
4448 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

MicroOpt: Model-Driven Slice Resource
Optimization in 5G and Beyond Networks

Muhammad Sulaiman , Graduate Student Member, IEEE, Mahdieh Ahmadi, Bo Sun ,
Mohammad A. Salahuddin , Member, IEEE, Raouf Boutaba , Fellow, IEEE, and Aladdin Saleh

Abstract—A pivotal attribute of 5G networks is their capability
to cater to diverse application requirements. This is achieved
by creating logically isolated virtual networks, or slices, with
distinct service level agreements (SLAs) tailored to specific
use cases. However, efficiently allocating resources to maintain
slice SLA is challenging due to varying traffic and quality-
of-service (QoS) requirements. Traditional peak traffic-based
resource allocation leads to over-provisioning, as actual traffic
rarely peaks. Additionally, the complex relationship between
resource allocation and QoS in end-to-end slices spanning
different network segments makes conventional optimization
techniques impractical. Existing approaches in this domain
use mathematical network models (e.g., queueing models) or
simulations, and various optimization methods but struggle with
optimality, tractability, and generalizability across different slice
types. In this paper, we propose MicroOpt, a novel framework
that leverages a differentiable neural network-based slice model
with gradient descent for resource optimization and Lagrangian
decomposition for QoS constraint satisfaction. We evaluate
MicroOpt against two state-of-the-art approaches using an open-
source 5G testbed with real-world traffic traces. Our results
demonstrate up to 21.9% improvement in resource allocation
compared to these approaches across various scenarios, including
different QoS thresholds and dynamic slice traffic.

Index Terms—5G, network slicing, dynamic resource scaling,
machine learning, quality of service.

I. INTRODUCTION

NETWORK slicing (cf., Section II-A) empowers 5G
networks to accommodate applications and services with

diverse Quality of Service (QoS) requirements [1]. However,
network slicing also brings forth the challenge of effectively
managing resources in a complex and dynamic environment.
Each slice is associated with a service level agreement (SLA)
specifying the peak traffic and minimum QoS requirements

Received 15 August 2024; revised 20 February 2025 and 21 May 2025;
accepted 17 June 2025. Date of publication 30 June 2025; date of current
version 7 October 2025. This work was supported in part by Rogers
Communications Canada Inc. and in part by a Mitacs Accelerate Grant. The
associate editor coordinating the review of this article and approving it for
publication was D. Pezaros. (Corresponding author: Mohammad Salahuddin.)

Muhammad Sulaiman, Bo Sun, Mohammad A. Salahuddin,
and Raouf Boutaba are with the David R. Cheriton School of
Computer Science, University of Waterloo, Waterloo, ON N2L
3G1, Canada (e-mail: m4sulaim@uwaterloo.ca; b24sun@uwaterloo.ca;
mohammad.salahuddin@uwaterloo.ca; rboutaba@uwaterloo.ca).

Mahdieh Ahmadi is with Ericsson R&D, Ottawa, ON L4W 5K4, Canada
(e-mail: mahdieh.ahmadi@ericsson.com).

Aladdin Saleh is with the Technology Partnerships and Innovations,
Rogers Communications Canada Inc., Toronto, ON M4W 1G9, Canada (e-
mail: aladdin.saleh@rci.rogers.com).

Digital Object Identifier 10.1109/TNSM.2025.3584257

of slice users (i.e., slice tenants). To ensure QoS, the InP
can allocate isolated resources to each slice based on its
peak traffic. However, this approach often leads to over-
provisioning as the actual slice traffic may exhibit fluctuations
over time and rarely reach its peak [2], resulting in the under-
utilization of resources. Moreover, SLAs can be dynamic
and subject to change based on various factors, including
the number of users, slice location, and time of day. For
example, a smart healthcare application requires a URLLC
slice with full isolation and extremely low latency during
surgery [3], [4] which can be adjusted post-surgery to align
with updated service expectations. This highlights the need
for a more adaptable approach to resource management that is
capable of accommodating changes in traffic patterns and SLA
requirements. To achieve this, the InP needs to maintain QoS
degradation under a specific threshold by predicting future
traffic patterns and dynamically allocating resources. This
problem is known as predictive resource allocation or dynamic
resource scaling (DRS) of network slices.

To achieve efficient resource utilization while meeting
SLA commitments, it is crucial to carefully examine the
relationship between resource allocations and QoS metrics.
However, QoS metrics for an end-to-end slice, such as
throughput, latency, and reliability, rely on various resource
types across multiple network segments, including the Radio
Access Network (RAN), transport network, and core network
(cf., Section II-A). Traditional network models such as queues,
often fail to capture these complexities accurately, especially
considering the highly dynamic and mobile nature of 5G
networks [5]. This adds to the complexity of DRS.

Existing approaches for resource scaling typically involve
traffic forecasting [6] for a given slice, followed by utiliz-
ing simulations [5], [7] or Machine Learning (ML) [8] to
learn the network model and determine the optimal resource
allocation. Simulation-based methods, such as using packet-
level simulators (e.g., ns-3) [7] or queue-based simulators [5],
are computationally expensive [9], and may not accurately
represent the network. Additionally, some of these works
assume the slice traffic to be constant [7].

ML-based approaches model the entire network as a single
entity using a neural network and have shown promising
performance [9]. However, existing works that follow this
approach [8], [10] for dynamic resource scaling suffer from
several issues. Reference [8] adopts a simple regression-based
model, which fails to capture the complexities of an end-to-
end network. Furthermore, due to the lack of a differentiable

1932-4537 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0003-1586-8160
https://orcid.org/0000-0003-3172-7811
https://orcid.org/0000-0002-5431-3278
https://orcid.org/0000-0001-7936-6862

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4449

network model in these works, they cannot take advantage
of efficient gradient-based optimization techniques. Instead,
they are constrained to employ an inefficient optimization
method such as constrained Reinforcement Learning (RL), or
Bayesian Optimization which yield sub-optimal results. On the
other hand, complete model-free approaches that aim to learn
resource allocation directly in an online fashion can impact
SLAs and require longer training times [11].

In this paper, we introduce MicroOpt, a novel framework
that combines the power of ML with continuous optimization
for dynamic resource scaling of network slices. Our proposed
approach leverages a neural network to estimate QoS met-
rics and incorporates optimization techniques for efficiently
scaling slice resources. By employing the reparameterization
trick [12], which is a commonly used technique in probabilistic
Deep Learning (DL) models, we can iteratively refine slice
resource allocation to minimize resource usage while meet-
ing SLA requirements. The reparameterization trick ensures
the differentiability of the slice model, enabling continuous
optimization through gradient descent. The major contribu-
tions of this work are as follows:

• We introduce MicroOpt, a novel framework for dynamic
resource scaling of 5G slices that can accommodate
time-varying traffic, dynamic QoS and QoS degradation
thresholds, without the need for retraining. In MicroOpt,
we first propose a deep neural network (DNN)-based
model of 5G slices, utilizing the reparameterization trick
to compute the gradients of QoS degradation constraints
with respect to resource allocations. With these gradients,
we further design a primal-dual optimization algorithm
that leverages the differentiability of the slice model to
enable efficient resource allocation optimization using
gradient descent. This algorithm employs an inner loop
that leverages a relaxed differentiable Lagrangian func-
tion for optimizing resource allocation, whereas, in the
outer loop, strict definitions are utilized to enforce QoS
degradation constraints.

• We compare MicroOpt against two state-of-the-art base-
lines and their variants: Atlas [7] and Altas+ that are
based on Bayesian Optimization (BO); and CaDRL [13]
and CaDRL+ that are constrained RL algorithms. By
extensive simulations using real-world data traces, we
demonstrate that MicroOpt can significantly reduce the
mean resource allocation (up to 21.9%) while provid-
ing QoS guarantees through dynamic resource scaling.
Furthermore, we evaluate the convergence properties of
the different approaches, and perform an ablation study
to demonstrate the necessity of modeling QoS as a
distribution rather than scalar values to satisfy QoS
requirements.

• We validate the MicroOpt’s performance using a 5G
testbed, with real-world traffic traces for multiple QoS,
and QoS degradation thresholds. We also evaluate
MicroOpt’s generalization to different QoS and traffic
types. Additionally, we make the generated datasets
publicly available.

The structure of the paper is as follows: We start by briefly
introducing network slicing and its enablers in Section II-A.

In Section II, we provide a comprehensive review of related
works encompassing both network modeling and resource
allocation. Section III formally defines the problem, while
Section IV presents our proposed solution. Section V details
our testbed and evaluation setup, and Section VI presents the
evaluation results. We conclude in Section VII and investigate
future research directions.

II. BACKGROUND AND RELATED WORKS

A. Network Slicing

Network slicing refers to the creation of isolated vir-
tual networks over a shared physical infrastructure, tailored
to the specific needs of different services [1]. For exam-
ple, enhanced mobile broadband (eMBB) slices cater
to high-throughput applications like 4K video streaming,
while ultra-reliable low-latency communication (URLLC)
slices support latency-sensitive applications such as remote
surgery [14], [15]. Key enablers of network slicing include
Network Function Virtualization (NFV) and Software-defined
Networking (SDN) [16], which decouple network functions
from hardware and enable flexible, on-demand service provi-
sioning.

