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Abstract
Hearing-impaired drivers face significant chal-

lenges in detecting critical auditory cues, such as 
emergency vehicle sirens, essential for safe driving. 
This article presents an advanced IoT-based sound 
recognition system designed to enhance situation-
al awareness for these drivers. Audible signals are 
recognized and transformed into alerts displayed in 
the dashboard. Our approach involves preprocess-
ing audio data to extract 23 features. We normal-
ize these features and evaluate multiple Machine 
Learning and Deep Learning models for their classi-
fication performance. The top five models, selected 
based on their performance metrics, are then com-
bined into an ensemble model using majority voting 
to improve accuracy and robustness. Our dataset 
comprising 1500 audio samples enabled us to 
achieve a final accuracy of 94.2% with the ensem-
ble voting approach. These results demonstrate 
a significant performance in sound classification 
accuracy compared to individual models, indicating 
the effectiveness of our ensemble approach. This 
research provides a valuable step towards devel-
oping more accessible and safer driving assistance 
systems for individuals with hearing impairments.

Introduction
Hearing impairment is a significant global health 
issue, with the World Health Organization (WHO) 
projecting that approximately 2.5 billion people 
will experience some degree of hearing loss by 
2050. This issue is compounded by the fact that 
many young adults are unaware of the risks asso-
ciated with unsafe listening practices [1]. Hear-
ing loss can have profound effects on individuals, 
leading to psychological distress, anxiety, and 
depression. The suicide rate among deaf or hard-
of-hearing adolescents aged 10 to 20 is reported 
to be twice as high as that of their hearing peers. 
Moreover, adults with hearing impairments often 
face considerable challenges in the workforce 
and daily life, struggling with issues of indepen-
dence and integration. Several research works 
and products have been developed to assist peo-
ple with such disability, including smart rings for 
sign language translation for example [2]. 

One of the most critical areas affected by hear-
ing loss is driving. Effective driving requires con-
stant situational awareness, including the ability 
to perceive auditory signals such as honks and 
emergency vehicle sirens. While individuals with 
hearing impairments may develop heightened 

visual acuity, they still face significant difficulties 
detecting and responding to these crucial audi-
tory cues. This can be particularly dangerous as it 
may lead to delayed reactions to important warn-
ings, increasing the risk of accidents [3]. 

Modern vehicles often feature sound-isolation 
technologies and entertainment systems that can 
further hinder sound detection. Distractions such 
as loud music and in-car conversations exacerbate 
the issue, making it even more challenging for 
hearing-impaired drivers to detect and respond 
to critical sounds. Studies have shown that such 
distractions contribute to an elevated risk of traffic 
accidents for drivers with hearing impairments [4]. 
The inability to hear emergency vehicle sirens or 
traffic signals can result in dangerous delays and 
even collisions, highlighting the urgent need for 
innovative solutions to enhance driving safety for 
these individuals. 

In response to these challenges, we propose 
an advanced sound recognition system based on 
the Internet of Things (IoT) to assist drivers with 
hearing impairments. Our system employs four 
sensors installed at the front and rear of the vehi-
cle to capture and analyze environmental sounds. 
Our approach classifies and interprets various 
vehicle sounds, including emergency sirens, 
horns, and engine noises with both Machine 
Learning (ML) and Deep Learning (DL) algorithms 
such as K-Nearest Neighbors (KNN), Adaptive 
Boost (AB), Extra Trees (ET), Random Forest (RF), 
and Convolutional Neural Network (CNN). We 
preprocess the audio data to extract 23 distinct 
features, which we then use to improve sound 
recognition accuracy and provide timely alerts to 
drivers through a visual display on the dashboard. 
To enhance the reliability and performance of our 
system, we employ an ensemble learning strat-
egy that combines the outputs of multiple mod-
els using Majority Voting (MV). This method not 
only improves classification performance but also 
increases robustness against varying environmen-
tal conditions. 

Our prototype for real-time experimentation 
includes a Raspberry Pi 4, microphones, and a 
3.5-inch screen. The system captures and pre-
processes environmental sounds, which are then 
classified based on a training dataset of 1500 
audio samples. The classification results are trans-
lated into text and displayed on the screen to 
assist hearing-impaired drivers by identifying and 
alerting them to surrounding noises. This study 
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extends our previous work in [5] on IoT-based 
sound recognition systems for drivers with hear-
ing impairments which only had a dataset of 600 
samples and 4 classes (ambulance, police cars, 
horns, and other sounds). 

This article makes several contributions to the 
field of sound recognition systems for drivers:
•	 We present an advanced system that inte-

grates multiple sensors and ML techniques 
to detect and classify critical vehicle sounds.

•	 Building upon our previous research, we 
have expanded the dataset with more sam-
ples including additional sound classes, such 
as fire trucks and engine noises, and per-
formed extensive experiments to refine the 
system’s performance.

•	 We employ an ensemble learning method 
that combines the outputs of KNN, AB, 
ET, RF, and CNN models through MV. This 
method enhances classification perfor-
mance, robustness, and security.

•	 A prototype system was developed using a 
Raspberry Pi 4. The system was evaluated with 
a dataset of 1500 audio samples, achieving 
a final classification accuracy of 94.2% and 
an average response time of 0.25 seconds, 
demonstrating its effectiveness in real-world 
scenarios and the possibility of implementing 
our approach in any microcontroller.
The remainder of this article is organized as fol-

lows. We review recent related work in the field. 
We detail the components and methodology of 
our proposed approach for converting detected 
sounds into visual messages on the dashboard. We 
present the experimental results and performance 
analysis of our system. We discuss the challenges 
encountered in practical implementation and their 
potential solutions. Finally, we offers concluding 
remarks and discusses future research directions.

Related Work
The intersection of auditory perception and 
vehicular safety has garnered increasing atten-
tion in recent years, particularly with the advent of 
advanced technologies such as ML and the IoT. 
This section reviews related research that informs 
and contextualizes our work in sound recognition 
systems for drivers with hearing impairments. 

Sound recognition has been extensively 
explored across various domains, including envi-
ronmental monitoring and safety systems. In the 
context of automotive applications, sound recogni-
tion systems are employed to enhance driver safety 
and convenience. Early work in sound classifica-
tion focused on using traditional signal-processing 
techniques. Suman et al. in [6] used acoustic signal 
processing to detect mechanical malfunctions in 
vehicles. They introduced a smart device that can 
be installed inside the vehicle, equipped with both 
a microphone and vibration sensors to capture 
relevant signals. The device employs a microcon-
troller to process these signals using a proposed 
algorithm that combines Kalman filtering and 
Mel-Frequency Cepstral Coefficients (MFCCs) to 
identify mechanical faults. The proposed Kalman 
adaptive filter enhances acoustic signals by reduc-
ing noise to detect faults in rotating equipment. 

