
July 22, 2005 final version for IEEE JSAC – autonomic communication systems

QoS-Aware service composition and adaptation in
Autonomic Communication

Jin Xiao and Raouf Boutaba
School of Computer Science

University of Waterloo
200 University Ave. W., Waterloo, ON, Canada

Email:{j2xiao,rboutaba}@bbcr.uwaterloo.ca

Abstract

Advents in network technology and distributed system design have propelled network communication service

beyond best effort data delivery. With the rising complexity of network infrastructures and the need for on-

demand provisioning operations, a high degree of self-sufficiency and automation is required in the network service

infrastructure. Guided by the autonomic communication principle, this paper first presents an autonomic service

provisioning framework for establishing QoS-assured end-to-end communication paths across administratively

independent domains. Through graph abstraction, we show that the domain composition and adaptation problem

could be reduced to the classic k-MCOP problem. In analyzing existing k-MCOP solutions, we show their

inefficiencies when applied to the service provisioning context and establish a number of new domain composition

and adaptation algorithms. These new algorithms are designed for the self-configuration, self-optimization and

self-adaptation of end-to-end network communications and can provide hard QoS guarantees over domains with

relative QoS differentiations. Through in-depth experimentations, we compare the performance of our algorithms

with classic k-MCOP solutions and demonstrate the effectiveness of our approach.

Index Terms

Autonomic Communication, Service Provisioning, Service Composition and Adaptation, Quality of Service

I. I NTRODUCTION

Over the past years, advents in network technology and distributed system design have propelled network

communication service beyond best effort data delivery. With the increased dependency on reliable and

QoS assured network operations, next generation networks (NGN) are envisioned to support the dynamic

1

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

provisioning of network services, catered to the specific QoS requirements of the users/applications. The

emergence of new computing paradigms (e.g. peer-to-peer networks, Web services, Grid services, overlay

networks, etc.) further accentuates the need for on-demand network service provisioning. It remains that

the objective of provisioning is to establish an end-to-end data communication pathway from source

to destination with QoS assurance. Most of the existing works focus on provisioning within a single

administrative domain. They can be grouped into two general approaches: hard resource allocations (e.g.

IETF IntServ approach [1]) or relative traffic differentiation (e.g. IETF DiffServ approach [2]). The latter

method is favored in large scale networks due to its scalability and better resource utilization. With the

increased complexity of network infrastructures and the rising need for on-demand service provisioning

operations, a high degree of self-sufficiency and automation is required in network service infrastructure.

This is in part the aim of autonomic communications [3]: to engender self-managed intelligent networks

that are capable of self-configuration, self-protection, self-optimization and self-healing. Such infrastructure

could significantly reduce the complexity of network management and lessen the degree of human

participation in network operations.

To realize automated and dynamic provisioning of network services, it is important to understand the

requirements of the upper layer applications, who are the “users” of service, and the characteristics of the

underlying network infrastructure, who are the “providers” of service. On the user side, the increasing dis-

tributedness of software and systems results in end-to-end communication paths across multipledomains.

In the context of this paper, we use the termdomain to mean administratively independent network

domains or independent service providers. To date, the issue of inter-domain service provisioning is

seldom addressed in literature. In our view, an inter-domain service provisioning mechanism must respect

the following two conditions: domains share few information with each other and generally no information

about their own networks; each domain independently conducts its own intra-domain provisioning. An end-

to-end communication path is thus composed of a set of such consecutive domains selected among a much

2

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

larger set of interconnected domains and each of which offers different sets of QoS guarantees at varied

cost. For example, the IETF DiffServ approach [2] uses class markings to facilitate differentiated services

in a domain, and each domain is entitled to its own class specifications and associated QoS levels. An

important question to answer when provisioning an end-to-end network service is: what domains to involve

and what service class to choose in each involved domain? We term this theservice compositionproblem.

On the provider side, the dynamicity in network weather induces rapid changes in QoS conditions of

domains. This issue is particularly pronounced for wireless networks, an important part of next generation

network infrastructure. As a result, domains that promise specific QoS levels at configuration time may

fail to honor these requirements. Therefore, a communication path must monitor, re-evaluate and adjust its

domain composition dynamically in order to ensure the required end-to-end QoS level is maintained. In

the presence of mobility, as communicating applications/users roam across domains, path reconstruction

may also become necessary. We term this theservice adaptationproblem. In addition, solutions to the

composition and adaptation problems should be QoS-aware, in that the composition should result in a

satisfying end-to-end QoS-assured path based on QoS information of domains, and the adaptation must

be performed as to ensure the QoS requirements are upheld whenever network weather fluctuates. It is

essential for an autonomic service provisioning infrastructure to effectively and efficiently address these

problems.

In this paper, we present a mechanism for QoS-aware service composition and adaptation of end-to-end

network service for autonomic communication. First, we introduce a service provisioning framework based

on the autonomic communication principle, covering a number of essential functions: domain discovery,

domain reacheability, composition, cross-domain contracting, intra-domain provisioning, domain-wide

monitoring and adaptation. To achieve self-management intelligence, an efficient method for service

composition and adaptation is required at the inter-domain level. Through domain graph abstraction, we

reduce the domain composition and adaptation problem to the classic k Multi-Constrained Optimal Path

3

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

problem (k-MCOP). However, in the context of service provisioning, we find existing k-MCOP solutions

inadequate and inefficient. Following this analysis, we develop a set of new algorithms for QoS-aware

service composition and adaptation. With high probability, our composition algorithm finds a series of

consecutive domains spanning end-to-end and select appropriate service class in each domain such that

the overall QoS requirements are satisfied. The algorithm also minimizes the overall cost of the path. As

the network condition changes over time or as the user roams across domains, our adaptation algorithm

ensures the QoS requirements of the communication path is respected as long as it is feasible to do

so, while minimizing the cost of such adjustments. Together, these algorithms are designed to support

self-configuration, self-optimization and self-adaptation of network communication services. The domain

abstraction and a simpler version of the algorithms were first introduced in our work on end-to-end service

provisioning [4]. As we address the service provisioning problem at the domain level, our algorithms can

function over heterogeneous intra-domain provisioning mechanisms, and more importantly, provide hard

end-to-end QoS guarantees over “soft” intra-domain QoS schemes (i.e. offered by service differentiation

approaches). Through in-depth experimentation with real network topologies, we compare the performance

of our algorithms with classic k-MCOP solutions and demonstrate the effectiveness of our approach.