In a 5G network, slicing spans each network segment i.e.,
the Radio Access Network (RAN), Transport Network (TN),
and Core Network (CN). RAN slicing utilizes slice-aware
resource scheduling and dynamic functional splits between
Centralized (CU) and Distributed Units (DU) to meet latency
and throughput requirements. Core network slicing [16], as
standardized by 3GPP, introduces the network functions such
as the Network Slice Selection Function (NSSF) to allocate
UEs to appropriate slices based on their service requirements.
Transport network slicing [17], as defined by the IETF,
involves fine-grained bandwidth allocation at the edge, and
coarse-grained resource control, using mechanisms such as
DiffServ, MPLS, and Segment Routing within the transit nodes
to ensure QoS compliance across end-to-end network slices.

B. Dynamic Resource Allocation

Predictive slice resource allocation is the process of allo-
cating resources in anticipation of future user demand. This
approach can assist in maintaining SLAs with minimum over-
provisioning, even when demand spikes. The quintessential
components of predictive resource allocation include: (i)
Traffic prediction for proactive resource management, (ii) A
slice model for estimating QoS based on allocated resources,
and (iii) An optimization approach that integrates traffic
prediction and the slice model to determine the optimal
resource allocation.

A naive approach in any of these can lead to a sub-
optimal solution, and in the following sub-sections we discuss
the current literature in the context of these modules. It
should be noted that these modules may not be separately
identifiable in all related works. For example, numerous works
in the literature have assumed that resource demand can be
readily derived based on traffic [18], [19], which precludes
the necessity of II. Similarly, works that use RL for end-to-
end resource allocation implicitly assume that RL agent learns

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4450 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

to predict the traffic pattern in addition to the corresponding
resource requirements [5], [20].

1) Traffic Prediction: Network resource management
approaches can be categorized based on the timing of
reconfiguration relative to demand fluctuations [21]. Reactive
approaches adjust resources only after a mismatch between
demand and provisioning occurs, responding to instantaneous
traffic conditions. In contrast, proactive approaches anticipate
future demand using predictive models, enabling preemptive
reconfiguration. Proactive approaches are better able to meet
SLA requirements, but require accurate traffic prediction in
advance.

Traditional model-driven approaches [22], [23] assume that
traffic demand follows a predefined distribution. However,
without explicit prediction, these methods rely on overly con-
servative estimates, leading to inefficient resource allocation to
prevent QoS degradation. Conversely, approaches that predict
future demand based on currently observed data often focus
on single-point predictions rather than modeling a full distri-
bution. For example, [24] employs recurrent neural networks
(RNNs) to predict future channel states (e.g., SNR). However,
relying solely on point predictions can lead to making resource
allocation decisions that are less robust to demand fluctuations.
To address this, uncertainty-aware forecasting methods can
be leveraged. For example, in [21] the authors propose a
Prediction Interval-based Predictor (PIP), which utilizes Gated
Recurrent Units (GRU) and a bootstrap method to generate
confidence intervals for future traffic demand.

In this work, we assume traffic prediction is represented as
a distribution rather than a single-point estimate. However, we
do not propose a specific prediction method, as it falls outside
the scope of the proposed algorithm. Instead, we assume that
traffic predictions are available through existing approaches,
such as those in [21], [25].

2) Slice Modeling: The effectiveness of resource alloca-
tion algorithms is highly dependent on slice models, which
correlate allocated resources with QoS distribution based on
predicted demand and slice configuration. However, such
models may not exist for end-to-end slices under various traffic
distributions or network configurations. Therefore, network
simulators [5], [7] and ML-based estimators [8] are commonly
employed to address this challenge.

Conventional network simulators, such as ns-3, are
packet-level and time-intensive [9], [26], which limits their
application for online resource allocation and even for offline
training of RL policies [27]. Moreover, simulators may not
accurately mimic real-world scenarios, especially in wireless
domains [7]. Bayesian optimization (BO) has been utilized by
Liu et al. [7] to identify the optimal ns-3 parameters and reduce
the disparity between simulated and real-world conditions.
However, this process needs to be repeated for each minor
alteration in the network and SLA metrics.

ML-driven approaches model the entire network as a neural
network, which can be trained to estimate end-to-end QoS
metrics using traffic traces. The constraints of this approach
include limited visibility at the packet-level and lack of gen-
eralizability across diverse network settings. Recently, graph
neural networks [9] and a combination of simulation and

DNN models [26] have been used to alleviate these concerns
in the context of transport networks. However, the transport
network corresponds to only a single portion of an end-to-
end slice, and usually handles aggregated traffic. Our previous
work [8] and [10], have proposed the use of ML-based models
for network modeling. However, since the QoS degradation
derivation required non-deterministic, and non-differentiable
operations on the network model’s output, these works can not
leverage gradient backpropagation through the network model
for optimization.

3) Resource Allocation Algorithm:
Machine Learning. ML-based optimization approaches

have been successfully applied in various resource alloca-
tion [28] and scheduling problems [29]. In the context of
predictive resource allocation, Bega et al. [30] use an encoder-
decoder model to predict the amount of resources needed to
minimize the aggregated cost of resource over-provisioning
and SLA violations due to customer churn. However, the
aggregate cost function does not guarantee SLAs.

Recently, a number of works have used constrained
deep reinforcement learning (CDRL) techniques to learn
the optimal resource allocation under average SLA con-
straints [5], [8], [11]. These approaches require retraining for
each minor change in SLA and may not generalize to real
traffic patterns that are unseen during training. Liu et al. [5] uti-
lize queue-based simulated environment to train the resource
allocation policy offline. This approach may encounter
issues stemming from the discrepancy between the simu-
lated environment and the real-world network. Additionally,
Liu et al. [11] adopt a fully model-free approach by training
the policy online. However, this method seems impractical
for implementation in a production network due to long
convergence time.

Sulaiman et al. [8] address some of these drawbacks by
using a simple regression-based model for QoS estimation and
a risk-aware CaDRL agent trained offline over randomized
traffic to satisfy the SLA constraint. However, since RL
algorithms do not leverage the slice model’s gradient for
policy optimization, they have to rely on inefficient random
exploration. In soft actor-critic algorithms adopted in this
work, this is achieved by learning a critic network to estimate
the state-action value of different actions and a policy network
that maximizes the expected cumulative reward. However,
as shown in [8], even though the offline learned policy
generalizes to different online scenarios, it achieves sub-
optimal results compared to approaches trained with advanced
knowledge of the online scenarios.

Optimization. Many works in the literature assume that
the amount of required resources can be readily determined
based on the SLA requirement, and utilize optimization
techniques to improve performance in scenarios with multiple
slices and resource contention [18], [19]. Although this may
hold for Physical Resource Block (PRB) allocation in a
single base station, it cannot be generalized to an end-to-
end slice that requires the allocation of various resource
types across different network segments, such as the band-
width on the transport network, and compute resources for
running virtualized network functions and edge applications.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4451

Reference [24] employs MAC scheduler-level simulation and
proposes a binary search algorithm that exploits the monotonic
relationship between QoS and PRB allocation in the RAN.
However, this approach does not generalize to end-to-end
networks, where resources are interdependent i.e., the optimal
allocation of one resource depends on the allocation of other
resources. In contrast, [21] models traffic demand uncertainty
and bandwidth fluctuations using box and ellipsoid uncertainty
sets, formulating a Robust MILP that can be efficiently solved
using commercial optimization solvers.

Liu et al. [7] employ Bayesian optimization (BO) to
minimize the resource consumption of a single slice while
satisfying its SLA. The authors relax the constraint using the
Lagrangian method and approximate QoS using a Bayesian
neural network. However, the Bayesian neural network
approximates the probability of violating the QoS rather
than approximating the QoS itself. Moreover, for each slice
and traffic value, QoS is approximated for a limited set of
resource allocations that have a higher chance of being the
solution. Therefore, if there are changes in traffic or SLA,
the neural network needs to query new points in the domain.
Additionally, the model assumes a constant level of traffic
throughout the entire configuration interval (i.e., 1-2 hours),
which is not the case in practice. This assumption compels
to consider the worst-case traffic value within each interval
to satisfy the SLA, which leads to a sub-optimal solution.
Moreover, even with an assumption of constant traffic, the
convergence time of this method is in the order of hours, which
can span a significant portion of each reconfiguration interval.

In this work, we address two main drawbacks identified
in the current literature. First, large QoS querying times—
network simulators, such as ns-3 [7], and queue-based network
models [5], [11], are computationally intensive and require
significant time to compute the QoS for a given resource allo-
cation. Second, ineffective exploration—optimization methods
like RL, which use ε-greedy algorithms for solution space
exploration, require numerous interactions with the network
and often leading to sub-optimal solutions. While modern
network virtualization solutions, such as Kubernetes and
ONOS, enable rapid reconfiguration of resource allocation,
these current approaches fail to fully leverage this capability
due to their inherent inefficiencies.

We address the first challenge by employing a DNN-based
slice model to predict QoS, enabling fast queries on the order
of milliseconds once trained. As shown in [26], ML-based
network modeling only require several minutes to estimate
the network behavior, whereas a discrete-event simulator can
take tens of hours. To tackle the second challenge, we utilize
the reparameterization trick and gradient-based optimization,
which leverages gradient information to adjust the search
direction. This approach efficiently explores the parameter
space, resulting in a better solution, and faster convergence.