More recent advances leverage ML and DL to 
achieve higher accuracy and robustness. Shabbir 
et al. in [7] determined that acoustic data anal-

ysis plays a crucial role in smart traffic manage-
ment systems, especially in distinguishing road 
noises and emergency vehicle sirens to enhance 
emergency response times and traffic flow. This 
study proposed using stacking ensemble DL tech-
niques to classify emergency vehicle sirens from 
background noises. The proposed model utilizes 
Multi-Layer Perceptron (MLP) and Deep Neural 
Network (DNN) as base learners, with a Long 
Short-Term Memory (LSTM) model serving as a 
meta-learner. The stacking ensemble achieved an 
accuracy of 99.12% and F1 scores around 98%. 
However, there were only two classes, and differ-
ent emergency vehicles were not distinguished. 

Usaid et al. in [8] applied MLP to detect the 
siren of an ambulance on the road. Their model 
achieved 90% detection accuracy with a dataset 
of only 300 files, but their model is limited to two 
classes: siren and noise. Islam et al. in[9] applied 
Extreme Learning Machines (ELM) for the detec-
tion of emergency vehicles. Their experimental 
results on a dataset of 2000 audio clips showed 
a detection accuracy of 97% during classifica-
tion into two categories: emergency vehicles and 
urban sounds. Cantarini et al. in [10] proposed 
an emergency siren detection system using a low 
computational complexity algorithm based on 
CNN, with Short-Time Fourier Transform (STFT) 
spectrograms as features, and a harmonic per-
cussive source separation technique to improve 
the accuracy of the classification. Jonnadula et 
al. in [11] compared different classification meth-
ods and features for emergency vehicle detec-
tion. They found that an Artificial Neural Network 
(ANN) with three hidden layers presents higher 
accuracy compared to one layer. They used Goo-
gle Audio Dataset with noises like people talking 
and horns in their experiments. 

Otoom et al. in [12] propose an assisting 
device to help deaf drivers receive GPS directions 
using voice recognition and speech-to-vibration. 
The spirit of their work is like ours. They map 
each voice navigation to a vibrotactile stimulus 
(vibrator motors) mounted on a bracelet, where 
the vibrations are translated by deaf drivers into 6 
instructions. They extract 13 features from audible 
signals and classify them into one of six classes 
(turn left, turn right, slight right, slight left, straight, 
and silence) using ML algorithms. They compare 
the accuracy of Naïve Bayes (NB), KNN, Support 
Vector Machine (SVM), and RF. They found that 
KNN with K = 1 outperforms the five others. 

Gourisaria et al. in [13] emphasized the supe-
rior potential of DL models for sound classifica-
tion in diverse contexts such as on the road, at 
home, or in parks. It leveraged algorithms such as 
MFCCs and STFT to manage and analyze audio 
data. The study demonstrated that DL models, 
particularly ANN, exhibit remarkable efficiency 
and accuracy in classifying audio signals, outper-
forming other models with an accuracy of 91.41% 
and 91.27% on different datasets. This work 
highlights the effectiveness of DL techniques in 
handling complex and noisy audio environments, 
in comparison to traditional ML models such as 
SVM, Decision Tree (DT), RF, and KNN. 

In particular, CNN classifiers have been priv-
ileged for the recognition of sounds as they 
achieve better accuracy. Nithya et al. in [14] pre-
sented a sophisticated approach to vehicle sound 
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identification and classification, focusing on emer-
gency vehicles. A key highlight of the article is the 
introduction of a Triangular Bluestein (TB) MFCCs 
multifuse feature, which combines advanced 
techniques in data augmentation and feature 
extraction to enhance model performance. This 
involves augmenting the audio data through 
noise injection, stretching, shifting, and pitching to 
increase dataset diversity and combat overfitting. 
The study employs a Multi-stacked CNN (MCNN) 
integrated with an Attention-based Bidirectional 
LSTM (A-BiLSTM) network, thus improving pre-
diction accuracy. The results show that this com-
bined approach achieves a classification accuracy 
of 98.66%, demonstrating CNN’s potential for 
precise sound classification. 

Shams et al. in [15] introduced a DL model 
called the Self-Attention Layer within a Convo-
lutional Neural Network (SACNN), designed for 
detecting acoustic data in extensive datasets con-
taining emergency vehicle sirens and road noise. 
The dataset includes 3-second audio files cate-
gorized into three classes: fire truck, ambulance, 
and traffic sounds, with 200 sound files and corre-
sponding spectrogram images per class. SACNN 
combines EfficientNet and One-Dimensional 
CNN (1D-CNN) to enhance detection accuracy 
and efficiency. Experimental results demonstrated 
that SACNN achieved a perfect accuracy, surpass-
ing the performance of EfficientNet, which had an 
accuracy of 94.16%, and CNN, which achieved 
96.66%. SACNN also shows the highest computa-
tional efficiency with an average of 0.21 seconds 
per sample. These findings highlight the superior 
capabilities of CNN-based models in sound clas-
sification tasks and their potential for real-time 
acoustic data detection systems. 

A review of the existing literature reveals that 
most research in the field focuses on detecting 
general categories of emergency vehicles, with-
out distinguishing between specific types, such as 

police cars, ambulances, and fire trucks. In con-
trast, our research aims to provide a more granular 
classification by differentiating among these types 
of emergency vehicles and additional classes such 
as engine sounds, horns, and other road noises. 
Additionally, many of these studies focus primarily 
on algorithmic development and do not extend 
to real-world application and testing. Our work 
addresses this gap by implementing a practical IoT-
based system using a Raspberry Pi for real-time 
experiments. This approach not only demonstrates 
the feasibility of deploying such systems but also 
provides valuable insights into the system’s perfor-
mance and reliability in real-world scenarios.

Proposed Approach
To address the challenges faced by hearing-im-
paired drivers, we propose an advanced IoT-
based sound recognition system that enhances 
situational awareness by detecting and interpret-
ing critical vehicle sounds. Our approach, illus-
trated in Fig. 1, involves several key components: 
sensor deployment, audio data preprocessing, 
feature extraction, model training, and ensemble 
learning. The system is designed to provide time-
ly visual alerts of important auditory cues, such 
as emergency sirens, horns, and engine noises, 
through a dashboard display. 