The remainder of the paper is organized as follows. Section II presents our service provisioning framework

and related works. Section III reduces the composition and adaptation problems to k-MCOP through

domain graph abstraction, and analyzes existing k-MCOP solutions. Section IV presents our algorithms

and their application to composition and adaptation. Through detailed experimentations in Section V, we

show the performance and effectiveness of our solution. Section VI summarizes our work and contributions.

II. A UTONOMIC PROVISIONING FRAMEWORK AND RELATED WORKS

First, we briefly discuss existing works in inter-domain service composition and provisioning. Raman et.

al. [5] presented a general framework for service composition across multiple providers. They stress on

4

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

the importance of inter-domain cooperations among service providers and the need for performance aware

service composition. In their reference architecture, they envision the service composition to encompass

both the application and the connectivity planes wherein “end-to-end network with desirable properties”

should be constructed at the connectivity plane. Zeng et. al. [6] proposed a QoS-aware service composition

scheme for web services. They are concerned with finding the optimal service execution plan among

the set of candidate service components, while taking into account the QoS characteristics of these

components. The QoS attributes investigated in this work are software quality oriented (e.g. execution

duration, reputation, success rate, etc.). They pose the composition problem as a graph search problem,

where the graph represents the execution states of the service components. An integer programming

technique is proposed to solve this problem. Their experimentation show that the scheme does not scale

well beyond 60 states. Furthermore, no QoS adaptation scheme is proposed at the software level. Similarly,

Gu et. al. [7] proposed a QoS-assured service composition mechanism for Service Overlay Networks

(SON). They attempt to find a feasible service component flow via a linear multi-constraint mapping

function. However, the search heuristic does not perform well (Section V) and only attempts to find a

feasible path. They also proposed a simple localized recovery scheme to cope with QoS violations.

Fig. 1. Autonomic Provisioning Framework

In the network service context, there lacks a guiding framework for autonomic service provisioning of

5

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

end-to-end communication paths. For the remainder of this section, we present our view of an autonomic

service provisioning framework and discuss its key functions. Figure 1 illustrates our framework. At the

intra-domain level, we assume the existence of autonomic component (IntraDom) capable of conducting

QoS provisioning, performing resource allocations, and monitor QoS conditions within the domain. We

focus on the functions of inter-domain autonomic provisioning component (InterDom). Three general

functions are prescribed for an autonomic component [3]: sensor, analyzer/planner, and actuator. The

sensor function of the InterDom consists of two part: domain discovery and inter-domain monitoring. The

domain discovery function is able to discover domain connectivities and QoS service class descriptions

for domains. Such discovery could be facilitated either through large-scale discovery systems, such as

Secure Service Discovery Service [8] and works on Web Service discovery [9][10], or through facilities

in the existing network infrastructure, such as BGP [11]. In the case of BGP, the BGP speakers can be

pulled periodically by the domain discovery function to extract two pieces of information: the neighboring

domains it can send traffic to and the list of IP addresses that can be reached via each of these domains.

Information on domain administrative policies and service class descriptions from domain administration

could be gathered to provide the needed QoS class descriptions. The inter-domain monitor function is

tasked with monitoring the domain-level QoS condition for each service class a domain provides. This

function can be facilitated via a set of distributed QoS monitors installed at domain borders, measuring

the aggregate QoS condition of each service class in the domain. As InterDom works at the domain-level,

for better scalability, only domain-wide QoS measurements are necessary. We note that the monitors of

InterDom should not make use of monitoring functions offered by IntraDom for the following reason:

monitoring is an essential part of QoS enforcement, a domain could misrepresent its own QoS conditions

for obvious economical reasons. Hence domain-level QoS monitoring should be conducted independent

of the domain administrations.

The actuator function of InterDom is composed of the cross-domain contracting function and the cross-

6

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

domain provisioning function. The cross-domain contracting function is responsible for establishing the

required contracts with each domain for specific QoS classes and setup cross-domain traffic exchange with

neighboring domains. Recent research works on service composition [5][6][7] and work flow languages,

such as Web Service Flow Language (WSFL) [12] and Business Process Execution Language for Web

Service (BPEL4WS) [13] could be leveraged to accomplish this task, especially when combined with

works done on contract-based cross-domain management [14][15][16]. The inter-domain provisioning

function interfaces with IntraDom to obtain a QoS-assured path segment across the domain at specific

border points (as specified by the cross-domain contracting function), or from source/destination to the

border point. Such domain provisioning independence grants each domain the autonomy in conducting its

own resource management, QoS-based admission control, and pricing strategies. In practice, we expect

most of these domains to employ DiffServ. Then a bandwidth broker like architecture can be applied to

realize both the intra-domain provisioning and cross-domain negotiation [17].

The core self-management “intelligence” of InterDom lies in its analyzer/planner functions: composition

and adaptation. The composition function must utilize the domain connectivity and service class infor-

mation to determine the best suited domain path from source to destination and their respective service

classes. And the adaptation function must react to changing QoS conditions along the path by modifying

the existing composition to ensure end-to-end QoS requirements are satisfied. We envision an InterDom

is dynamically created specifically for each communication path, utilizing the same underlying functions

(e.g. IntraDoms, monitors, etc.). The management composition as determined by InterDom is dynamically

adjusted whenever path adjustment takes place. More precisely, when a domain is selected/deselected from

the communication path, the associated autonomic components of the domain are connected/disconnected

from the InterDom. Since the composition and adaptation functions drive the autonomic behavior of the

communication paths, we focus on finding suitable solutions to theservice compositionand adaptation

problems. In this scope, we deal with domain level information: domain connectivity, service classes and

7

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

domain-wide QoS conditions.

III. D OMAIN GRAPHS AND PROBLEM ANALYSIS

In this section, we detail the creation of a domain graph, which is an abstract representation of the domain

connectivity and their service classes. Each service class is considered to have a set of QoS assurance and

an associated cost. We focus on three common QoS factors in this paper: delay, availability, and bandwidth.