III. PROBLEM STATEMENT

The process of establishing an end-to-end network slice
involves the allocation of resources across various network
segments. Reconfiguration of these resources occurs at specific

time intervals referred to as reconfiguration intervals. We use
i to denote the i th reconfiguration interval. The duration of
these intervals, represented by τi , depends on various factors,
including data collection delays [11], constraints imposed by
the substrate network (e.g., the use of legacy virtual infrastruc-
ture manager) [31], or the time necessary for accurate traffic
forecasting [25], to name a few. Typically, the duration of a
reconfiguration interval can range from several minutes [11]
to hours [7]. Additionally, τi can be dynamically adjusted to
account for unexpected situations in the real world. We denote
the set of operational network slices as S , where each slice
s ∈ S is associated with a resource allocation vector r si =

[r s,1i , . . . , r s,Ki] ∈ R
K
≥0, comprising K resources.

The slice traffic, i.e., the number of users connected
to a slice, may exhibit variations during reconfiguration
intervals [2]. To represent the traffic time series within interval
i, we employ the notation x s

i = [x si (1), . . . , x
s
i (τi)] ∈ R

τi
≥0.

The traffic is measured in users/s and the average QoS
experienced by these users is determined by the resources
allocated to the slice. We represent the average QoS for slice
s in interval i as qs

i = [qsi (1), . . . , q
s
i (τi)] ∈ R

τi
≥0. For each

time slot, if the QoS fails to surpass the predetermined QoS
threshold qsthresh, it results in QoS degradation. Under the
assumption of fair resource allocation and equal average QoS
experienced by each user, the average QoS degradation for
slice s during the reconfiguration interval i is defined as:

βsi =

∑τi
t=1 x

s
i (t) · 1[qsi (t)≤qsthresh]∑τi

t=1 x
s
i (t)

. (1)

The objective is to minimize the normalized resource allo-
cation to network slices within each reconfiguration interval i,
while respecting the QoS degradation constraints [7], [8], [25].
This can be formulated as:

min
rsi≥0

∑

s∈S
ηᵀrsi ,

s.t. E(βsi) ≤ βsthresh , ∀s ∈ S
∑

s∈S
rsi ≤ R, (2)

where η ∈ R
K
>0 is the normalization vector, and can also be

used to represent the priority or the relative cost associated
with different resources, E represents the expectation oper-
ator with respect to the QoS distribution, and vector R =
[R1, . . . ,RK] ∈ R

K
≥0 represents the capacities of different

resources. The aforementioned problem pertains to a black-
box continuous optimization problem due to the unknown
distribution of QoS, qsi (t). In the following section, we will
introduce the MicroOpt framework designed to tackle this
problem.

IV. MICROOPT FRAMEWORK

We propose MicroOpt, shown in Fig. 1, a framework for
continuous optimization of network slice resources, that solves
the constrained optimization problem in (2) by addressing
three key aspects: (i) predicting slice traffic, (ii) obtaining
the slice model function, and (iii) solving the constrained
optimization problem. We assume that slice traffic exhibits

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4452 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 1. MicroOpt framework overview.

regular and predictable patterns [2], [32] and can be predicted
using existing time-series forecasting techniques (e.g., [21]).
To model the slice, we employ a DNN-based approach, which
has been successfully employed in the network digital twin
space [9], [26]. This approach leverages the expressive power
of neural networks to capture the complex relationships and
dependencies within the slice, and allows for analytical gra-
dient calculation through the reparameterization trick. Finally,
for tackling the constrained optimization problem, we propose
a primal-dual optimization algorithm that capitalizes on the
differentiability of the neural network for efficient online
optimization.

A. Slice Model

Slice modeling encompasses the acquisition of the func-
tion f sQoS(x

s
i (t), r

s
i), that captures the relationship among

resource allocation rsi , slice traffic x si (t), and QoS distribu-
tion. The QoS sampled from this distribution, i.e., qsi (t) ∼
f sQoS(x

s
i (t), r

s
i), can be used to calculate the QoS degradation

βsi using (1). Finally, the estimated βsi is used for solving
the constrained optimization problem in (2). In this work, we
propose using a DNN model to learn f sQoS(x

s
i (t), r

s
i) using a

QoS dataset encompassing various resource allocations (rsi)
and traffic (x s

i). Unlike mathematical models or queues, a
DNN-based model can easily handle heterogeneous types of
resources and predict different QoS metrics. Additionally, the
complexity of this approach does not depend on the traffic
volume, which is the case with packet-level simulators.

We assume the QoS normally distributed for the remainder
of this paper, with the network model designed to predict the
parameters of the QoS distribution. We choose the normal dis-
tribution as it proves to be sufficient for effectively modeling
the data in our case. However, it is important to note that the
proposed slice model can be extended to incorporate mixture
density networks (MDNs), which have the ability to represent
arbitrarily complex distributions [33]. The architecture of the
slice model is shown in Fig. 2. The inputs to the model
consist of the slice traffic x si (t) and resource allocation rsi .
These inputs are connected to a set of shared hidden layers,
followed by separate hidden layers dedicated to each Gaussian
distribution parameter. As a result, the model outputs the
Gaussian distribution parameters μ and σ associated with the

Fig. 2. Slice model.

predicted QoS distribution. The probability density function
of qsi (t) under this distribution can be written as:

p(qsi (t) | x si (t), rsi) =
1√
2πσ

exp

(

−
(
qsi (t)− μ

)2

2σ2

)

. (3)

Finally, the loss for the model is computed as:

LQoS = − 1

B

B∑

j=1

log p
(
qsi ,j (t)|rsi ,j , x si ,j (t)

)
, (4)

where B is the batch size and the subscript j represents the j th

sample in the batch. This loss function calculates the negative
log-likelihood of the QoS qsi ,j (t) under the normal distribution
N(μ, σ) generated by the model for the input (x si ,j (t), r

s
i ,j).

Once trained, this model can be used to sample the QoS from
the predicted distribution. The detailed parameter settings and
slice model results are given in Section VI.

The drawback of naïvely sampling QoS from this distribu-
tion is that any subsequent optimization algorithm that relies
on the sampled QoS cannot leverage its gradients. This is
because random sampling from a distribution involves non-
deterministic operations on the model outputs, which happen
to be non-differentiable. To address this, we propose using
the reparameterization trick,1 which has been employed in the
ML literature [12], and can also be used with other probability
distributions including MDNs [35]. For this purpose, the QoS
sampling is reformulated as follows:

qsi (t) = μ+ σε, (5)

where ε is a random sample from a standard normal distri-
bution N(0, 1) that does not depend on the input (x si (t), r

s
i).

Finally, after computing gradients through this operation and
use them in subsequent optimization described in the following
subsection.

B. Constrained Optimization

We start by converting the constrained problem in (2) into
an unconstrained one by using dual Lagrangian relaxation i.e.,
introducing the constraints into the objective by associating

1This trick allows for the use of existing automatic differentiation frame-
works (e.g., PyTorch [34]) for easy implementation, and advanced optimizers
(e.g., Adaptive moment optimizer) to avoid local minimas and achieve faster
convergence.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4453

a penalty (Lagrangian variables) for constraint violation. The
Lagrangian is defined as follows:

L(rsi ,λ,μ) =
∑

s∈S
ηᵀrsi +

∑

s∈S
λs(E(βsi)− βsthresh)

+

K∑

k=1

μk

(
∑

s∈S
r
s,k
i − Rk

)

, (6)

where λ = [λ1, λ2, . . . , λ|S |] denotes the vector of Lagrange
multipliers for the QoS degradation constraints, and μ =
[μ1, μ2, . . . , μK] denotes the vector of Lagrange multipliers
for the resource constraint. We can see that given a resource
allocation rsi , we can easily compute L(rsi ,λ,μ) by substitut-
ing the value of βsi obtained using the slice model. Based on
this Lagrangian formulation, the dual problem can be written
as:

max
λ,μ

g(λ,μ) subject to λ ≥ 0, μ ≥ 0, (7)

where the dual function g(λ,μ) is defined as:

g(λ,μ) = inf
rsi

L(rsi ,λ,μ). (8)

The min–max representation in (7) expresses how, for a
given set of dual variables, the dual function (8) minimizes
the Lagrangian by selecting an optimal resource allocation rsi ,
while the dual variables (λ,μ) themselves adjust to drive that
minimum to its highest possible value by penalizing constraint
violations. Assuming the objective in (2) is convex, the
optimal solution to (7) will minimize resource allocation while
satisfying all constraints [36]. The above dual problem could
be solved iteratively using primal-dual updates with gradient-
based methods [36], if it were differentiable with respect to
both primal and dual variables. This is because gradient-based
methods rely on the ability to compute the gradients of the
objective function and the constraints with respect to relevant
variables. However, the computation of the QoS degradation
βsi using (1) involves an indicator function 1[qsi (t)≤qsthresh]

,
which is piece-wise constant and has a gradient of zero
almost everywhere. This poses a challenge for gradient-based
optimization algorithms that rely on gradient calculations for
parameter updates [37].