As shown in Fig. 2, the system consists of four 
sensors installed on the vehicle, 2 in the front and 
2 in the back to capture ambient audio signals 
and their directions to draw the attention of the 
driver. These sensors are connected to a central 
processing unit, which preprocesses the audio 
data before classification. Preprocessing includes 
noise reduction to eliminate background interfer-
ence and normalization to standardize the audio 
signals, ensuring consistency for accurate feature 
extraction and classification.

In our sound recognition system, feature 
extraction is a crucial step that transforms raw 
audio data into a structured form suitable for ML 
models. To enhance classification efficiency and 
ensure comprehensive sound capture, we split 
each audio file into segments of 0.5 seconds, 
with an overlap of 0.1 seconds between consec-
utive segments. This segmentation approach helps 
ensure that the system captures complete sounds, 
allowing for more precise classification. By pro-
cessing these smaller audio segments, we optimize 
the model’s performance and improve response 
speed, which is vital for timely alerts to the driver. 
This approach also enhances the system’s abili-
ty to process data safely and swiftly, leading to a 
more efficient sound recognition process.

From each audio segment, we extract 23 dis-
tinct features to capture its essential character-
istics. These features include the Zero Crossing 
Rate (ZCR), Spectral Centroid (SC), Spectral Roll-
Off Point (SROP), and 20 MFCCs. Together, these 
features enable the differentiation between the six 
sound classes: Ambulance, Police Car, Fire Truck, 
Horn, Engine, and Other. This structured repre-
sentation of audio data ensures that our models 
can accurately classify each sound, leading to a 
reliable and effective sound recognition system 
for hearing-impaired drivers.

The ZCR is a time-domain feature that mea-
sures the rate at which the audio signal crosses 
the zero-amplitude line. It reflects the noisiness 

FIGURE 2. Sound recognition system overview.

noisy audio environments, in comparison to traditional ML
models such as SVM, Decision Tree (DT), RF, and KNN.

In particular, CNN classifiers have been privileged for the
recognition of sounds as they achieve better accuracy. Nithya
et al. in [14] presented a sophisticated approach to vehicle
sound identification and classification, focusing on emergency
vehicles. A key highlight of the paper is the introduction of
a Triangular Bluestein (TB) MFCCs multifuse feature, which
combines advanced techniques in data augmentation and fea-
ture extraction to enhance model performance. This involves
augmenting the audio data through noise injection, stretching,
shifting, and pitching to increase dataset diversity and combat
overfitting. The study employs a Multi-stacked CNN (MCNN)
integrated with an Attention-based Bidirectional LSTM (A-
BiLSTM) network, thus improving prediction accuracy. The
results show that this combined approach achieves a classi-
fication accuracy of 98.66%, demonstrating CNN’s potential
for precise sound classification.

Shams et al. in [15] introduced a DL model called the
Self-Attention Layer within a Convolutional Neural Network
(SACNN), designed for detecting acoustic data in extensive
datasets containing emergency vehicle sirens and road noise.
The dataset includes 3-second audio files categorized into
three classes: fire truck, ambulance, and traffic sounds, with
200 sound files and corresponding spectrogram images per
class. SACNN combines EfficientNet and One-Dimensional
CNN (1D-CNN) to enhance detection accuracy and efficiency.
Experimental results demonstrated that SACNN achieved a
perfect accuracy, surpassing the performance of EfficientNet,
which had an accuracy of 94.16%, and CNN, which achieved
96.66%. SACNN also shows the highest computational effi-
ciency with an average of 0.21 seconds per sample. These
findings highlight the superior capabilities of CNN-based
models in sound classification tasks and their potential for
real-time acoustic data detection systems.

A review of the existing literature reveals that most research
in the field focuses on detecting general categories of emer-
gency vehicles, without distinguishing between specific types,
such as police cars, ambulances, and fire trucks. In contrast,
our research aims to provide a more granular classification
by differentiating among these types of emergency vehicles
and additional classes such as engine sounds, horns, and
other road noises. Additionally, many of these studies focus
primarily on algorithmic development and do not extend to
real-world application and testing. Our work addresses this
gap by implementing a practical IoT-based system using a
Raspberry Pi for real-time experiments. This approach not only
demonstrates the feasibility of deploying such systems but also
provides valuable insights into the system’s performance and
reliability in real-world scenarios.

III. PROPOSED APPROACH

To address the challenges faced by hearing-impaired drivers,
we propose an advanced IoT-based sound recognition system
that enhances situational awareness by detecting and inter-
preting critical vehicle sounds. Our approach, illustrated in

Figure 1, involves several key components: sensor deployment,
audio data preprocessing, feature extraction, model training,
and ensemble learning. The system is designed to provide
timely visual alerts of important auditory cues, such as emer-
gency sirens, horns, and engine noises, through a dashboard
display.
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Fig. 1: Workflow from Audio Input to Sound Classification

As shown in Figure 2, the system consists of four sensors
installed on the vehicle, 2 in the front and 2 in the back to
capture ambient audio signals and their directions to draw
the attention of the driver. These sensors are connected to
a central processing unit, which preprocesses the audio data
before classification. Preprocessing includes noise reduction to
eliminate background interference and normalization to stan-
dardize the audio signals, ensuring consistency for accurate
feature extraction and classification.
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Dashboard
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In our sound recognition system, feature extraction is a
crucial step that transforms raw audio data into a structured
form suitable for ML models. To enhance classification effi-
ciency and ensure comprehensive sound capture, we split each
audio file into segments of 0.5 seconds, with an overlap of 0.1
seconds between consecutive segments. This segmentation ap-
proach helps ensure that the system captures complete sounds,
allowing for more precise classification. By processing these
smaller audio segments, we optimize the model’s performance
and improve response speed, which is vital for timely alerts
to the driver. This approach also enhances the system’s ability
to process data safely and swiftly, leading to a more efficient
sound recognition process.

From each audio segment, we extract 23 distinct features to
capture its essential characteristics. These features include the
Zero Crossing Rate (ZCR), Spectral Centroid (SC), Spectral
Roll-Off Point (SROP), and 20 MFCCs. Together, these fea-
tures enable the differentiation between the six sound classes:
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gap by implementing a practical IoT-based system using a
Raspberry Pi for real-time experiments. This approach not only
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reliability in real-world scenarios.