In doing so, we reduce our problems to k-MCOP (k Multi-Constraint Optimal Path problem), which is

known to be NP-Complete [18]. We then analyze the prominent solutions to the k-MCOP problem, and

show their inadequacies in our context. As a result of this analysis, we are motivated to develop new

QoS-aware composition and adaptation algorithms for autonomic service provisioning.

A. Domain Graph Creation

A domain exchanges traffic flows with its neighboring domains via border gateways. Each domain has

a number of service classes, each with a set of QoS assurances and a price. For domains without QoS

differentiations, they are assumed to provide a single set of QoS assurances and price. Figure 2 depicts

a typical example of domain connectivity between two service components:S andD.

We can abstract the domain connectivity information as an undirected graph, where the nodes of the

graph represent the border gateway exchanges between neighboring domains and the edges of the graph

represent the connectivity between border gateways in a domain. Figure 3 illustrates this transformation

process. Inter-domain routing policies can be incorporated during this process. For example, domainA

routes all traffics transiting from its south neighbor to its east neighbor through border gatewayβ. This

policy is reflected in the graph (Figure 3). With such an abstraction, it is natural to represent the QoS

assurance set and its associated price as a set of weights on each edge. For example, if domainC offers

a QoS class with minimum bandwidthBWC , minimum availabilityAC , maximum delayDC , and price

8

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 2. An Example of Domain Connectivity Fig. 3. Graph Representation of Domain Connectivity

CC , then the edge connecting its border gateways is assigned the weight set{DC , CC , AC , BWC}.

As mentioned before, a domain can have a set of service classes (e.g. domainC offers three service classes

and domainB offers two). A domain can also have complex QoS class offerings based on its policies. For

example, domainA offers two service classes ({DA1, CA1, AA1, BWA1} and{DA2, CA2, AA2, BWA2}) to

traffics coming from the domain to its west, and only offers one service class ({DA3, CA3, AA3, BWA3})

to traffics coming from the domain to its south. To incorporate these service classes into the domain

graph, we first associate each edge of the graph with the set of possible service classes. Then, the edge is

expanded by introducing a number of “service nodes”, where one node of the original edge now connects

to a service node via a new edge with a weight set representing one service class, and the other node of

the original edge connects to the service node via a new edge with anil weight set{0, 0, 1,∞}. Then

it is apparent that the number of service nodes introduced on such an edge is equal to the number of

service classes associated with that edge. Figure 4 illustrates the edge expansions involving domainsA,

B andC.

We observe that a path from nodeS to nodeD on the expanded domain graph not only represents a

possible sequence of interconnecting domains between the two end points, but also depicts a selection of

9

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 4. Domain Graph with Service Class Expansion Fig. 5. Example of the Two-hop Problem on Domain Graph

respective service classes in these domains. By traversing through all possible paths betweenS andD, we

can exhaustively search all possible service compositions between them. Thus, it is possible to formulate

our composition and adaptation as a graph search problem. Therefore, our composition and adaptation

problems can be stated as: given the expanded domain graphG(V, E), find a pathP = (ω1, ..., ωk, ω ∈ E)

from nodevs to nodevd such that the end-to-end delay
∑

i=1...k Di is below delay constraintκD, the end-

to-end availability
∏

i=1...k Ai is above availability constraintκA, the bandwidthBW of all edges inP

is above bandwidth constraintκBW , and the cost
∑

i=1...k Ci is below cost constraintκC . Such a path is

termed a feasible path. Then, a minimal feasible path is a feasible path whose cost is minimal among all

feasible paths.

Rather than dealing with heterogenous constraint conditions, we can rewrite the above constraints as:

τ1 =

∑
i=1...k Di

κD
, τ2 =

∑
i=1...k Ci

κC
(1)

τ3 =
1−∏

i=1...k Ai

1− κA
, τ4i =

κBW

BWi

With respect to equations 1, the service composition problem can be formalized as:

Given an undirected graph G(V,E) and two nodes in V (vs and vd), where each edgeu ∈ E has weights

10

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

{D, C, A,BW}, find a path P=(ω1,...,ωk, ω ∈ E) connectingvs and vd such thatτ1, τ2, τ3 ≤ 1, τ4i ≤ 1

for all ω, and
∑

i=1...k Ci is minimal.

This is equivalent to thek Multi-Constraint Optimal Path problem(k-MCOP), which is known to be

NP-Complete [18]. In the following subsection, we present existing solutions to the k-MCOP problem

and discuss their inadequacies.

B. Solutions to k-MCOP

The k-MCOP problem is well studied in the literature, particularly in the context of QoS routing. For

purpose of analysis, we denote the number of nodes in the graph (including all node types) byN and

the number of edges in the graph byE. Chen and Nahrstedt [19] proposed an approximation algorithm

(Chen) for finding a feasible path. Their algorithm involves mappingk− 1 real weights tok− 1 integers

in the range of 0 tox. A dynamic programming scheme is then used to obtain a feasible path. The

runtime complexity of their algorithm isO(x2|N |2). The probability of finding a solution with Chen’s

algorithm is directly related to the value space size of the weights. When a weight can take on a large set

of real values,x must also increase proportionally such that there is an integer value inx very close to

the weight values of a feasible path. Thus, the value ofx must be very large in practice, especially when

dealing with delay and availability metrics. Furthermore, Chen’s algorithm does not seek optimal solution.

The limited path heuristic (LPH) algorithm [20] is constructed based on an extended Bellman-Ford

algorithm. As the extended Bellman-Ford algorithm expands each node to keep track of all possible

paths from source to the node, the overall runtime is exponential. The LPH algorithm attempts to obtain

an approximation by limiting the number of paths stored at any node toX. They further prove that when

X = O(|N |2lg|N |), LPH can obtain near optimal solutions. However, to obtain this, the runtime of LPH

(O(X2|N ||E|)) becomes very large for the purpose of adaptation. In addition, Bellman-Ford requires

complete domain connectivity information at its initialization stage.