To address this challenge, we introduce a surrogate QoS
degradation function β̂si that replaces the indicator function
in (1) with a Sigmoid function φ(ρ ∗ (qsi (t)− qsthresh)), where
ρ is a hyperparameter that controls the sharpness of the curve.
The Sigmoid function is a smooth differentiable function and
allows the use of gradient-based optimization methods, while
still approximating the behavior of the indicator function. It is
worth noting that we only utilize the surrogate formulation to
approximate the gradient for iteratively updating the resource
allocation r within the inner-loop in Algorithm 1. Whereas,
the optimization objective and the constraints defined in (2)
remain unchanged.

Remark: As the hyperparameter ρ increases, the Sigmoid
approximation more closely matches the threshold function.
However, an excessively large ρ can slow convergence due to
diminishing gradients. Based on our numerical tests, even for
moderate values of ρ, the approximation error is negligible

Algorithm 1 MicroOpt Algorithm
Input: Traffic x s

i , Slice Model f sQoS(x
s
i , r

s
i), QoS

threshold qsthresh, QoS degradation threshold βsthresh,
τ1,max , τ2,max , α1, α2, α3, ε1, ε2

Output: Optimal resource allocation vector rsi
1: Initialize λ,μ, LB = 0, UB =∞, τ1 = 0, τ2 = 0

2: while UB−LB
UB > ε1 or τ1 < τ1,max do

3: r← Initialization(x s
i , fQoS(x

s
i , r))

4: while |∇r L̂| > ε2 or τ2 < τ2,max do

5: r← [r− α1∇r L̂]+

6: τ2 ← τ2 + 1
7: end while
8: λs ← [λs + α2(β

s
i − βsthresh)]

+, ∀s
9: μk ← [μk + α3(

∑
s∈S rs,k − Rk)]+, ∀k

10: LB = max(LB,L(r,μ, λ))
11: UB = min(UB,

∑
s∈S ηᵀrs)

12: τ1 ← τ1 + 1
13: end while
14: return r

relative to typical QoS threshold values. For example, an error
of ±0.001 is insignificant compared to QoS thresholds on the
order of 10 Mbps. We recommend selecting ρ experimentally;
in our setup, we set ρ = 104.

We denote the surrogate Lagrangian function, which incor-
porates the surrogate QoS degradation function, as L̂(rsi ,λ,μ).
With this formulation, we can apply analytical gradient
optimization techniques to optimize the resource alloca-
tion, while the solution’s feasibility is ensured using the
strict definition of QoS degradation. It is worth noting that
if the optimization problem is non-convex, gradient-based
approaches may not always converge to the global minima,
resulting in sub-optimal solutions. However, when initialized
near the optimum, they are highly effective [38], [39], [40].
Therefore, in this paper, we propose randomly sampling a
small number of points in the solution space to initialize the
optimization process.

Algorithm 1 outlines the steps of our proposed solution.
The algorithm takes as input the traffic x s

i and the model
f sQoS(x

s
i , r

s
i) for each slice for the duration of reconfiguration

interval. It also requires the QoS threshold qsthresh, the QoS
degradation threshold βsthresh specific to each slice, and several
hyper-parameters to control the algorithm’s behaviour. These
include parameters related to the stopping condition, such as
τ1,max and τ2,max , which define the maximum number of
iterations for the outer and inner loops, respectively, and ε1
and ε2 that determine the desired level of convergence for the
upper and lower bounds of the objective function. We also
have learning rates, α1, α2, and α3, for updating resource
allocations and Lagrangian multipliers. Finally, the output of
the algorithm is the optimal resource allocation for each slice.

The algorithm is comprised of outer and inner loops.
Within the inner, the resource allocation variables are first
initialized using through random sampling, shown in line 3.
Subsequently, these variables are updated using the gradient
of the surrogate Lagrangian function (∇r L̂) in line 5. After
updating the resource allocation variables in line 8 and 9, the
algorithm updates the Lagrange multipliers inside the outer

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4454 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

loop. QoS constraint multipliers, λs , are updated based on the
QoS degradation values βsi and threshold βsthresh for each slice.
Notably, we adopt the strict definition of QoS degradation,
i.e., eq. (1), when updating the Lagrange multipliers in line 8
of Algorithm 1. This ensures that the final solution produced
by the algorithm is strictly feasible. Resource constraints
multipliers, μk , are updated for each resource k by considering
the difference between the allocated resources

∑
s∈S r

s,k
i

and the resource capacity Rk . These updated variables are
then projected into the non-negative domain, denoted by the
notation [.]+. At each point, the upper bound UB is equal to
the best feasible solution found so far, while the lower bound
LB is equal to the value of the Lagrangian function (line 10
and 11). Once the termination condition is met, the algorithm
returns the resource allocation corresponding to the best LB.

1) Computational Complexity and Scalability: The compu-
tational complexity of Algorithm 1 is primarily determined by
(i) the outer-loop that updates the Lagrangian penalty variables
and runs for at most τ1,max iterations, and (ii) the inner-loop
for resource allocation that runs for at most τ2,max iterations
per outer iteration. Each inner-loop iteration requires a forward
and backward pass through the slice model. Assuming a feed-
forward neural network with L + 1 layers, this results in
a complexity of O(

∑L
i=1 ni−1 · ni), where ni denotes the

number of neurons in the i th layer. When each layer has
approximately the same number of neurons n, the total param-
eter count grows as O(Ln2). Combining these factors, the
worst-case complexity of MicroOpt is O(τ1,maxτ2,maxLn

2).
This shows that adding a VNF, which primarily increases
the input layer size n0, results in a minor increase in
computational complexity as parameters in the hidden layers
dominate the overall computation. In contrast, increasing the
number of hidden layers L or the number of neurons per
layer can have a more significant impact on the convergence
time.

However, the empirical convergence time of MicroOpt
depends on several factors, including the neural network
architecture, hyperparameter initialization (e.g., Lagrangian
multipliers and learning rates), the quality of the initial
solution, the choice of gradient optimizer, the complexity of
the learned functions, and the stopping criteria for both loops.
In Section VI-D, we evaluate MicroOpt’s convergence time
against the state of the art.

V. IMPLEMENTATION

In this section, we describe the implementation of our
network slicing testbed, shown in Fig. 3.

A. Testbed Infrastructure

Our testbed2 consists of a substrate network deployed on
a three-node Azure cluster. The virtual machines hosting the
RAN, core, and transit networks are allocated 32 vCPUs,
16 vCPUs, and 8 vCPUs, respectively. Additionally, these
virtual machines have RAM allocations of 64 GB, 32 GB, and

2The instructions for deploying the testbed can be found in [41].

Fig. 3. Overview of our 5G testbed.

32 GB, respectively. This physical topology forms the foun-
dation for our testbed, providing necessary computational and
networking resources to support various network functions.

B. 5G Network Implementation

RAN. We implement the 5G RAN using the srsRAN
project [42], an open-source software designed to create a
3GPP Release 17 (R17) compliant gNB. The User Equipments
(UEs) are implemented using srsUE [43], a software imple-
mentation of a UE. Instead of physical radios for over-the-air
transmissions between the gNB and UEs, we use virtual
radios, also provided by srsRAN. Additionally, we utilize
GNU Radio Companion to manage uplink and downlink signal
between the UE and the gNB. GNU Radio offers a variety of
signal processing blocks, enabling the emulation of complex
functions such as path loss and user mobility.

Core. We implement the 5G mobile core based on
Open5GS [44], an open-source implementation of 3GPP R17.
The network functions, e.g., AMF, SMF, UPF and NRF are
containerized and deployed on our Kubernetes cluster. We
consider a network slicing scenario where each slice has
dedicated UPF and SMF network functions, while sharing
other common 5G core functions such as AMF and NRF.

Transport. To establish the transport network (TN) infras-
tructure, we employ a software-defined VXLAN overlay
utilizing Open vSwitch (OvS) [45] on the underlying physical
substrate network. The OvS switch functions as the TN edge,
where fine-grained bandwidth allocation and traffic policing
are enforced [17]. However, as highlighted in [17], transit
nodes within the TN do not perform fine-grained resource
control. Instead, they rely on simplified traffic management
mechanisms such as priority queuing and pre-emptive capacity
planning to ensure QoS. Since our focus is on resource control
in the transport network, we do not consider the transit nodes
in our current testbed.

C. Control and Management

MANO. We use Kubernetes v1.29 for the management
and orchestration (MANO) of our 5G network. This allows
us to encapsulate different 5G network functions, including
the RAN, into lightweight and portable containers. These
containers can be dynamically deployed, scaled, and managed
across our distributed cluster of nodes, providing flexibility
and scalability. The Kubernetes API allows us to control the
placement of these functions, and create network slices with
desired topologies. To dynamically scale the CPU resources
allocated to the network functions, we use Linux cgroups.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4455

SDN Controller. We use the ONOS SDN controller [46]
to enable precise control over the routing of network flows
within our network slices. By communicating with the OvS
switches in the VXLAN transport overlay, ONOS facilitates
the routing of network slice traffic through OvS queues with
specific rates, thus providing bandwidth slicing capabilities.

D. Data Collection

Edge Application. To test the proposed solution, we focus
on generating enhanced Mobile Broadband (eMBB) user
traffic. Note that we previously defined slice traffic as the
number of users connected to a slice (users/s), whereas user
traffic defined here is the traffic generated by the UEs (Mbps).
To generate the user traffic, we begin by collecting a packet
capture (pcap) dataset for 4K video streaming from YouTube.
This dataset (available in [47]) is then replayed whenever a UE
connects to the eMBB slice. Streaming 4K video can consume
significant network resources, potentially degrading the QoS
for other slices within the network. Therefore, it is crucial to
dynamically scale the bandwidth allocation in the transport
network and adjust the gNB CPU allocation for the eMBB
slice.