III. PROPOSED APPROACH

To address the challenges faced by hearing-impaired drivers,
we propose an advanced IoT-based sound recognition system
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preting critical vehicle sounds. Our approach, illustrated in

Figure 1, involves several key components: sensor deployment,
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timely visual alerts of important auditory cues, such as emer-
gency sirens, horns, and engine noises, through a dashboard
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As shown in Figure 2, the system consists of four sensors
installed on the vehicle, 2 in the front and 2 in the back to
capture ambient audio signals and their directions to draw
the attention of the driver. These sensors are connected to
a central processing unit, which preprocesses the audio data
before classification. Preprocessing includes noise reduction to
eliminate background interference and normalization to stan-
dardize the audio signals, ensuring consistency for accurate
feature extraction and classification.
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In our sound recognition system, feature extraction is a
crucial step that transforms raw audio data into a structured
form suitable for ML models. To enhance classification effi-
ciency and ensure comprehensive sound capture, we split each
audio file into segments of 0.5 seconds, with an overlap of 0.1
seconds between consecutive segments. This segmentation ap-
proach helps ensure that the system captures complete sounds,
allowing for more precise classification. By processing these
smaller audio segments, we optimize the model’s performance
and improve response speed, which is vital for timely alerts
to the driver. This approach also enhances the system’s ability
to process data safely and swiftly, leading to a more efficient
sound recognition process.

From each audio segment, we extract 23 distinct features to
capture its essential characteristics. These features include the
Zero Crossing Rate (ZCR), Spectral Centroid (SC), Spectral
Roll-Off Point (SROP), and 20 MFCCs. Together, these fea-
tures enable the differentiation between the six sound classes:
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and the frequency content of the signal. Sounds 
with more abrupt changes, such as horn sounds, 
typically exhibit a higher ZCR due to their sharp, 
transient nature. In contrast, ambulance and 
police sirens, which have smoother waveforms, 
tend to have a lower ZCR. 

SC is a frequency-domain feature that indicates 
the center of mass of the spectrum. It is associat-
ed with the perceived brightness or sharpness of a 
sound. Higher SC values suggest that the sound has 
a higher frequency content. For example, fire truck 
sirens, which often contain high-frequency com-
ponents, tend to have higher SC values. On the 
other hand, engine sounds, characterized by lower 
frequency content, usually exhibit lower SC values. 

Another key frequency-domain feature is the 
SROP. This feature defines the frequency below 
which a specified percentage of the total spectral 
energy is contained. SROP measures the right-
side asymmetry of a sound spectrum. It is used for 
example to distinguish sound from normal speech. 
It provides insights into the spectral shape and dis-
tribution of energy across frequencies. Sounds such 
as sirens often have higher SROP values, reflecting 
their broad frequency spectrum, whereas engine 
sounds, which concentrate their energy in lower 
frequencies, show lower SROP values.

The MFCCs correspond to a sinusoidal trans-
formation of the power of a signal and capture 
the short-term power spectrum of a sound sig-
nal. They are derived from the Mel scale, which 
approximates the human ear’s nonlinear response 
to different frequencies. MFCCs are crucial for 
capturing the timbral texture of sounds. Each of 
the six sound classes has distinctive MFCC pat-
terns that reflect their unique acoustic properties. 
For instance, horn and siren sounds may display 
pronounced MFCC variations due to their har-
monic and tonal characteristics, while engine 
sounds often have more stable MFCC patterns 
due to their consistent frequency content. We 
used 20 MFCCs to derive the shape of the signal. 

Then, we classify the extracted features into 
distinct sound categories using several ML and 
DL models including KNN, AB, ET, RT, and CNN. 
Each model offers unique strengths and weak-
nesses, making them suitable for different aspects 
of the classification task. 

The KNN algorithm is a straightforward, 
instance-based learning method that classifies 
data into one of the target classes by looking at 
the values of the $k$ nearest neighbors in the 
feature space. KNN is particularly effective at cap-
turing local patterns and can be highly accurate 
when the feature space is well-defined. However, 
its performance may degrade with large datasets 
due to increased computational costs and sensitiv-
ity to irrelevant or redundant features. 

AB is an ensemble method that combines mul-
tiple weak classifiers to form a strong classifier. It 
assigns weights to misclassified instances, focusing 
on improving their classification in subsequent 
iterations. AB is robust to overfitting and can 
achieve high accuracy, but its performance may 
decline in the presence of noisy data, as it tends 
to focus heavily on difficult-to-classify instances. 

The ET classifier is an ensemble learning tech-
nique based on randomized decision trees. It 
builds multiple trees from random subsets of the 
data and features, which helps reduce variance 

and improves robustness. ETs are computationally 
efficient and offer good performance with large 
datasets, but they may require careful tuning to 
achieve optimal results. 

RF is another ensemble method that aggregates 
predictions from numerous decision trees, each 
built on a random subset of the data. It provides 
high accuracy and resilience to overfitting by aver-
aging the predictions of individual trees. Howev-
er, RF can be computationally expensive and may 
become unwieldy with very large datasets. 

Finally, the CNN is a DL model specifically 
designed to learn hierarchical features from raw 
data automatically. CNNs are highly effective 
at capturing complex patterns in sound signals, 
making them ideal for sound classification tasks. 
They can generalize well with large amounts of 
training data but require significant computational 
resources and careful design to prevent overfit-
ting. The CNN classification can be divided into 
two main parts: feature learning and classification. 
In the first part, a series of convolutional layers 
learn appropriate representations by extracting 
useful features from the input. In the second part, 
the fully connected layers act as a classifier, which 
processes the extracted features and assigns prob-
abilities to each class for prediction. 

To optimize both the accuracy and robustness 
of sound classification, we employ an ensemble 
learning strategy. This approach combines the 
outputs of our five models using a MV mecha-
nism. By integrating these models, ensemble 
learning capitalizes on their strengths and miti-
gates their weaknesses, resulting in a system that 
performs better than any single model. 

The core advantage of ensemble learning lies 
in its ability to aggregate predictions from multiple 
models, thereby achieving higher accuracy. Each 
model in the ensemble brings a unique perspec-
tive to the classification task. For instance, while 
decision tree-based models like RF and ET excel 
at capturing complex decision boundaries, KNN is 
adept at recognizing local patterns in the feature 
space. AB, with its focus on misclassified instanc-
es, contributes to refining the decision-making 
process. Meanwhile, CNNs offer DL capabilities 
and are adept at identifying intricate patterns in 
the audio signals. 