11

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

The TAMCRA [21] algorithm (TAMCRA) attempts to find a feasible path without optimization. The work

proposes to use non-linear constraint mapping functions that maps k constraints to a single value. When

designed carefully, such mapping function can produce the desirable effect of amplifying the resulting

value when one of the weights is above constraint. The algorithm keeps track ofK non-dominating paths

at each node. A path is said to be non-dominating over another path if one of its weight values is better

than the corresponding weight value of the other path. The runtime of TAMCRA can be quite large when

K is high (O(K|N |log(K|N |)+K3k|E|)). As TAMCRA is not optimized, a high value ofK is necessary

to obtain near optimal solution. An extension to the TAMCRA algorithm is later proposed [22], but the

increased runtime complexity makes it impractical for dynamic service provisioning.

Korkmaz and Krunz [23] proposed a heuristic (H MCOP) using a two pass Dijkstra’s algorithm with look

ahead. However, their look ahead heuristic is overly simplistic and their minimization step does not yield

near optimal solutions. Nevertheless, HMCOP is fast and does find feasible solutions when the constraint

bound is loose.

Some investigations are conducted on the performance of these algorithms [24]. TAMCRA and HMCOP

algorithms are illustrated to provide the best performance. However, we find both of these algorithms are

inadequate for service provisioning due to the existence of many “two-hop loop” on a domain graph.

Figure 5 depicts such a loop. It is an abstraction of a domain with three service classes. Suppose the

constraint set is{20,20}, both the TAMCRA and HMCOP algorithms will find the path highlighted in

5a), which is not a feasible path. 5b) highlights a feasible path. This problem arises because the non-

linear mapping function only retains information on the highest aggregate weight at any node, and both

algorithms greedily explore the minimum of such aggregates. TAMCRA’s limited backtracking capability

allows it to sometimes recover from this condition, but when there are many two-hop loops on a graph,

the algorithm could not perform well.

12

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

An in-depth performance evaluation of these algorithms is presented in Section V. We conclude that

an effective service composition and adaptation scheme must consider a number of factors. First, the

scheme must perform within reasonable time bound for adaptation to be effective (within hundreds

of milliseconds). Although the actual efficiency of adaptation is also contingent on the efficiency of

the information gathering facilities and the provisioning mechanisms, we believe the composition and

adaptation algorithm should not become another significant factor to the overall runtime. Second, the cost

and degree of disruption during adaptation should be minimized. Both of these factors are important for

self-adaptation. Third, the scheme should have a high probability of finding a feasible path when one exists

and provide a near optimal solution with regard to cost. This factor directly impacts the effectiveness of

self-configuration and self-optimization. Fourth, the scheme should not introduce excessive communication

overhead. Based on these guidelines, we develop new algorithms for the service composition and adaptation

problem. In particular, we desire to find a solution that can effectively address the “two-hop loop” problem

and provide a much better near optimal solution compared with existing works. Although in this paper

we deal with undirected graphs, in practice the QoS conditions across two gateways of a domain could

be different depending on the direction of the flow. Using directed domain graph could account for this

aspect and since Dijkstra’s algorithm could be applied to both directed and undirected graphs, our service

composition algorithm exhibits similar characteristic.

IV. COMPOSITION AND ADAPTATION FOR AUTONOMIC SERVICE PROVISIONING

In this section, we detail the development of new composition (SComp) and adaptation algorithms for

autonomic service provisioning. We first introduce the construction of our non-linear mapping function

and the service composition algorithm. Then we enhance the SComp algorithm to address the two-hop

loop problem. Finally, we present the adaptation algorithm and show mobility support as a special case

of adaptation.

13

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

A. The Composition algorithm

Most of the existing heuristics for k-MCOP utilize the Bellman-Ford or Dijkstra’s algorithm, since both

of them are simple and fast, while still yield provable shortest path solutions for 1-MCOP. Our heuristic

favors Dijkstra’s algorithm, as it relies on per-hop information in its search process. Two major issues are

encountered in utilizing Dijkstra’s algorithm to solve the k-MCOP problem. One, Dijkstra’s algorithm uses

a greedy search strategy without backtracking (hence the fast runtime bound). However, for k-MCOP, it is

often the case that the minimal cost path will violate one or more constraints that forces the algorithm to

backtrack. Two, if a mapping function is used to transform thek weights into a single value, it is difficult

to ensure the following requirements: a) the function produces smaller values for all feasible paths than

the values it produces for infeasible paths. b) a path that minimizes such mapped value is also a minimal

cost path.

Let H(D, C, A) be a mapping function that satisfies requirement a), our algorithm first runs Dijkstra’s

algorithm fromvd to vs by minimizingH(D, C, A). The purpose of this reverse search step is to determine

whether there is a feasible path from every nodevj to vd. We denote this step asMC Search. Then, we

run the Dijkstra’s algorithm fromvs to vd by minimizing the cost. However, we include a nodevj on the

shortest path iff. the entire path fromvs to vd throughvj is a feasible path. Such look ahead is possible as

MC Searchprovides this feasibility information fromvj to vd. This prevents our algorithm from following

a shortest path that would result in constraint violations at a later point along the path. We denote this

cost minimization step asMIN Search. MIN Searchalso removes requirement b) fromH(D,C,A). For

the remainder of this subsection, we first develop the mapping functionH(D, C, A), and then present the

MC SearchandMIN Searchfunctions.

The uniform transformation of constraint conditions (as conducted in Equations 1 yields an interesting

property when subject to the following non-linear function:

14

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 6. MC Searchfunction Fig. 7. MC SearchUpdatefunction

H
∗
(D, C, A) = (

∑
i=1...k Di

κD

)
λ

+ (

∑
i=1...k Ci

κC

)
λ

+ (
1−∏

i=1...k Ai

1− κA

)
λ (2)

Whenλ is set to a large constant value,H∗(D, C, A) will likely return a value no greater than 3 when

each of the weights are below 1 (i.e. a feasible path). This property becomes more salient whenλ is

taken to∞. H∗(D, C, A) will return no greater than 3 when none of the weights violates constraint and

return∞ otherwise. Such a non-linear function is the basis for a number of k-MCOP heuristics [21][23].

It is found that the maximization function exhibits similar characteristics [23] and we define our mapping

function H(D, C, A) accordingly:

H(D, C, A) = max(

∑
i=1...k Di

κD

,

∑
i=1...k Ci

κC

,
1−∏

i=1...k Ai

1− κA

) (3)

H(D, C, A) will be no greater than 1 when all of the weights are below constraints. Furthermore, the

value will always reflect the largest weight value in the set (i.e. closest to the constraint). This additional

property is very useful in a greedy search strategy as it attempts to select paths with good overall QoS

values.