Monitoring. To comprehensively monitor our testbed and
gather datasets for our slice model, we implement a robust
architecture using Prometheus and Grafana, as suggested by
existing literature in [48]. Prometheus collects and stores time-
series data on network traffic, resource utilization, and network
function performance. Grafana provides a user-friendly plat-
form for visualizing and analyzing this data.

Dataset Collection. We define QoS as the end-to-end
throughput received by the UE, with varying QoS thresh-
olds (qthresh) of 3-5 Mbps and acceptable QoS degradation
thresholds (βthresh) of 0.1-0.3. Note that, for brevity, we omit
the index s identifying the slice in the previously introduced
notation for the rest of the paper. The targeted resources for
scaling in this scenario are the transport network bandwidth
and the gNB CPU with equal priority, i.e., η = [150 ;

1
4500],

where 50 Mbps and 4500 millicores are the max resource
allocations for the eMBB slice. Note that for the evaluation,
the results show the normalized resource allocations, i.e., ηᵀri .

To train the slice model, we gather a QoS dataset (available
in [49]) with the slice traffic varying from 1 to 5 users/s, the
transport bandwidth from 5 to 40 Mbps, and the gNB CPU
resource from 500 to 4000 millicores, in intervals of 1 users/s,
5 Mbps, and 500 millicores, respectively.

VI. PERFORMANCE EVALUATION

A. Experiment Setup and Comparison Approaches

1) Slice Model: We presented a high-level overview of the
slice model in Fig. 2. However, the specific details of the
model, including the number of layers, activation functions,
and nodes per layer, may vary for different datasets collected
from other testbeds. In our model, after the input layer, we
add a batch normalization layer to normalize the inputs which
leads to improved model performance by reducing the internal
covariate shift. Subsequently, we use three shared hidden
layers with 16 nodes each and Rectified Linear Unit (ReLU)

activation. The mean and standard deviation branches have one
hidden layer with 16 nodes and ReLU activation.

The mean output uses a Linear activation function, while
the standard deviation output employs the Softplus activation
function to ensure non-negativity. It should be noted that the
slice model’s specific details, such as its structure, the number
of layers, activation functions, and nodes per layer, can vary
for different testbeds.

We divide the QoS dataset (cf., Section V-D) into training
and validation sets. Additionally, we perform the procedure
outlined in Section V-D to gather a test set consisting entirely
of off-grid points, i.e., input combinations not present in the
training or the validation sets. Subsequently, we train the
model for 3,000 epochs with a learning rate of 0.001, and
reduce the learning rate by a factor of 10 after 1,500 epochs.
Figures 4a and 4b show the negative log probability loss (i.e.,
LQoS in (4)), and mean squared error (MSE), respectively, as
the model trains. We can see that the MSE follows the same
trend as LQoS . Additionally, from the figures, we can see that
the validation error does not deviate from the training error,
which shows that the model is not overfitting to the training
data. Once trained, the slice model requires an inference time
of only 0.528ms, and achieves a LQoS of -1.53, -1.72, and
-1.67, an MSE of 1.58, 1.24, and 0.91, and a mean absolute
error (MAE) of 0.69, 0.62 and 0.54 on the training, validation,
and test datasets, respectively.

Finally, we visualize the trained slice model by plotting the
mean QoS predicted at the entire range of input values in
Fig. 4c. This figure shows the predicted QoS mean, averaged
over 1-5 users/s. We can see that at lower CPU allocations,
the QoS does not increase with bandwidth, as the gNB is the
bottleneck. Once the CPU allocation exceeds 100 millicores,
the effect of bandwidth on the QoS becomes significant.

2) Comparison Approaches: To evaluate the proposed
approach, we implement the following state-of-the-art
approaches:

Peak-alloc: This approach serves as a baseline where
the network operator statically allocates resources to a slice
based solely on peak slice traffic (5 users/s) and strict QoS
requirements (qthresh = 5.0, βthresh = 0.01). To determine
the optimal resource allocation for this scenario, we employ
a brute-force method, specifically a fine-grained grid search,
which took several hours to find the solution.

Atlas, Altas+: This approach, based on [7], uses a network
simulator to train a Bayesian neural network (BNN) for
learning the QoS degradation function in eqn. (1). BO with
Thompson sampling and Lagrangian relaxation is then used
for resource optimization. In our implementation, we replace
the network simulator with our slice model. The original
method in [7] works only for constant slice traffic (i.e., peak
traffic in the slice traffic distribution) because it requires
pre-training the BNN with an expensive simulator, which
is impractical for infinite possible traffic distributions. We
propose using a DNN-based slice model, which makes the pre-
training significantly faster and can be done after predicting
the actual slice traffic distribution. This allows the method to
handle slice traffic distributions. We refer to the original and
the enhanced methods as Atlas and Atlas+, respectively.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4456 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 4. Slice model training and visualization.

Fig. 5. Telecom Italia dataset traffic trend over a week. (Shaded region shows
std. dev.).

CaDRL, CaDRL+: Several works have proposed con-
strained DRL for dynamic resource scaling [5], [8], [13]. We
implement the recent approach by Liu et al. [13], which
uses Interior-point Policy Optimization (IPO) for this purpose,
known as Constraint-aware Deep Reinforcement Learning
(CaDRL). However, constrained DRL approaches converge
to the worst-case scenario (i.e., peak traffic) when trained to
generalize over multiple slice traffic distributions, as shown by
Sulaiman et al. [8]. We propose using a computationally inex-
pensive slice model to quickly train the policy from scratch
once the actual slice traffic has been predicted, avoiding the
need to generalize over multiple distributions. We refer to these
methods as CaDRL and CaDRL+, respectively.

3) Slice Traffic Model: To generate different slice traffic
distributions, we use the Telecom Italia dataset [2], which
contains anonymized telecommunication activity in Milan and
the Province of Trentino. Focusing on an eMBB slice, we
extract one week of Internet call detail records (CDRs), which
are generated every time a user initiates or ends an Internet
connection. Fig. 5 illustrates the normalized traffic variation for
a randomly selected cell, showing significant hourly variation.
Subsequently, we calculate the mean and max standard deviation
of this data, referred to as σmean and σmax, respectively. We
then generate 10 different slice traffic distributions using a
truncated normal distribution centered at 1-5 users/s with
standard deviations of σmean and σmax, referred to as dataset
slice traffic distributions. Once a user connects to the slice, the
user traffic is generated as described in Section V-D.

B. Simulation Results

In this section, we compare different approaches for deriving
the optimal resource allocation of the constrained optimization

TABLE I
RESOURCE ALLOCATION AND QOS DEG. BOLD = BETTER)

problem in (2), given the network model (cf., Section IV-A),
and the slice traffic x i (cf., Section VI-A3).

Constant Slice Traffic. First, we evaluate the different
approaches at a constant slice traffic varying from 1-5 users/s,
with a QoS threshold of qthresh = 5.0 and a QoS degradation
threshold of βthresh = 0.1. Atlas+ and CaDRL+ are excluded
from this evaluation because, with a constant number of users,
they perform the same as their counterparts. Table I presents
the corresponding resource allocation and QoS degradation
achieved by the different approaches in this scenario. From
the table, we can see that MicroOpt allocates the minimum
resources while keeping the QoS degradation E(β) under the
required threshold of 0.1. CaDRL, despite achieving similar
resource allocation as the other approaches, fails to increase
the QoS degradation above 0, resulting in the highest resource
allocation. Atlas maintains a QoS degradation close to 0.1 in
most scenarios, with resource allocation similar to MicroOpt.
Finally, Peak-alloc allocates more resources compared to
MicroOpt and Atlas, as it only finds the optimal solution for
a QoS degradation of βthresh = 0.01.

Next, we evaluate the different approaches across varying
QoS and QoS degradation thresholds, omitting the tabu-
lar presentation of results for brevity. Fig. 6a and Fig. 6b
show the normalized mean resource allocation and QoS

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4457

Fig. 6. Mean resource allocation sum E(ηri) and mean QoS degradation E(β) at various parameter settings.

degradation for various approaches across different values of
qthresh = [3.0, 4.0, 5.0] and βthresh = [0.1, 0.2, 0.3], along
with the percentage improvement over the baseline Peak-alloc.
Fig. 6a shows that the proportions of CPU and bandwidth
resources within the overall resource allocations are both
approximately 1/2. This is because we used equal weights
for CPU and bandwidth when solving (2), i.e., with η = 1 ·
[150 ,

1
4500].

From the figures, we can see a direct relationship between
the QoS requirement (qthresh) and resource allocation—
as the QoS requirement decreases, the resource allocation
also decreases. In contrast, Fig. 6b demonstrates an inverse
relationship between resource allocation and the QoS degra-
dation threshold (βthresh)—as the QoS degradation threshold
increases, indicating a tolerance for higher degradation, a
lower resource allocation is required. Across different parame-
ter values, the optimal resource allocation follows a consistent
pattern—MicroOpt allocates the lowest resources, followed by
Atlas, CaDRL, and Peak-alloc. Averaging over all parameter
values, the respective approaches allocate 0.719, 0.778, 0.920,
and 1.534 units of resources. This shows that MicroOpt results
in a 7.65%, 21.90%, and 53.14% decrease in resource usage
compared to Atlas, CaDRL, and Peak-alloc, respectively.