This diversity in model approaches enhanc-
es the ensemble’s ability to generalize to new, 
unseen data. By pooling the predictions, the 
ensemble reduces the variance associated with 
individual models, leading to a more stable and 
reliable system. It also diminishes the impact of 
noisy or outlier data points, as different models 
may react differently to such anomalies, allowing 
the ensemble to provide a consensus decision 
that is less likely to be swayed by errors present in 
any one model. 

In addition to improved accuracy and robust-
ness, ensemble learning provides increased resil-
ience to overfitting. While single models might 
tailor their learning too closely to the training data, 
the ensemble’s diverse perspectives help balance 
this tendency, ensuring that the final model retains 
its effectiveness across different datasets. 

Moreover, the ensemble approach enhances 
the system’s security against adversarial attacks. 
Manipulating a single model to produce erroneous 
results can be challenging, but deceiving multiple 

The core advantage 
of ensemble learning 

lies in its ability to 
aggregate predictions 
from multiple mod-
els, thereby achiev-
ing higher accuracy. 
Each model in the 
ensemble brings a 
unique perspective 
to the classification 

task. 
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models simultaneously is significantly more com-
plex. This makes the ensemble more robust against 
potential threats, ensuring that it maintains high 
performance even in adversarial environments. 

The use of ensemble learning in our system is 
a strategic choice that balances the need for high 
classification accuracy, robustness to data varia-
tions, and resilience to external manipulations. By 
integrating the strengths of diverse models, our 
ensemble offers a comprehensive solution that 
signifi cantly enhances the reliability of sound rec-
ognition for hearing-impaired drivers. 

To demonstrate the feasibility and eff ectiveness 
of our approach, we developed a prototype system 
using a Raspberry Pi 4, high-sensitivity microphones, 
and a 3.5-inch screen. As depicted in Fig. 3, the 
Raspberry Pi serves as the central processing unit, 
responsible for capturing audio signals, perform-
ing feature extraction, and executing the ensemble 
model for classifi cation. Once the sounds are classi-
fi ed, the results are displayed as text on the screen, 
providing clear and timely visual alerts to the driver 
about the surrounding environment.

eXPerIMentAl results
This section presents the experimental evalua-
tion of our IoT-based sound recognition system 
designed to assist drivers. We evaluated the sys-
tem using a dataset that we developed ourselves, 
consisting of 1500 audio samples across six dis-
tinct classes: Ambulance, Police Car, Fire Truck, 
Horn, Engine, and Other. As explained earlier, 
each audio file was segmented into 0.5-second 
clips with an overlap of 0.1 seconds. We includ-
ed external noise, such as rain and lightning, in 
the audio samples to enhance the dataset’s real-
ism and robustness. From these clips, we then 
extracted 23 features. The dataset was carefully 
balanced to ensure that each class was equally 
represented, which helped mitigate potential bias 
across diff erent models. 

The data normalization process involves scal-
ing the spectrograms to ensure that the model 
receives inputs in a standardized range. The input 

data (spectrograms) is normalized by dividing the 
values by the amplitude range to scale the data 
between 0 and 1. This normalization step helps to 
reduce the eff ect of varying audio signal intensi-
ties and ensures stable training. The dataset is split 
into 80% training data and 20% test data, and this 
ensures that 80% of the data is used for training 
and 20% for testing the model’s performance.

To assess the performance of our sound rec-
ognition models, we employed several key met-
rics: accuracy, precision, recall, F1 score, and the 
Area Under the Receiver Operating Characteristic 
Curve (AUC-ROC). These metrics provide a com-
prehensive evaluation of the models’ ability to 
classify sounds accurately. Additionally, we ana-
lyzed the computational effi  ciency of each model 
by recording training times and the duration for a 
single prediction. 

The CNN architecture used in this model con-
sists of several layers designed to extract features 
from audio data. It includes three convolutional 
layers, each followed by max-pooling layers for 
downsampling the feature maps. The convolu-
tional layers utilize ReLU activation functions to 
introduce non-linearity. The model incorporates 
dropout layers (with a dropout rate of 0.3) after 
the second pooling layer and before the fully con-
nected layers to prevent overfi tting. There are no 
batch normalization layers used in this architec-
ture. The fully connected layers consist of 64 and 
32 neurons, also employing ReLU activations, and 
the final output layer has 4 neurons with a soft-
max activation for multi-class classification. This 
setup is designed to effi  ciently process audio spec-
trograms and classify them into one of 6 classes.

The CNN model is trained using the Adam 
optimizer, which is chosen for its adaptive learning 
rate and efficiency in handling sparse gradients. 
The loss function used is categorical crossentropy, 
appropriate for multi-class classifi cation tasks. The 
model is trained for 50 epochs with a validation 
set to monitor performance during training. The 
batch size is set to 32 to ensure gradient updates 
and avoid overfi tting. 

Table 1 provides a summary of the perfor-
mance metrics for each model to reveal the 
impact of CNN feature extraction on traditional 
ML models. RF particularly outperforming other 
models. While CNN demonstrates strong classi-
fi cation performance with an accuracy of 92.2% 
and the highest AUC of 97%, the inclusion of its 
features into RF boosts RF’s accuracy to 92.6% 
and its AUC to 95%, narrowing the gap between 
the two models. This enhancement highlights the 
eff ectiveness of integrating DL features with tradi-
tional algorithms. 

The RF model demonstrates a more efficient 
trade-off  in computational time, requiring signifi -
cantly less training time (5.00 seconds) compared 
to CNN’s 106.21 seconds. This indicates that RF, 
combined with CNN features, is a viable alter-
native for applications requiring near-CNN-level 
performance but with constraints on training com-
putational resources. 

The ensemble model, combining the fi ve mod-
els into a majority vote, outperformed all individ-
ual models, achieving an accuracy of 94.2%. The 
ensemble approach harnesses the strengths of all 
five models, resulting in enhanced classification 
performance and robustness. The precision, recall, 

FIGURE 3. Sound processing and classification on 
Raspberry Pi.

any one model.
In addition to improved accuracy and robustness, ensemble

learning provides increased resilience to overfitting. While sin-
gle models might tailor their learning too closely to the training
data, the ensemble’s diverse perspectives help balance this
tendency, ensuring that the final model retains its effectiveness
across different datasets.

Moreover, the ensemble approach enhances the system’s se-
curity against adversarial attacks. Manipulating a single model
to produce erroneous results can be challenging, but deceiving
multiple models simultaneously is significantly more complex.
This makes the ensemble more robust against potential threats,
ensuring that it maintains high performance even in adversarial
environments.