The MC Searchfunction is presented in Figure 6. It tries to minimize the maximum weight from each

nodevj to vd. Each node keeps track of the following information: the maximum weightr of the minimal

path fromvj to vd, and the delay weightwD, the availability weightwA and the costwC of the path. The

w weights are also used to compute complete path information in theMIN Searchfunction. Steps 1 and

15

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 8. An Example ofMC Search Fig. 9. Example of the Service Composition Algorithm

2 are initialization steps. The listP contains nodes whoser values cannot be further improved. Steps 4

and 5 greedily select a node with the smallestr and obtain its improvable neighbors (i.e. either inT or

newly discovered).t list is a list of such neighbors. Steps 6 to 10 iterate through each member oft list

and update itsr value if permissible. Figure 7 detailsMC SearchUpdate. Steps 1 to 5 compute the new

weights andr of a path fromvd to vi via vc, wherevi is the set of neighboring nodes ofvc that has not

been added toP yet. If vi is a newly discovered node, it is added toT (steps 6 to 8), otherwisevi is

updated iff. the new path has a smallerr value thanvi’s old path (steps 9 to 11).

Figure 8 illustrates the operation ofMC Search. In 8a, nodeα is the current best node. The valuer of

nodeα is obtained by taking the highlighted path. Three neighbors of nodeα are updated (in 8b) and

nodeα is then added toP as it could not be further improved by the algorithm.

The MIN Searchfunction (Figure 10) is identical to theMC Searchfunction. Each nodevj keeps track

of the costvj.f of a minimal feasible path fromvs to vj, the predecessorvj.l of vj on the said path,

the delayvj.hD of the path, and the availabilityvj.hA of the path. The function tries to find the minimal

feasible path fromvs to vd.

16

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 10. MIN Searchfunction Fig. 11. MIN SearchUpdatefunction

The MIN SearchUpdatefunction (Figure 11) first computes the path cost and weights fromvs to vi via

vc (steps 1 to 4). If no foreseeable feasible path exists fromvs to vd via vc and vi, the function returns

(steps 5 to 7). Otherwise,vi is added toT if it is a newly discovered node (steps 8 to 10), orvi is updated

if the new path has lower cost than the old path (steps 11 to 13).

The operation ofMIN Searchis illustrated in Figure 9a. Nodeα has three improvable neighborsβ1, β2

andβ3. However, onlyβ2 is added toT , as followingβ1 or β3 does not lead to feasible paths. This look

ahead property prevents the algorithm from examining lower cost paths (viaβ1 or β3 in this case) that

may not be feasible.

Now, we present the service composition algorithm (Figure 12) that utilizes theMC SearchandMIN Search

functions. The algorithm terminates early ifMC Searchdoes not return a feasible path. Otherwise, the

algorithm will optimize on such a feasible pathp usingMIN Search, which yields a feasible pathp∗ with

cost at least as low asp. Figure 9c illustrates the result of the service composition algorithm, which is a

minimal feasible path on the graph. We observe that this path is not the minimal cost path (as generated

in Figure 9b) which violates the delay constraint.

Our service composition algorithm has twice the runtime of Dijkstra’s algorithm. As Dijkstra’s aglorithm

17

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 12. The Service Composition Algorithm Fig. 13. The Hybrid Service Composition Algorithm

has runtime of O(|E|+ |N |log|N |), our algorithm has a runtime of O(2(|E|+ |N |log|N |)), where|E| is

the total number of edges on the expanded domain graph and|N | is the total number of nodes (including

service nodes) on the expanded domain graph. This is proportional to the total number of service classes

in the domains interconnectingvs and vd. The effectiveness and efficiency of our service composition

algorithm is demonstrated in Section V.

B. The Hybrid Composition Algorithm

Our service composition algorithm suffers from the two-hop loop problem similar to the TAMCRA

and HMCOP algorithms. To address this issue, we enhance the service composition algorithm with an

additional full path heuristic. During the backward feasibility search, in addition to performingMC Search,

we also perform Dijkstra’s algorithm twice, once to find the minimal delay from any node to the source,

and once to find the maximum availability from any node to the source. After this triple backward search

step, each node will now hold not only the minimum non-linear mapping values to the source (and its

path), but also the minimum delay and maximum availability paths. In general, these three paths are not

the same. During the forward minimization step, in addition to performingMIN Search, we also perform

MIN SearchFull, which instead of minimizing cost, attempts to minimize the full path cost projection

based on the three paths recorded at each node. The hybrid algorithm returns the better result between

MIN SearchandMIN SearchFull. Figure 13 presents the hybrid service composition algorithm.

MIN SearchFull can recover some feasible paths that was deemed infeasible by theMC Search. When the

18

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

two-hop loop problem is encountered, although the non-linear mapping aggregate will lead to constraint

violation, one of the single attribute minimizing path may help to keep such violating weight in check. Fig-

ure 14 and Figure 15 presentMIN SearchFull andMIN SearchFull Update. In MIN SearchFull Update,

all three paths recorded by a node are evaluated (steps 4 to 25), and the node is evaluated based on the

lowest full path cost projection instead of current path cost. The lowest full path cost is computed based

on the current path cost to the node, plus the projected backward costs from destination to the node. In

considering full path projections, the problem of greedily exploring lowest cost path that may lead to

irrecoverable constraint violations (as in the case of two-hop loop problem) may be avoided. Furthermore,

during the forward search, when a particular attribute grows near constraint, taking its minimal path may

lead to feasible paths which SComp cannot find. BecauseMIN SearchFull does not attempt to minimize

cost, a path resulting fromMIN SearchFull could have higher cost than a path resulting fromMIN Search.

The converse is also true, the full path cost projection can provide minimal solutions via lookahead, which

a simple greedy search may not.