Fig. 6c shows the QoS degradation achieved by the different
approaches as they minimize resource allocation. The x = y
regression line shows the curve where the achieved QoS
degradation equals the threshold. Since all the points lie
below the x = y regression line, it shows that all approaches
achieve mean QoS degradation below the required threshold.
Additionally, the mean QoS degradation follows the opposite
trend to resource allocation—Peak-alloc achieves the lowest
QoS degradation, followed by CaDRL, Atlas, and MicroOpt.
Interestingly, unlike the previous tabular results, CaDRL
achieves a higher QoS degradation and a lower resource
allocation than Peak-alloc at more relaxed parameter settings
(i.e., lower qthresh, and higher βthresh). This is because CaDRL’s
algorithm highly prioritizes maintaining strict QoS degradation
adherence over minimizing resource allocation. Therefore, it
is able to perform better when the βthresh is lower.

Dynamic Slice Traffic. To evaluate the different approaches
when slice traffic varies within a resource reconfiguration
interval, i.e., when slice traffic is a distribution rather than
constant, we use the slice traffic distributions dataset described

Fig. 7. Mean resource allocation vs. slice traffic std. dev.

in Section VI-A3. Fig. 7 shows the mean resource alloca-
tion and the percentage improvement over Peak-alloc, while
Fig. 8 illustrates the mean QoS degradation by the different
approaches at a QoS threshold of qthresh = 5.0 and a QoS
degradation threshold of βthresh = 0.1.

From Fig. 7, it is evident that as the slice traffic std. dev.
increases from σmean to σmax, the corresponding resource
allocation also increases. This is because a higher std. dev.
indicates a broader distribution of slice traffic, which necessi-
tates more resources to maintain the mean QoS for the entire
range of users, including those in the tail of the distribution.

Focusing on the resource allocation across the different
approaches in Fig. 7, we can see that it follows the same
trend as in the constant traffic scenario—MicroOpt allocates
the least resources, compared to Atlas and CaDRL. However,
with dynamic slice traffic, Atlas+ and CaDRL+ allocate fewer
resources than their counterparts. This is because, as described
in Section VI-A2, these approaches consider the actual slice
traffic distribution rather than just the peak traffic. In this
scenario, MicroOpt shows a mean decrease of 4.23%, 14.23%,
14.60%, 31.61%, and 20.74% compared to Atlas+, CaDRL+,
Atlas, CaDRL, and Peak-alloc, respectively, across the 10
different slice traffic distributions.

In Fig. 8, we observe that all the different approaches
achieve QoS degradation below the required threshold of
βthresh = 0.1. Additionally, the QoS degradation follows the
expected trend based on resource allocations, i.e., approaches
with higher resource allocation result in lower QoS degra-
dation. In this scenario (qthresh = 5.0, βthresh = 0.1),

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4458 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 8. Mean QoS degradation E(β) vs. slice traffic std. dev.

Fig. 9. Res. alloc (y-axis) and QoS deg. (β) (value above bar), at various
βthresh.

Fig. 10. Convergence for MicroOpt and Atlas+.

RL-based approaches perform worse compared to the Peak-
alloc approach. This is because RL-based approaches provide
sub-optimal solutions, and when the parameters are similar
to those of Peak-alloc, which is derived from a brute-force
approach, the sub-optimality becomes evident.

C. Ablation Study

The slice model proposed in Section IV-A learns a QoS
distribution for any given input, requiring the use of the
reparameterization trick for gradient calculation. The output
QoS can be a distribution due to factors such as user mobility,
non-deterministic transmission medium, and network function
behavior. In this section, we investigate the scenario where the
slice model only learns a scalar QoS value, i.e., the mean (μ)
or two std. dev. below the mean (i.e., μ−2σ) in order to ensure
QoS satisfaction. This allows direct gradient computation but
ignores the actual underlying distribution. We refer to these
approaches as MicroOpt-0σ and MicroOpt-2σ, respectively.

For evaluation, we solve the constrained optimization for
constant slice traffic under different QoS and QoS degrada-
tion thresholds (cf., Section VI-B). Fig. 9 shows the mean
resource allocation and the corresponding QoS degradation
achieved at various QoS degradation thresholds. From the

figure, we observe that although MicroOpt-0σ allocates the
least resources, it maintains a QoS degradation of 0.49 which
is significantly higher than the thresholds. This occurs because,
with a normal distribution, half of the QoS values fall below
the mean, leading to a QoS degradation of 0.5. On the
other hand, MicroOpt-2σ achieves small QoS degradation but
allocates significantly higher resource than MicroOpt. Finally
MicroOpt considers the QoS as a distribution, accounting
for deviations from the mean or tail QoS. This leads to the
highest resource saving while maintaining the QoS degradation
under the required threshold. This ablation study highlights
the importance of modeling QoS as a distribution.

D. Convergence, Optimality and Feasiblity

Recent advancements in slice management and orchestration
frameworks [50] can support slice resource reconfiguration
in short time scales. However, most existing resource scaling
algorithms (e.g., [5]) still require over an hour for conver-
gence. Through empirical tests, our approach MicroOpt is
shown to significantly mitigate the convergence time while
attaining a resource allocation close to the optimal solution.
This is achieved by employing fast network model queries
combined with gradient descent optimization. In the dynamic
traffic scenario, the average convergence times for Peak-
alloc, CaDRL, and CaDRL+ are 4.96h, 199.56s, and 201.67s,
respectively. In contrast, MicroOpt, Atlas, and Atlas+ con-
verge significantly faster, with average times of 30.06s, 30.80s,
and 27.83s, respectively.

Fig. 10 illustrates the mean optimality ratio, which rep-
resents the resource allocation ratio of the current solution
to the best solution achieved by either approach over time.
The fast initial improvement in both curves are attributed
to the random search phase in MicroOpt and the pre-
training of the BNN in Atlas+. The figure shows that
while Atlas+ (using Bayesian Optimization) improves slowly
after the initial solution, MicroOpt (using gradient descent)
rapidly reaches near-optimal solutions. Specifically, MicroOpt
achieves 99.60% of the final solution within just 7.5 seconds.
These convergence times are measured on a CPU-based
machine and can improve even further with GPUs, which
offer significantly faster neural network inference times. This
demonstrates that MicroOpt is better suited for fast resource
allocation compared to current state-of-the-art methods.

Finally, it is important to emphasize that since the slice
model learns a non-convex function, the primal-dual algorithm
does not guarantee convergence to the optimal solution.
However, the proposed approach ensures a feasible solution
that satisfies QoS constraints, as long as the initial solution
is feasible. This is achieved because the Lagrangian penalty
variables in Algorithm 1 continuously increase until the gra-
dient descent converges to a feasible solution. However, if a
termination condition is reached–such as a time limit or a
maximum number of iterations–the algorithm returns the most
recent feasible solution. To ensure feasibility, starting with a
100% resource allocation (i.e., r = [1.0, 1.0]) is recommended
if no better solution is identified during the initial random
search.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4459

Fig. 11. Testbed evaluation of MicroOpt (solid lines shows the mean, and
shaded region shows the ±1 std).

E. Testbed Evaluation

The feasibility of solutions determined by the slice model
may not necessarily translate to feasibility within the real-
world network if the model is inaccurate. Therefore, even
though the proposed approach achieves the least resource
consumption while satisfying QoS degradation constraints
(cf., Fig. 6c) based on the slice model, these solutions must
be validated on the testbed to ensure the accuracy of the
slice model. For this purpose, we generate the slice traffic
with σmean described in Section VI-A3 on our testbed by
using automated scripts for the arrival and departure of UEs.
The resource allocation is then determined by solving the
constrained optimization problem using Algorithm 1.

Fig. 11a shows the QoS distribution achieved at different
parameter values. From the figure we can see that in all
the different cases, the mean QoS stays above the QoS
threshold (x = y line). However, as QoS degradation thresh-
old increases, the QoS distribution approaches qthresh. In all
parameter settings, even though the mean QoS stays above
qthresh, a part of the QoS distribution does fall below it
which causes QoS degradation. We show this QoS degrada-
tion in Fig. 11b. The figure indicates a positive correlation
between the QoS degradation threshold and the mean QoS
degradation. From the figure, we can see that as simulation
progresses, the QoS degradation fluctuates around the QoS
degradation threshold, and the mean converges close to the
QoS degradation threshold. It is worth noting that the problem
statement (cf., Section III) requires the mean QoS degradation
(E(βsi)) to be above the threshold βthresh. From Fig. 11b,
we can see that most parameter satisfy the QoS degradation
constraint (i.e., the mean QoS degradation is below the QoS
degradation threshold). However, for specific configurations
(βthresh, qthresh = (0.1, 3.0) and (0.2, 5.0)), it slightly exceeds
the threshold. This occurs when the slice model overestimates

QoS, leading to higher than expected QoS degradation. This
limitation is inherent to approaches using surrogate models of
the real network and can be mitigated by introducing a safety
margin, fine-tuning the solution during online operation [7],
or switching to a safe solution if the QoS degradation exceeds
the threshold [11].

