogeneous fault types benefit from larger w (e.g., 5–
10) to ensure better batch diversity, whereas smaller or more
homogeneous datasets may suffice with lower values (e.g., 2–
3).

VII. CONCLUSION

In this paper, we presented a novel AL approach tailored
for Transformer-based fault diagnosis in mobile networks. By
leveraging the interpretability of Transformers, our method ef-
fectively identifies the most informative and diverse unlabeled
samples for annotation. Extensive experiments on two real-
world datasets demonstrate that our AL strategy significantly
reduces the need for labeled data while achieving superior
performance compared to state-of-the-art AL methods. Our
method not only enhances fault diagnosis accuracy but also
efficiently identifies samples from unseen fault types, address-
ing key challenges in network management.
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