Similar to MIN Search, if MC Searchis able to find a feasible path, thenMIN SearchFull is guaranteed

to return this path if it cannot find a lower cost path. This property holds because the full path projection

of the path found throughMC Searchwill always be within constraints andMIN SearchFull will follow

another path of a lower cost if and only if that path is also a feasible solution (guaranteed by the full path

projection). Figure 16 shows an example in which the hybrid service composition algorithm is able to

recover a feasible path where the simple service composition algorithm cannot. After the three backward

searches, each node in the graph records the cumulative values of three paths: MCSearch, minimum

delay, and maximum availability. For simplicity, only the results of MCsearch and minimum delay are

presented in Figure 16a. Since MCSearch does not return a feasible path (Figure 16b), the simple service

composition algorithm fails. This is caused by the presence of a two-hop loop in the graph. The hybrid

algorithm is able to recover a feasible path by using the path projected by the minimal delay search

19

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 14. MIN SearchFull function Fig. 15. MIN SearchFull Updatefunction

(Figure 16c).

Theoretically, the runtime complexity of our hybrid composition algorithm is identical to that of the simple

composition algorithm. However, the process in worst case can take up to O(5(|E|+ |N |log|N |)) instead

of O(2(|E|+ |N |log|N |)).

C. Network Adaptation and Mobility Support

Throughout the course of a communication session, the network performance may vary significantly over

time. Even with the best service assurance schemes, one or more domains carrying the service traffic

may fail to deliver their promised QoS performance. When such an event occurs, self-adaptation should

take place in seeking an alternative communication path that satisfies the original QoS requirements,

while causing as little service disturbance as possible. In this section, we present the network adaptation

20

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 16. Example of the Hybrid Service Composition Algorithm Fig. 17. The Network Adaptation Algorithm

algorithm based on our search heuristic. The objective of the algorithm is to find a minimal cost alternative

pathpnew that utilizes as much of the old pathpold as possible.

The algorithm first updates the edge weights on the expanded domain graph to reflect the new domain

service conditions. Then, for each domain traversed bypold, set the cost of the edge inpold (i.e. the

chosen service class in the domain) to 0, and set the cost of the other edges (i.e. the other service classes

in the domain) to the cost of switching to that class. Run the service composition algorithm to obtain

a new path. Figure 17 details the algorithmSCAdaptation. Interestingly, the cost minimization strategy

also ensures that many parts of the old path is included in the new alternative path. With our approach,

the edges corresponding to the defective domains are not removed from the graph, but rather updated to

reflect the new domain condition. We note that setting the costs of these edges to 0 does not prevents

the algorithm from selecting a defective domain. It is designed in this way such that it is possible to

obtain an alternative path that includes some/all of the defective domains. For example, when a domain

in an existing domain composition suffers QoS deterioration, it may be possible to raise the QoS service

classes of its upstream and/or downstream domains in the existing composition and hence absorb the

QoS deterioration, rather than negotiate for new domain connections going around the defective domain,

which is likely to be slow and expensive. Figure 18a showspold in which two domains fail to deliver

21

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 18. Example of the Network Adaptation Algorithm Fig. 19. Example of Mobility Support

their promised delay requirements. The graph further shows two other domains that are willing to deliver

better delay assurances at higher price. Figure 18b shows the result of running theMC Searchfunction

which generated a feasible path. Figure 18c shows the new pathpnew (returned by the algorithm) that

improves on the cost of the path in 18b. The new path cost is the additional cost that must be absorbed

by the violating domains in order to maintain the service.

When the service components roam across domain boundaries, inter-domain network adaptation should

also take place. Such service mobility is a specific case of adaptation. First, the expanded domain graph is

updated to include the components’ new locations, and thenSCAdaptationis run. Again, the algorithm

will attempt to minimize the service disturbance by reusing parts of the old path. Figure 19 illustrates this

scenario. Figure 19a shows the existing path fromS to D beforeS moves. Figure 19b shows the result

of running the adaptation algorithm afterS moves. In this instance, the new path is a straightforward

extension of the old path.

Our adaptation scheme can provide hard QoS guarantees over domains with relative service differen-

tiations. The algorithm does not rely on each domain to fulfill its QoS promises, but actively seek

22

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

alternative domain compositions that can satisfy the end-to-end QoS requirements despite changes in

network weather. Clearly, such adaptation is only possible if there exists a feasible domain composition

at the time of adaptation. Moreover, the adaptation mechanism is inherently self-optimizing, in that when

a domain experiences performance degradation, the mere act of adaptation lessens the traffic load on the

domain by redirecting traffic elsewhere, and helps in distributing load across the networks.

V. EXPERIMENTATIONS

In this section, we evaluate the runtime performance, success rate and effectiveness of our hybrid com-

position algorithm compared with prominent solutions in the literature. For completeness, not only are

the k-MCOP algorithms presented here, we also include the SC-SON algorithm [7] proposed for service

composition in Service Overlay Networks.

Two sets of domain graphs are used in our study. The first domain graph is constructed based on the

ANSNET (ANSNET) topology (Figure 20), as presented in Chen’s work [19]. The second domain graph

is constructed based on the Cable&Wireless (CNW) network topology in the US and UK (Figure 21).

The CNW topology is of substantially larger size and contains significant number of service classes. In

the illustrations, links with boxes depict domains with three service classes, while the other links have a

single service class. The actual number of nodes on the graph is larger than shown since the service class

nodes are omitted. At the start of each simulation run, the weight of each link is randomly distributed

with relative differentiation between different service classes. A service class of higher cost offers better

delay and availability values than a lower service class.

The experiments are performed under Redhat Linux 9 on a Pentium 4 2.4GHz PC with 1GB memory. In

each run, the graph weights are randomly generated as specified above and each algorithm is then asked

to find the minimal cost feasible path between source (S) and destination (D) on ANSNET and between

23

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 20. Domain Graph of ANSNET Topology (ANSNET) Fig. 21. Domain Graph of Cable&Wireless Topology (CNW)

the node in Seattle and the node in London on CNW. As the base case, depth-first search is performed

to find the minimal cost path on the graph.