To gauge the extent of our slice model’s under-prediction,
we evaluated the different losses of the model using a newly
gathered dataset that includes evaluation slice traffic, the
resource allocations performed, and the corresponding QoS
achieved. On this data, the model exhibited a LQoS of
–1.53, an MSE of 1.14, and an MAE of 0.72. These values
are consistent with the training, validation, and test losses,
indicating the model’s reliability. The alignment of these
metrics across different datasets suggests that as the slice
model undergoes further fine-tuning, it can more accurately
predict QoS degradation. Consequently, the 5G testbed’s QoS
degradation will better align with the set thresholds.

F. Generalization

In the preceding discussion, we evaluated MicroOpt’s
performance using the traffic described in Section V-D, with
throughput (or packet loss) as the key performance indicator
(KPI). However, since 5G networks are designed to support
diverse use cases, real-world traffic patterns may differ from
the evaluated distribution, and the relevant KPIs may vary
accordingly. Therefore, in this section, we assess MicroOpt’s
performance under Poisson-distributed traffic and redefine
QoS in terms of packet delay.3 We choose Poisson traffic
because it provides a widely-used [9], [26] and generalized
traffic model, allowing us to evaluate MicroOpt’s performance
without needing separate datasets for different 5G use-cases
such as gaming, video streaming, or autonomous driving.
Additionally, we consider delay as the QoS metric, as it–
alongside the previously evaluated throughput KPI–captures
the key requirements of the two most common 3GPP slice
types: eMBB and URLLC. For evaluation, we gather a new
dataset using the procedure discussion in Section V-D. Our
testbed achieves a min delay of about 10ms, similar to other
research-grade testbeds, e.g., [7], [11], [24]. Therefore, we
evaluate MicroOpt for QoS thresholds of 20ms, 50ms and
100ms.

Fig. 12a illustrates the training loss throughout model train-
ing. We observe a similar trend as in Fig. 4, where the loss
steadily decreases as training progresses, and both training
and validation losses converge to similar values within 3000
epochs. Fig. 12b presents the corresponding network model
visualization, showing the expected relationship between
resource allocation and packet delay–as resource allocation
increases, packet delay decreases, eventually converging to
around 10ms at 2000 millicores and 40 Mbps bandwidth
allocation. However, an unexpected trend emerges at lower
resource allocations, where packet delay can reach several
seconds. This suggests that instead of being dropped, packets
entering the network may be queued for extended periods

3Strictly following the definition in Section III, qthresh should be defined
as −1 ∗ packet delay, where higher values indicate better performance.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4460 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Fig. 12. Slice model and resource allocation results at various parameter settings.

before processing, indicating a complex trade-off between
delay and packet loss in resource-constrained conditions.

Finally, Fig. 12c and Fig. 12d illustrate the resource allo-
cation achieved by different approaches across various QoS
thresholds and QoS degradation thresholds. As seen in Fig. 12,
there is an expected correlation between these thresholds and
resource allocation–stricter thresholds generally require more
resources. Among the evaluated approaches, MicroOpt con-
sistently achieves the lowest resource allocation. Interestingly,
unlike previous results, the Atlas approach does not perform
as well in this case. Across all parameter settings, CaDRL
outperforms Atlas by allocation lesser resources. Therefore,
MicroOpt achieves the least resource allocation followed by
CaDRL, Atlas and finally, Peak-alloc. We see expected trends
from the counterparts to Fig. 7 and Fig. 8. For brevity, we
omit their detailed discussion here.

VII. CONCLUSION

In this paper, we presented the MicroOpt framework, a
novel approach for end-to-end dynamic resource allocation in
5G and beyond network slices. The framework leverages a
DNN with the reparameterization trick to learn a differentiable
slice model, which is then used in a primal-dual optimization
algorithm to minimize the resource allocation under QoS
constraints. We evaluated the proposed framework in multiple
scenarios and showed that it can achieve up to 21.9%
reduction in resource allocation compared to the state-of-the-
art approaches, while also satisfying the QoS degradation
constraints. Finally, we deployed an open-source 5G testbed
with data collection and scaling capability for validating the
results and showed that the proposed solution is feasible in
various scenarios.

Our future work will explore incorporating a feedback
mechanism to address inaccuracies in traffic prediction or
the slice model. Additionally, investigating resource allocation
in scenarios with multiple slices and resource contention
is essential for understanding how the MicroOpt framework
handles competition for scarce resources. Finally, we plan to
scale up the testbed to include a full transport network and an
integrated radio physical layer.

ACKNOWLEDGMENT

The authors thank Niloy Saha for his assistance in setting
up the 5G testbed.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94–100, May 2017.

[2] G. Barlacchi et al., “A multi-source dataset of urban life in the city of
milan and the province of Trentino,” Sci. Data, vol. 2, no. 1, pp. 1–5,
Oct. 2015. [Online]. Available: http://dx.doi.org/10.1038/sdata.2015.55

[3] M. A. Habibi, B. Han, M. Nasimi, and H. D. Schotten, “The struc-
ture of service level agreement of slice-based 5G network,” 2018,
arXiv:1806.10426.

[4] H. N. Qureshi, M. Manalastas, S. M. A. Zaidi, A. Imran, and
M. O. Al Kalaa, “Service level agreements for 5G and beyond:
Overview, challenges and enablers of 5G-healthcare systems,” IEEE
Access, vol. 9, pp. 1044–1061, 2020.

[5] Q. Liu, N. Choi, and T. Han, “Constraint-aware deep reinforcement
learning for end-to-end resource orchestration in mobile networks,” in
Proc. IEEE Int. Conf. Netw. Protocols (ICNP), 2021, pp. 1–11.

[6] J. Li, J. Liu, T. Huang, and Y. Liu, “DRA-IG: The balance of
performance isolation and resource utilization efficiency in network
slicing,” in Proc. IEEE Int. Conf. Commun. (ICC), 2020, pp. 1–6.

[7] Q. Liu, N. Choi, and T. Han, “Atlas: Automate online service configura-
tion in network slicing,” in Proc. Int. Conf. Emerg. Netw. Exp. Technol.
(CoNEXT), 2022, pp. 140–155.

[8] M. Sulaiman, M. Ahmadi, M. A. Salahuddin, R. Boutaba, and A.
Saleh, “Generalizable resource scaling of 5G slices using constrained
reinforcement learning,” in Proc. IEEE/IFIP Netw. Oper. Manag. Symp.
(NOMS), 2023, pp. 1–9.

[9] M. Ferriol-Galmés et al., “RouteNet-fermi: Network modeling with
graph neural networks,” IEEE/ACM Trans. Netw., vol. 31, no. 6,
pp. 3080–3095, May 2023.

[10] T. Hu, Q. Liao, Q. Liu, A. Massaro, and G. Carle, “Fast and scalable
network slicing by integrating deep learning with Lagrangian methods,”
2024, arXiv:2401.11731.

[11] Q. Liu, N. Choi, and T. Han, “OnSlicing: Online end-to-end network
slicing with reinforcement learning,” in Proc. ACM Int. Conf. Emerg.
Netw. Exp. Technol. (CoNEXT), 2021, pp. 141–153.

[12] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[13] Y. Liu, J. Ding, and X. Liu, “A constrained reinforcement learning based
approach for network slicing,” in Proc. IEEE Int. Conf. Netw. Protocols
(ICNP), 2020, pp. 1–6.

[14] M. Alsenwi, N. H. Tran, M. Bennis, S. R. Pandey, A. K. Bairagi, and
C. S. Hong, “Intelligent resource slicing for eMBB and URLLC coexis-
tence in 5G and beyond: A deep reinforcement learning based approach,”
IEEE Trans. Wireless Commun., vol. 20, no. 7, pp. 4585–4600,
Jul. 2021.

[15] R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg, and H. S. Kim, “URLLC
for 5G and beyond: Requirements, enabling incumbent technologies and
network intelligence,” IEEE Access, vol. 9, pp. 67064–67095, 2021.

[16] S. Zhang, “An overview of network slicing for 5G,” IEEE Wireless
Commun., vol. 26, no. 3, pp. 111–117, Jun. 2019.

[17] A. Encinas-Alonso, C. M. Lentisco, I. Soto, L. Bellido, and
D. Fernandez, “A slicing model for transport networks with traffic burst
control and QoS compliance for traffic flows,” IEEE Open J. Commun.
Soc., vol. 6, pp. 2152–2176, 2025.

[18] A. T. Z. Kasgari and W. Saad, “Stochastic optimization and control
framework for 5G network slicing with effective isolation,” in Proc.
IEEE Annu. Conf. Inf. Sci. Syst. (CISS), 2018, pp. 1–6.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

SULAIMAN et al.: MICROOPT: MODEL-DRIVEN SLICE RESOURCE OPTIMIZATION IN 5G AND BEYOND NETWORKS 4461

[19] J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, and
X. Costa-Perez, “Overbooking network slices through yield-driven end-
to-end orchestration,” in Proc. ACM Int. Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2018, pp. 353–365.

[20] R. Li et al., “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74429–74441, 2018.