The use of ensemble learning in our system is a strategic
choice that balances the need for high classification accuracy,
robustness to data variations, and resilience to external manip-
ulations. By integrating the strengths of diverse models, our
ensemble offers a comprehensive solution that significantly
enhances the reliability of sound recognition for hearing-
impaired drivers.

To demonstrate the feasibility and effectiveness of our
approach, we developed a prototype system using a Raspberry
Pi 4, high-sensitivity microphones, and a 3.5-inch screen.
As depicted in Figure 3, the Raspberry Pi serves as the
central processing unit, responsible for capturing audio signals,
performing feature extraction, and executing the ensemble
model for classification. Once the sounds are classified, the
results are displayed as text on the screen, providing clear
and timely visual alerts to the driver about the surrounding
environment.
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Fig. 3: Sound Processing and Classification on Raspberry Pi

IV. EXPERIMENTAL RESULTS

This section presents the experimental evaluation of our
IoT-based sound recognition system designed to assist drivers.
We evaluated the system using a dataset that we developed
ourselves, consisting of 1500 audio samples across six distinct
classes: Ambulance, Police Car, Fire Truck, Horn, Engine, and
Other. As explained earlier, each audio file was segmented into
0.5-second clips with an overlap of 0.1 seconds. We included
external noise, such as rain and lightning, in the audio samples
to enhance the dataset’s realism and robustness. From these
clips, we then extracted 23 features. The dataset was carefully
balanced to ensure that each class was equally represented,
which helped mitigate potential bias across different models.

The data normalization process involves scaling the spec-
trograms to ensure that the model receives inputs in a stan-
dardized range. The input data (spectrograms) is normalized

by dividing the values by the amplitude range to scale the data
between 0 and 1. This normalization step helps to reduce the
effect of varying audio signal intensities and ensures stable
training. The dataset is split into 80% training data and 20%
test data, and this ensures that 80% of the data is used for
training and 20% for testing the model’s performance.

To assess the performance of our sound recognition mod-
els, we employed several key metrics: accuracy, precision,
recall, F1 score, and the Area Under the Receiver Operating
Characteristic Curve (AUC-ROC). These metrics provide a
comprehensive evaluation of the models’ ability to classify
sounds accurately. Additionally, we analyzed the computa-
tional efficiency of each model by recording training times
and the duration for a single prediction.

The CNN architecture used in this model consists of sev-
eral layers designed to extract features from audio data. It
includes three convolutional layers, each followed by max-
pooling layers for downsampling the feature maps. The con-
volutional layers utilize ReLU activation functions to introduce
non-linearity. The model incorporates dropout layers (with a
dropout rate of 0.3) after the second pooling layer and before
the fully connected layers to prevent overfitting. There are no
batch normalization layers used in this architecture. The fully
connected layers consist of 64 and 32 neurons, also employing
ReLU activations, and the final output layer has 4 neurons with
a softmax activation for multi-class classification. This setup is
designed to efficiently process audio spectrograms and classify
them into one of 6 classes.

The CNN model is trained using the Adam optimizer,
which is chosen for its adaptive learning rate and efficiency in
handling sparse gradients. The loss function used is categorical
crossentropy, appropriate for multi-class classification tasks.
The model is trained for 50 epochs with a validation set to
monitor performance during training. The batch size is set to
32 to ensure gradient updates and avoid overfitting.

TABLE I: Performance Metrics After Feature Extraction
from CNN

Model Acc Pre Rec F1 AUC Time Taken

Train1 Test2

KNN 0.868 0.876 0.868 0.867 0.88 0.01 29.50

AB 0.916 0.912 0.916 0.902 0.93 5.80 30.40

ET 0.912 0.894 0.912 0.899 0.92 3.50 18.10

RF 0.926 0.920 0.926 0.913 0.95 5.00 26.50

CNN 0.922 0.926 0.922 0.922 0.97 106.21 208.14

MV 0.942 0.971 0.971 0.971 0.99 106.21 208.14
1 In seconds.
2 Time for a single prediction. In microseconds.

Table I provides a summary of the performance metrics for
each model to reveal the impact of CNN feature extraction on
traditional ML models. RF particularly outperforming other
models. While CNN demonstrates strong classification per-
formance with an accuracy of 92.2% and the highest AUC of

TABLE 1. Performance metrics after feature extraction from cnn.

Model Acc Pre Rec F1 AUC
Time Taken

Train1 Test2

KNN 0.868 0.876 0.868 0.867 0.88 0.01 29.50

AB 0.916 0.912 0.916 0.902 0.93 5.80 30.40

ET 0.912 0.894 0.912 0.899 0.92 3.50 18.10

RF 0.926 0.920 0.926 0.913 0.95 5.00 26.50

CNN 0.922 0.926 0.922 0.922 0.97 106.21 208.14

MV 0.942 0.971 0.971 0.971 0.99 106.21 208.14

1 In seconds.
2 Time for a single prediction. In microseconds.
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and F1 scores for the ensemble were all 97.1%, 
while the AUC was an impressive 0.99. This indi-
cates that the ensemble model provides excellent 
discrimination between the sound classes.

In the ensemble voting mechanism, all mod-
els train and make predictions simultaneously. 
As a result, the training and testing times for the 
ensemble model match those of the CNN model 
which is the longest of the individual models. This 
simultaneous execution ensures that the benefi ts 
of the ensemble approach are achieved without 
a signifi cant increase in computational overhead 
beyond the most complex component model. 

Figure 4 shows the comparison between the 
training and validation loss over the epochs for the 
MV model, highlighting how the ensemble meth-
od performs during training. In Fig. 5, the training 
and validation accuracy curves demonstrate how 
the MV model’s performance improves as it inte-
grates the predictions from the five algorithms, 
offering a robust classification approach. These 
plots offer a clear visualization of the MV mod-
el’s learning behavior and its ability to generalize 
eff ectively to new, unseen data by exploiting the 
strengths of each individual algorithm.

The ROC curves presented in Fig. 6 highlight 
the trade-off between sensitivity and specificity, 
providing insight into the MV model in diagnostic 
abilities. In addition to the individual ROC curves, 
we plotted the micro and macro ROC curves, 
which off er aggregated views of the model’s per-
formance across all classes. The micro-average 
ROC curve is calculated by aggregating the con-
tributions of all classes to compute the average 
metric, effectively treating each element of the 
confusion matrix equally. This approach provides 
an overall sense of performance by considering 
each instance independently. Conversely, the 
macro-average ROC curve computes the metric 
independently for each class and then takes the 
average, treating all classes equally, regardless of 
their records in the dataset.