The performance of each solution is evaluated using randomly generated graphs of size|N |. The path

length between source and destination is at least 15 links. Figure 22 plot the average runtime of the

algorithms over 100 runs for each graph size. As shown through theoretical studies, the LPH and Chen

algorithm performs significantly worse than the other algorithms. The performance of our algorithm is

roughly on par with TAMCRA when K is set to 3 (i.e. three non-dominate paths are kept at each node). As

the expanded graphs of both the ANSNET and CNW topology has 100 or more nodes, we are particularly

interested in algorithms with acceptable runtime speed on graphs of this size. Excluding Chen and LPH,

most of the algorithms can return a result within 100 millisecond on graphs of size 100. The Chen’s

algorithm is able to return a result under 200 millisecond. For sake of comparison, depth first search

algorithm takes on average 8 minutes with graphs of 50 nodes.

The success rate of a k-MCOP algorithm is the percentage of time the algorithm could return a feasible

path when feasible path(s) exist in a graph. To evaluate the success rate of k-MCOP algorithms, most

simulation studies in literature apply randomly generated QoS requirements on a graph with random

24

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 22. Runtime Performance on Random Graphs of Varied Size

weight initialization. Such construction does not accurately reflect the success rate of an algorithm, as

there is no control over the constraint ratio. More precisely, when the delay requirement of a path is close

to the minimum delay bound of the path (i.e. the shortest delay path), one can expect the success rate of

an algorithm to drop, as there are few feasible paths. In the following study, we evaluate the success rate

of each algorithm over different delay ratios, computed as:

DelayRatio=
DelayRequirement

Minimum Delay between src and dst
(4)

Figure 23 and 24 present the success rate of these algorithms for ANSNET and CNW topology respectively.

The difference between ANSNET and CNW topologies are the latter is significantly larger in size and

also has many “two-hop loops”. We also consider the impact of attribute correlations on the success rate.

Three sets of correlations are evaluated: positive, negative and no correlations between delay and cost. For

each delay ratio and attribute correlation, 50 runs are conducted. On the ANSNET topology, our SComp

algorithm is able to achieve close to 100% success rate even under tight constraint bound. The TAMCRA

algorithm also performs well. On the CNW topology, our hybrid algorithm again shows good performance,

but as expected, when constraint bound is tight, the success rate is adversely affected, especially with

negative correlation. The TAMCRA algorithm outperforms ours under tight bound conditions, however,

25

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

the runtime of TAMCRA (K=20) is significantly higher than our hybrid service composition algorithm.

In general, we see that with negative correlations, which is the case in practice, our algorithm can fail to

find feasible paths, especially under tight constraints. This problem is somewhat less severe with tunable

algorithms such as TAMCRA and LPH, both of which can increase the parameter size for increased

success rate, although with significant increase in runtime performance.

Fig. 23. Success Ratio of Algorithms on ANSNET Topology

The effectiveness of the algorithms is demonstrated in Figure 25 and 26 over 50 runs. The advantage

of the forward minimization step is apparent. Our hybrid composition algorithm often finds the optimal

solution or near optimal solution. By optimal solution, we mean a feasible path whose cost is minimal. In

comparison, the other algorithms perform much worse. In this study, the error percentageε is computed

based on the marginal cost difference between the optimal solutionCopt (as obtained via depth-first search)

26

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 24. Success Ratio of Algorithms on CNW Topology

and the solution obtained from the algorithmsCalgo:

ε = (Calgo − Copt)/Copt (5)

Figure 27 illustrates the percentage of times each algorithm is able to find the optimal solution on CNW

topology. It further demonstrates the effectiveness of our algorithm in addressing the “two-hop loop”

problem, compared with other prominent algorithms.

To evaluate the performance of the network adaptation scheme, the path returned by our composition

algorithm is subjected to domain defection. Each edge along the path has a 10% independent probability

of defection. On average, a path consists of 15 edges and each defective edge is assigned available

bandwidth of 0Mb/s. The network adaptation scheme is then performed in each run. Our studies show

27

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 25. Relative optimality of Algorithms on ANSNET Topology

that when the number of defective domains is reasonable (i.e. up to 4 domains), our adaptation scheme

can reuse most of the old edges in the new path (69% or more). Even when subject to high defection

rate (6 to 7 domains), the scheme can still reuse 60% of the original path.

With fast runtime performance and good success rate compared to the classic k-MCOP algorithms, our

hybrid composition algorithm is able to find minimal cost feasible paths or near minimal cost paths. In

particular, when subject to large scale networks with many service classes, our algorithm significantly

outperforms the others. Moreover, the network adaptation scheme achieves good path reuse rate, while

finding alternative feasible paths with low switching cost.

28

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 26. Relative optimality of Algorithms on CNW Topology

VI. CONCLUSION

Following the autonomic communication principle, we first presented a framework for autonomic network

service composition in this paper. The ultimate aim of such a framework is to create self-managed end-

to-end inter-domain communication paths with QoS assurance. The self-configuration, self-optimization

and self-adaptation behavior of this framework revolves around solving the service composition and

adaptation problems. Given that each domain has its own QoS provisioning mechanisms and offers a

set of service classes, we formalize the problem as finding a selection of service classes in interconnected

domains between two service components, such that the end-to-end QoS constraints are satisfied and

the cost of the composition is minimal. Via domain graph abstraction, we reduced the problem to k-

MCOP problem and shown the inadequacies of classic k-MCOP solutions in this context. Based on our

analysis, a set of new service composition and adaptation algorithms were developed and our in-depth

29

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

Fig. 27. % optimality of Algorithms on CNW Topology

experimentation showed that the SComp algorithm has very high probability of finding the optimal or near

optimal solution and generates solutions with path cost much lower than those generated by current best

algorithms. Furthermore, our algorithm only relies on per hop domain information obtainable from BGP

information. In the event of QoS violation, our algorithm can quickly find an alternative low cost path

that reuses much of the original path. Our composition and adaptation scheme is capable of providing

hard QoS guarantees over domains with soft guarantees and exhibit the property of self-optimization

via load distribution in adaptation. In the autonomic provisioning framework, the algorithm provides the

intelligence to automatically perform domain composition and adaptation based on domain information

gathered by the monitoring facilities. The required provisioning operations are to be carried out by the

provisioning mechanisms.

Our work lends itself to extensions in both the theoretical and the application domains. On the theoretical

30

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

side, further analysis and comparison should be conducted to seek mathematical bound on the near-

optimality and feasibility of our algorithms. On the application side, a prototype implementation of

the autonomic service provisioning framework should be undertaken to evaluate the applicability of our

framework and algorithms in real networks.