[21] F. Wei, S. Qin, G. Feng, Y. Sun, J. Wang, and Y.-C. Liang, “Hybrid
model-data driven network slice reconfiguration by exploiting prediction
interval and robust optimization,” IEEE Trans. Netw. Service Manag.,
vol. 19, no. 2, pp. 1426–1441, Jun. 2022.

[22] A. Baumgartner, T. Bauschert, A. A. Blzarour, and V. S. Reddy,
“Network slice embedding under traffic uncertainties—A light robust
approach,” in Proc. 13th Int. Conf. Netw. Service Manage. (CNSM),
2017, pp. 1–5.

[23] A. Baumgartner, T. Bauschert, A. M. C. A. Koster, and V. S. Reddy,
“Optimisation models for robust and survivable network slice design:
A comparative analysis,” in Proc. GLOBECOM IEEE Global Commun.
Conf., 2017, pp. 1–7.

[24] A. Balasingam, M. Kotaru, and P. Bahl, “Application-level service
assurance with 5G RAN slicing,” in Proc. 21st USENIX Symp. Netw.
Syst. Design Implement. (NSDI), 2024, pp. 841–857.

[25] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5G network
slicing resource utilization,” in Proc. INFOCOM IEEE Conf. Comput.
Commun., 2017, pp. 1–9.

[26] Q. Yang et al., “DeepQueueNet: Towards scalable and generalized
network performance estimation with packet-level visibility,” in Proc.
ACM SIGCOMM, 2022, pp. 441–457.

[27] O. Iacoboaiea, J. Krolikowski, Z. B. Houidi, and D. Rossi, “From design
to deployment of zero-touch deep reinforcement learning WLANs,”
IEEE Commun. Mag., vol. 61, no. 2, pp. 104–109, 2023.

[28] M. Sulaiman, A. Moayyedi, M. Ahmadi, M. A. Salahuddin, R. Boutaba,
and A. Saleh, “Coordinated slicing and admission control using multi-
agent deep reinforcement learning,” IEEE Trans. Netw. Service Manag.,
vol. 20, no. 2, pp. 1110–1124, Jun. 2023.

[29] V. Sciancalepore, X. Costa-Perez, and A. Banchs, “RL-NSB:
Reinforcement learning-based 5G network slice broker,” IEEE/ACM
Trans. Netw., vol. 27, no. 4, pp. 1543–1557, Jul. 2019.

[30] D. Bega, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“DeepCog: Cognitive network management in sliced 5G networks with
deep learning,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
2019, pp. 280–288.

[31] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez,
“How should I slice my network? A multi-service empirical evaluation
of resource sharing efficiency,” in Proc. Int. Conf. Mobile Comput. Netw.
(MobiCom), 2018, pp. 191–206.

[32] K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot, “Long-term fore-
casting of Internet backbone traffic: Observations and initial models,”
in Proc. INFOCOM 22nd Annu. Joint Conf. IEEE Comput. Commun.
Soc., 2003, pp. 1178–1188.

[33] C. Bishop, Mixture Density Networks, Aston Univ., Birmingham, U.K.,
1994.

[34] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. 31st
Conf. Neural Inf. Process. Syst., 2017, pp. 1–4.

[35] A. Graves, “Stochastic backpropagation through mixture density distri-
butions,” 2016, arXiv:1607.05690.

[36] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[37] A. Cotter, H. Jiang, and K. Sridharan, “Two-player games for efficient
non-convex constrained optimization,” in Proc. Algorithmic Learn.
Theory, 2019, pp. 300–332.

[38] J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and
B. Recht, “First-order methods almost always avoid strict saddle points,”
Math. Program., vol. 176, pp. 311–337, Jul. 2019.

[39] E. Busseti, W. M. Moursi, and S. P. Boyd, “Solution refinement at regular
points of conic problems,” Comput. Optim. Appl., vol. 74, pp. 627–643,
Dec. 2019.

[40] P. L. Donti, D. Rolnick, and J. Z. Kolter, “DC3: A learning method for
optimization with hard constraints,” 2021, arXiv:2104.12225.

[41] “Sulaimanalmani/k8s_srsran_open5gs: Containerized/kubernetes
deployment of E2E 5G testbed using srsRaN and Open5gs.” Github.com.
Accessed: Feb. 14, 2025. [Online]. Available: https://github.com/
sulaimanalmani/k8s_srsran_open5gs.

[42] “5G-srsRAN project.” Accessed: May 17, 2025. [Online]. Available:
https://www.srsran.com/

[43] “Introduction—srsRAN 4G 23.11 documentation.” Accessed: May 19,
2025. [Online]. Available: https://docs.srsran.com/projects/4g/en/latest/
usermanuals/source/srsue/source/1_ue_intro.html

[44] “Open5GS.” Accessed: Feb. 14, 2025. [Online]. Available: https://
open5gs.org/

[45] (Linux Found., San Francisco, CA, USA). OpenVSwitch, Version 2.9.8.
2023. [Online]. Available: https://www.openvswitch.org/

[46] (Open Netw. Found., New Delhi, India). ONOS, Version 2.5.7-rc1. 2023.
[Online]. Available: https://github.com/opennetworkinglab/onos

[47] “Dropbox.” dropbox.com. Accessed: Feb. 14, 2025. [Online]. Available:
https://www.dropbox.com/scl/fi/vgv2v8tidcduz39gozn3f/ytdl.pcap?
rlkey=gipq1lpghzupfwj41coni8gir&st=l96qtq90&dl=0.

[48] N. Saha, N. Shahriar, R. Boutaba, and A. Saleh, “MonArch: Network
slice monitoring architecture for cloud native 5G deployments,” in Proc.
IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), 2023, pp. 1–7.

[49] “Sulaimanalmani/5G-resource-allocation-dataset: Dataset and resources
for 5G network resource allocation models.” Github.com. Accessed:
Feb. 14, 2025. [Online]. Available: https://github.com/sulaimanalmani/
5G-resource-allocation-dataset.git.

[50] “Autoscaling workloads.” 2024. [Online]. Available: https://kubernetes.
io/docs/concepts/workloads/autoscaling/

Muhammad Sulaiman (Graduate Student Member,
IEEE) received the B.S. degree in electrical engi-
neering from the National University of Sciences and
Technology, Pakistan, in 2019. He is currently pursu-
ing the Ph.D. degree with the University of Waterloo.
His research focuses on autonomous 5G/6G network
management and orchestration using AI. His work
was nominated for IEEE/IFIP NOMS best paper
award in 2022 and 2023.

Mahdieh Ahmadi received the B.S. degree in
computer engineering from the University of Tehran,
Iran, in 2013, and the M.Sc. and Ph.D. degrees
in computer engineering from the Sharif University
of Technology, Iran, in 2015 and 2020, respec-
tively. From 2022 to 2023, she was a Postdoctoral
Researcher with the David R. Cheriton School of
Computer Science, University of Waterloo, Canada.
She is currently with Ericsson R&D, Canada.

Bo Sun received the B.E. degree from the Harbin
Institute of Technology, Harbin, China, in 2013, and
the Ph.D. degree from the Hong Kong University
of Science and Technology, Hong Kong, in 2018.
He is a Postdoctoral Fellow with the University
of Waterloo. His research focuses on online
optimization and decision-making under uncertainty
with applications to real-world networked systems.

Mohammad A. Salahuddin (Member, IEEE)
received the Ph.D. degree in computer science
from Western Michigan University in 2014. He is
currently a Research Assistant Professor of com-
puter science with the University of Waterloo. His
research interests include the Internet of Things,
content delivery networks, network softwarization,
network security, and cognitive network manage-
ment. His coauthored research publications have
received numerous awards, including the ACM
SIGMETRICS Best Student Paper, the IEEE/IFIP

NOMS Best Papers, and the IEEE CNOM Best Paper. He serves on the TPC
for international conferences. He is a Reviewer for various peer-reviewed
journals, magazines, and conferences.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

4462 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 22, NO. 5, OCTOBER 2025

Raouf Boutaba (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer science from
Sorbonne University in 1990 and 1994, respec-
tively. He is currently a University Professor and
the Director with the David R. Cheriton School
of Computer Science, University of Waterloo,
Canada. He also holds the Rogers Chair in network
automation. He is the Founding Editor-in-Chief
of the IEEE TRANSACTIONS ON NETWORK AND

SERVICE MANAGEMENT from 2007 to 2010 and
served as an Editor-in-Chief of IEEE JOURNAL ON

SELECTED AREAS IN COMMUNICATIONS from 2018 to 2021. He is a Fellow
of the Engineering Institute of Canada, the Canadian Academy of Engineering,
and the Royal Society of Canada.

Aladdin Saleh received the Ph.D. degree in elec-
trical and electronic engineering and the M.B.A.
degree in international management from the uni-
versity of London, U.K. He is currently priming
research and innovation activities with Rogers com-
munications, including the joint research partnership
with the University of Waterloo on 5G and emerging
technologies. He has over 20 years of industry
experience in Mobile Telecom, Canada. He taught
and conducted research on next-generation wire-
less networks at several universities as a Full-Time

Professor, an Adjunct Professor, and a Visiting Researcher. In addition to his
role at Rogers, he is currently an Adjunct Professor with the Cheriton School
of Computer Science, University of Waterloo.

Authorized licensed use limited to: University of Waterloo. Downloaded on October 17,2025 at 15:21:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