In our results, the micro and macro ROC 
curves are almost identical, which is expected 
due to the balanced nature of the dataset. This 
indicates that each class contributes equally to 
the overall performance, reflecting the system’s 
balanced and unbiased classifi cation capability. As 
illustrated in Table 1, the ensemble learning model 
using MV surpasses the performance of all individ-
ual models, demonstrating its superior classifi ca-
tion capability. However, even these models are 
outperformed by the MV ensemble approach, it 
leverages the strengths of each model to achieve 
superior overall results. 

The experimental results demonstrate the effi  -
cacy of our proposed IoT-based sound recogni-
tion system for assisting hearing-impaired drivers. 
The ensemble learning model outperforms indi-
vidual models, providing high accuracy and 
robustness in classifi cation. The balanced dataset 
and effective feature extraction techniques con-
tribute signifi cantly to this performance, ensuring 
the system can reliably identify critical auditory 
signals in real time. 

The computational efficiency of the system, 
particularly the rapid prediction times, ensures 
that drivers receive timely alerts, which is crucial 
for maintaining safety on the road. Furthermore, 
the system’s robustness to variations and high 

resilience against adversarial conditions make it 
a viable solution for practical deployment. These 
results underscore the potential of integrating 
ML and DL techniques within IoT frameworks to 
enhance the safety and autonomy of hearing-im-
paired drivers.

chAllenges In PrActIcAl IMPleMentAtIon
This section addresses the key considerations for 
integrating the proposed sound recognition sys-
tem into vehicles.

Cost: The system leverages a Raspberry Pi 
platform, which is a relatively low-cost embedded 
computing solution. However, the system would 
still require additional components like micro-
phones, processing unit, display unit and housing. 
We recognize the need to balance affordabili-
ty with high-performance hardware and sensors 
to ensure accessibility for a wide range of users. 
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The micro-average 
ROC curve is calcu-
lated by aggregating 
the contributions of 
all classes to com-
pute the average 

metric, effectively 
treating each ele-

ment of the confu-
sion matrix equally. 
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Strategies to minimize the per-unit cost, such as 
volume purchasing or partnering with automotive 
suppliers, should be explored to make the system 
economically viable for widespread deployment.

Compatibility: The system should be designed 
with the goal of seamless integration into vehicle 
electrical and computing architectures. Compat-
ibility with common in-vehicle communication 
protocols (e.g., CAN bus, Ethernet) and data inter-
faces will be crucial. Modular designs that allow 
the noise classification module to be easily inte-
grated alongside existing audio/infotainment sys-
tems would facilitate widespread adoption. 

User Training: For the system to be effective, 
drivers and passengers will need to be trained 
on its capabilities and proper usage. This could 
involve educational materials, tutorials, and poten-
tially intuitive user interfaces that minimize the 
learning curve. Ensuring the system provides clear 
and actionable insights to the user will be import-
ant for driver adoption and acceptance. 

We recognize that conducting user testing 
with hearing-impaired individuals is vital for val-
idating the system’s effectiveness and usability. 
Such testing would allow us to gather insights on 
the clarity, responsiveness, and intuitiveness of the 
system’s alerts, as well as identify potential areas 
for improvement in real-world scenarios. Unfortu-
nately, due to time and resource constraints, this 
step was not conducted during the current phase 
of development. However, we plan to address 
this limitation in future work by conducting struc-
tured user testing sessions. These sessions will 
focus on evaluating the system’s usability, accessi-
bility, and perceived reliability through direct inter-
action with hearing-impaired individuals, along 
with qualitative feedback. 

Conclusion
In this article, we presented an IoT-based sound 
recognition system designed to assist drivers. Our 
approach leverages ML and DL techniques to 
identify various vehicle-related sounds. By imple-
menting a comprehensive feature extraction pro-
cess, which includes 23 distinct features from 
each audio sample, we ensured that our system 
effectively differentiates between six sound class-
es: Ambulance, Police Car, Fire Truck, Horn, 
Engine, and Other. To maximize classification 
accuracy and robustness, we employed ensemble 
learning, which combines the outputs of multiple 
models through a MV approach. This ensemble 
model harnesses the strengths of individual clas-
sifiers, such as KNN, AB, ET, RF, and CNN. The 
results demonstrate that the ensemble model out-
performs each model, achieving an impressive 
accuracy of 94.2%. 

Our dataset was custom-built to reflect real-
world conditions, consisting of 1500 audio 
samples. We included background noise in the 
samples to ensure that the system is robust and 
performs well in realistic driving environments. 
This attention to detail in dataset creation contrib-
utes significantly to the system’s overall effective-
ness and reliability. 

The system’s real-time capability was validated 
through the development of a prototype utilizing 
a Raspberry Pi 4, microphones, and a 3.5-inch 
display. This setup enables the system to pro-
vide timely alerts to drivers by translating detect-

ed sounds into visual alerts on the dashboard, 
enhancing situational awareness and safety for 
hearing-impaired individuals. Moreover, our solu-
tion is not limited to assisting hearing-impaired 
drivers. It also benefits drivers who may be dis-
tracted by environmental noise, listening to loud 
music, or otherwise unfocused, thus broadening 
the scope of its applicability. 

While the proposed approach demonstrates 
competitive performance, several directions for 
future improvements have been identified. First, 
expanding the dataset with additional labeled 
samples across diverse environments and condi-
tions is crucial. This would enhance the general-
izability of the model and ensure its robustness in 
real-world scenarios. Real-world tests will also be 
conducted to evaluate the model’s performance 
under practical deployment conditions, such as 
varying background noise levels and device-spe-
cific audio distortions.

Moreover, incorporating more advanced deep 
learning architectures offers promising avenues for 
performance improvement. Architectures such as 
Transformer-based models (e.g., Audio Spectro-
gram Transformer) and Convolutional Recurrent 
Neural Networks (CRNN) could provide a better 
understanding of temporal dependencies and spa-
tial features in audio signals. These models, known 
for their ability to capture long-term dependencies 
and hierarchical feature representations, may out-
perform the current CNN-based framework.

In addition, integrating self-supervised learning 
techniques, which pretrain models on unlabeled 
audio data, could help mitigate the challenge of 
limited labeled data. Similarly, ensemble tech-
niques, such as stacking or boosting using neural 
networks, could be explored to further refine per-
formance metrics.