REFERENCES

[1] J. Wroclawski, “The use of RSVP with IETF integrated services,” RFC2210, September 1997.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture for differentiated services,” RFC2475, December

1998.

[3] J. Kephart and D. Chess, “The vision of autonomic computing,”IEEE Computer Magazine, 2003.

[4] J. Xiao and R. Boutaba, “Qos-aware service composition in large scale multi-domain networks,” inProceedings of the IEEE/IFIP

Symposium on Integrated Network and System Management (IM’05), 2005.

[5] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johansson, K. Lai, T. Lavian, S. Machiraju, Z. Morley-Mao, G. Porter, T. Roscoe,

M. Seshadri, J. S. Shih, K. Sklower, L. Subramanian, T. Suzuki, S. Zhuang, A. D. Joseph, R. H. Katz, and I. Stoica, “The SAHARA

model for service composition across multiple providers,” inProceedings of the First International Conference on Pervasive Computing.

ACM, August 2002.

[6] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, “QoS-aware middleware for web service composition,”

IEEE Transactions on Software Engineering, vol. 30, no. 5, pp. 311–327, May 2004.

[7] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, “QoS-assured service composition in managed service overlay networks,” in

Proceedings of the 23rd International Conference on Distributed Computing Systems. ACM, May 2003.

[8] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz, “An architecture for a secure service discovery service,” in

Proceedings of Fifth Annual International Conference on Mobile Computing and Networks (MobiCom ’99). IEEE, August 1999.

[9] “Universal description, discovery and integration technical white paper,” UDDI.org, September 2000.

[10] W. Hoschek, “The web service discovery architecture,” inProceedings of ACM/IEEE Conference on Supercomputing 2002, 2002.

[11] Y. Rekhter and P. Gross, “Application of the border gateway protocol in the internet,” RFC1772, March 1995.

[12] F. Leymann, “Web service flow language (WSFL 1.0),” IBM Software Group, May 2001, http://www-3.ibm.com/software/

solutions/webservices/pdf/WSFL.pdf.

[13] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,

and S. Weerawarana, “Business process execution language for web service v1.1,” IBM Technical White Paper, May 2003,

http://www.ibm.com/developerworks/library/ws-bpel/.

31

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

[14] A. Keller, G. Kar, H. Ludwig, A. Dan, and J. L. Hellerstein, “Managing dynamic services: A contract based approach to a conceptual

architecture,” inProceedings of IEEE/IFIP Network Operations and Management Symposium 2002 (NOMS2002). IEEE/IFIP, April

2002.

[15] M. Salle and C. Bartolini, “Management by contract,” inProceedings of IEEE/IFIP Network Operations and Management Symposium

2004 (NOMS2004). IEEE/IFIP, April 2004.

[16] G. Piccinelli, C. Preist, and C. Bartolini, “E-service composition: Supporting dynamic definition of process-oriented negotiation

parameters,” inProceedings of 12th International Workshop on Database and Expert Systems Applications. IEEE, September 2001.

[17] W. Rhee, J. Lee, M. Yang, I. Lee, J. Yu, and S. Kim, “Dynamic provisioning mechanism for heterogeneous QoS guarantee in

differentiated service networks,” inProceedings of IEEE International Conference on Communications 2003 (ICC03). IEEE, May

2003, vol. 3, pp. 1912–1916.

[18] Z. Wang and J. Crowcroft, “QoS routing for supporting resource reservation,”IEEE Journal on Selected Areas in Communication,

1996.

[19] S. Chen and K. Nahrstedt, “On finding multi-constrained paths,” inProceedings of IEEE International Conference on Communications

(ICC98). IEEE, June 1998, vol. 2, pp. 874–879.

[20] X. Yuan, “Heuristic algorithms for multiconstrained quality-of-service routing,”IEEE/ACM Transactions on Networking, vol. 10, no.

2, April 2002.

[21] H. De Neve and P. Van Mieghem, “A multiple quality of service routing algorithm for PNNI,” inProceedings of the ATM Workshop.

IEEE, May 1998, pp. 324–328.

[22] P. Van Mieghem, H. De Neve, and F. Kuipers, “Hop-by-hop quality of service routing,”Computer Networks, , no. 37, pp. 407–423,

2001.

[23] T. Korkmaz and M. Krunz, “Multi-constrained optimal path selection,” inProceedings of IEEE INFOCOM 2001. IEEE, April 2001,

vol. 2, pp. 834–843.

[24] F. A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Meighem, “Performance evaluation of constraint-based path selection,”IEEE

Network, vol. 18, no. 5, pp. 16–23, September/October 2004.

32

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

L IST OF FIGURES

1 Autonomic Provisioning Framework . 5

2 An Example of Domain Connectivity . 9

3 Graph Representation of Domain Connectivity . 9

4 Domain Graph with Service Class Expansion . 10

5 Example of the Two-hop Problem on Domain Graph . 10

6 MC Searchfunction . 15

7 MC SearchUpdatefunction . 15

8 An Example ofMC Search . 16

9 Example of the Service Composition Algorithm . 16

10 MIN Searchfunction . 17

11 MIN SearchUpdatefunction . 17

12 The Service Composition Algorithm . 18

13 The Hybrid Service Composition Algorithm . 18

14 MIN SearchFull function . 20

15 MIN SearchFull Updatefunction . 20

16 Example of the Hybrid Service Composition Algorithm . 21

17 The Network Adaptation Algorithm . 21

18 Example of the Network Adaptation Algorithm . 22

33

July 22, 2005 final version for IEEE JSAC – autonomic communication systems

19 Example of Mobility Support . 22

20 Domain Graph of ANSNET Topology (ANSNET) . 24

21 Domain Graph of Cable&Wireless Topology (CNW) . 24

22 Runtime Performance on Random Graphs of Varied Size . 25

23 Success Ratio of Algorithms on ANSNET Topology . 26

24 Success Ratio of Algorithms on CNW Topology . 27

25 Relative optimality of Algorithms on ANSNET Topology 28

26 Relative optimality of Algorithms on CNW Topology . 29

27 % optimality of Algorithms on CNW Topology . 30

34