Finally, considering techniques such as atten-
tion mechanisms and fine-tuning pre-trained audio 
models (e.g., Wav2Vec, HuBERT) can provide a 
more nuanced approach to extracting features 
from complex audio datasets. These methodolo-
gies are expected to address current limitations 
and push the boundaries of audio classification 
accuracy in this domain.

References
[1] World Health Organization, “Deafness and Hearing Loss;” 

https://www.who.int/news-room/fact-sheets/detail/deaf-
ness-and-hearingloss, Feb. 2024, accessed: July 2024.

[2] D. Martin et al., “Fingerspeller: Camerafree Text Entry Using 
Smart Rings for American Sign Language Fingerspelling Rec-
ognition,” Proc. 25th Int’l. ACM SIGACCESS Conf. Comput-
ers and Accessibility, 2023, pp. 1–5.

[3] M. Mohammadiyan et al., “Association of Hearing Health 
with Traffic Accidents Among Heavy Vehicle Drivers,” Int’l. J. 
Environmental Health Engineering, vol. 12, no. 2, 2023, p. 6.

[4] S. Tokić, D. Sumpor, and M. Z. Zeba, “Degradation of the 
Performance of Road Vehicle Drivers Due to the Influence 
of Cabin Distractions,” Acta Technica Napocensis-Series: 
Applied Mathematics, Mechanics, and Engineering, vol. 65, 
no. 3S, 2023.

[5] O. Salem, A. Mehaoua, and R. Boutaba, “The Sight for Hear-
ing: An IoT-Based System to Assist Drivers with Hearing Dis-
ability,” 2023 IEEE Symp. Computers and Communications 
(ISCC), Los Alamitos, CA, USA: IEEE Computer Society, July 
2023, pp. 1305–10.

[6] A. Suman, C. Kumar, and P. Suman, “Early Detection of 
Mechanical Malfunctions in Vehicles Using Sound Signal 
Processing,” Applied Acoustics, vol. 188, 2022, p. 108578.

[7] A. Shabbir et al., “Smart City Traffic Management: Acous-
tic-Based Vehicle Detection Using Stacking-Based Ensemble 
Deep Learning Approach,” IEEE Access, 2024.

[8] M. Usaid et al., “Ambulance Siren Detection Using Artificial 
Intelligence in Urban Scenarios,” Univ. Research Jour. of Eng. 

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:38:49 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Internet of Things Magazine • July 2025 21

& Technology, vol. 12, no. 1, 2022, pp. 92–97.
[9] Z. Islam and M. Abdel-Aty, “Real-Time Emergency Vehi-

cle Event Detection Using Audio Data,” arXiv preprint 
arXiv:2202.01367, 2022.

[10] M. Cantarini et al., “Acoustic Features for Deep Learn-
ing-Based Models for Emergency Siren Detection: An Eval-
uation Study,” 12th Int’l. Symp. Image and Signal Processing 
and Analysis (ISPA), 2021, pp. 47–53.

[11] E. P. Jonnadula and P. M. Khilar, “Comparison of Various 
Techniques for Emergency Vehicle Detection Using Audio 
Processing,” Cloud Security, CRC Press, 2021, pp. 64–75.

[12] M. Otoom, M. A. Alzubaidi, and R. Aloufee, “Novel Navi-
gation Assistive Device for Deaf Drivers,” Assistive Technolo-
gy, vol. 34, no. 2, 2022, pp. 129–39.

[13] M. K. Gourisaria et al., “Comparative Analysis of Audio 
Classification with MFCC and STFT Features Using Machine 
Learning Techniques,” Discover Internet of Things, vol. 4, no. 
1, 2024, p. 1.

[14] T. Nithya et al., “TB-MFCC Multifuse Feature for Emergency 
Vehicle Sound Classification Using Multistacked Cnn–Atten-
tion BILSTM,” Biomedical Signal Processing and Control, vol. 
88, 2024, p. 105688.

[15] M. Y. Shams, T. Abd El-Hafeez, and E. Hassan, “Acoustic 
Data Detection in Large-Scale Emergency Vehicle Sirens 
and Road Noise Dataset,” Expert Systems with Applications, 
vol. 249, 2024, p. 123608.

Biographies
Osman Salem (osman.salem@u-paris.fr) received the M.Sc. and 
Ph.D. degrees in Computer Science from Paul Sabatier Uni-
versity, Toulouse, France, in 2002 and 2006, respectively, and 
the Habilitation à Diriger des Recherches (HDR) degree from 
Université Paris Cité, France, in 2016. Since September 2008, he 
has been an Associate Professor at Université Paris Cité, France. 
He has extensive expertise in cybersecurity, particularly in the 
domains of secure communication protocols, threat analysis, 

and anomaly detection. His research focuses on addressing 
challenges in security and anomaly detection within medical 
wireless body area networks, ensuring data privacy and reli-
ability in critical healthcare applications. He has actively partic-
ipated in several research projects involving cybersecurity and 
privacy in Internet of Things (IoT) environments. These projects 
often integrate interdisciplinary approaches, leveraging artificial 
intelligence and machine learning techniques for detecting and 
mitigating emerging threats.

Ahmed Mehaoua (ahmed.mehaoua@u-paris.fr) received the 
M.Sc. and Ph.D. degrees in computer science from the Universi-
ty of Paris, France, in 1993 and 1997, respectively. He is current-
ly a Full Professor of computer networking at University of Paris, 
and the Head of the Artificial Intelligence for Data Science and 
Cybersecurity Group at the CNRS BORELLI Research Center, 
a governmental mathematics and computer science research 
center in Paris, France. His research interests include security 
and resource management in wireless medical sensor networks, 
wireless body area networks design and optimization, and quali-
ty of service management in IP multimedia networks.

Raouf Boutaba [F] (rboutaba@cs.uwaterloo.ca) received the 
M.Sc. and Ph.D. degrees in computer science from Sorbonne 
University in 1990 and 1994, respectively. He is currently a 
University Professor and the Director of the David R. Cheriton 
School of Computer science at the University of Waterloo (Can-
ada). He also holds a University Research Chair at Waterloo and 
the Rogers Chair in Network Automation. His research interests 
fall in the areas of computer networking and distributed systems. 
Dr. Boutaba served as the founding Editor-in-Chief of the IEEE 
Transactions on Network and Service Management (2007–2010) 
and the Editor-in-Chief of the IEEE Journal on Selected Areas in 
Communications (2018–2021). He is a fellow of the Engineering 
Institute of Canada, the Canadian Academy of Engineering, and 
the Royal Society of Canada.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:38:49 UTC from IEEE Xplore.  Restrictions apply. 


